-
4
-
-
0036828301
-
Discrete random walk models for space-time fractional diffusion
-
R. Gorenflo, R., F. Mainardi, D. Moretti, G. Pagnini, and P. Paradisi Discrete random walk models for space-time fractional diffusion Chem. Phys. 284 2002 521 541
-
(2002)
Chem. Phys.
, vol.284
, pp. 521-541
-
-
Gorenflo, R.R.1
Mainardi, F.2
Moretti, D.3
Pagnini, G.4
Paradisi, P.5
-
5
-
-
0036650850
-
Time fractional diffusion: A discrete random walk approach
-
R. Gorenflo, R., F. Mainardi, D. Moretti, G. Pagnini, and P. Paradisi Time fractional diffusion: a discrete random walk approach Nonlinear Dynam. 29 2002 129 143
-
(2002)
Nonlinear Dynam.
, vol.29
, pp. 129-143
-
-
Gorenflo, R.R.1
Mainardi, F.2
Moretti, D.3
Pagnini, G.4
Paradisi, P.5
-
6
-
-
0343526808
-
Fractional reaction-diffusion
-
B.I. Henry, and S.L. Wearne Fractional reaction-diffusion Phys. A 276 2000 448 455
-
(2000)
Phys. A
, vol.276
, pp. 448-455
-
-
Henry, B.I.1
Wearne, S.L.2
-
7
-
-
48549089806
-
Subdiffusion in a system with a thick membrane
-
T. Kosztolowicz Subdiffusion in a system with a thick membrane J. Membrane Sci. 320 2008 492 499
-
(2008)
J. Membrane Sci.
, vol.320
, pp. 492-499
-
-
Kosztolowicz, T.1
-
8
-
-
0002641421
-
The random walk's guide to anomalous diffusion: A fractional dynamics approach
-
R. Metzler, and J. Klafter The random walk's guide to anomalous diffusion: a fractional dynamics approach Phys. Rep. 339 2008 1 77
-
(2008)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
9
-
-
62349083202
-
Particle tracking for time-fractional diffusion
-
Y. Zhang, M. Meerschaert, and B. Baeumer Particle tracking for time-fractional diffusion Phys. Rev. E 78 2008 036705
-
(2008)
Phys. Rev. e
, vol.78
, pp. 036705
-
-
Zhang, Y.1
Meerschaert, M.2
Baeumer, B.3
-
10
-
-
1542425102
-
Numerical solution of the space fractional Fokker-Planck equation
-
F. Liu, V. Anh, and I. Turner Numerical solution of the space fractional Fokker-Planck equation J. Comput. Appl. Math. 166 2004 209 219
-
(2004)
J. Comput. Appl. Math.
, vol.166
, pp. 209-219
-
-
Liu, F.1
Anh, V.2
Turner, I.3
-
11
-
-
77954685875
-
The fundamental and numerical solutions of the Riesz space fractional reaction-dispersion equation
-
J. Chen, F. Liu, V. Anh, and I. Turner The fundamental and numerical solutions of the Riesz space fractional reaction-dispersion equation ANZIAM J. 50 2008 45 57
-
(2008)
ANZIAM J.
, vol.50
, pp. 45-57
-
-
Chen, J.1
Liu, F.2
Anh, V.3
Turner, I.4
-
12
-
-
55549107511
-
New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation
-
P. Zhuang, F. Liu, V. Anh, and I. Turner New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation SIAM J. Numer. Anal. 46 2 2008 1079 1095
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, Issue.2
, pp. 1079-1095
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
13
-
-
40849115179
-
Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation
-
C. Chen, F. Liu, and K. Burrage Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation Appl. Math. Comput. 198 2008 754 769
-
(2008)
Appl. Math. Comput.
, vol.198
, pp. 754-769
-
-
Chen, C.1
Liu, F.2
Burrage, K.3
-
14
-
-
63649135242
-
Numerical simulation for the three-dimensional seepage flow with fractional derivatives in porous media
-
Q. Liu, F. Liu, V. Anh, and I. Turner Numerical simulation for the three-dimensional seepage flow with fractional derivatives in porous media IMA J. Appl. Math. 74 2009 201 229
-
(2009)
IMA J. Appl. Math.
, vol.74
, pp. 201-229
-
-
Liu, Q.1
Liu, F.2
Anh, V.3
Turner, I.4
-
15
-
-
84907893973
-
Numerical methods f or the variable-order fractional advection-diffusiion with a nonlinear source term
-
P. Zhuang, F. Liu, V. Anh, and I. Turner Numerical methods f or the variable-order fractional advection-diffusiion with a nonlinear source term SIAM J. Numer. Anal. 47 3 2009 1760 1781
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, Issue.3
, pp. 1760-1781
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
16
-
-
77955704784
-
Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation
-
C. Chen, C.F. Liu, V. Anh, and I. Turner Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation SIAM J. Sci. Comput. 32 4 2010 1740 1760
-
(2010)
SIAM J. Sci. Comput.
, vol.32
, Issue.4
, pp. 1740-1760
-
-
Chen, C.1
Liu, C.F.2
Anh, V.3
Turner, I.4
-
17
-
-
69249214155
-
Numerical methods for fractional partial differential equations with Riesz space fractional derivatives
-
Q. Yang, Q., F. Liu, and I. Turner Numerical methods for fractional partial differential equations with Riesz space fractional derivatives Appl. Math. Model. 34 1 2010 200 218
-
(2010)
Appl. Math. Model.
, vol.34
, Issue.1
, pp. 200-218
-
-
Yang, Q.Q.1
Liu, F.2
Turner, I.3
-
18
-
-
77951184169
-
An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation
-
Y. Gu, P. Zhuang, F. Liu, An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation, Comput. Model. Eng. Sci. 56 (3) (2010) 303-334.
-
(2010)
Comput. Model. Eng. Sci.
, vol.56
, Issue.3
, pp. 303-334
-
-
Gu, Y.1
Zhuang, P.2
Liu, F.3
-
19
-
-
0021448875
-
To the theoretical explanation of the universal response
-
R.R. Nigmatullin To the theoretical explanation of the universal response Phys. Status (B): Basic Res. 123 1984 739 745
-
(1984)
Phys. Status (B): Basic Res.
, vol.123
, pp. 739-745
-
-
Nigmatullin, R.R.1
-
20
-
-
0022492943
-
Realization of the generalized transfer equation in a medium with fractal geometry
-
R.R. Nigmatullin Realization of the generalized transfer equation in a medium with fractal geometry Phys. Status (B): Basic Res. 133 1986 425 430
-
(1986)
Phys. Status (B): Basic Res.
, vol.133
, pp. 425-430
-
-
Nigmatullin, R.R.1
-
21
-
-
0000103589
-
Wright functions as scale-invariant solutions of the diffusion-wave equation
-
R. Gorenflo, Y. Luchko, and F. Mainardi Wright functions as scale-invariant solutions of the diffusion-wave equation J. Comput. Appl. Math. 118 2000 175 191
-
(2000)
J. Comput. Appl. Math.
, vol.118
, pp. 175-191
-
-
Gorenflo, R.1
Luchko, Y.2
Mainardi, F.3
-
22
-
-
84867578228
-
A general solution for the fourth-order fractional diffusion-wave equation
-
O.P. Agrawal A general solution for the fourth-order fractional diffusion-wave equation Comput. Appl. Anal. 3 2000 1403 1412
-
(2000)
Comput. Appl. Anal.
, vol.3
, pp. 1403-1412
-
-
Agrawal, O.P.1
-
23
-
-
0035359131
-
A general solution for a fourth-order fractional diffusion-wave equation defined in a bounded domain
-
O.P. Agrawal A general solution for a fourth-order fractional diffusion-wave equation defined in a bounded domain Comput. Struct. 79 2001 1497 1501
-
(2001)
Comput. Struct.
, vol.79
, pp. 1497-1501
-
-
Agrawal, O.P.1
-
24
-
-
0001407424
-
The fundamental solution of the space-time fractional diffusion equation
-
F. Mainardi, Y. Luchko, and G. Pagnini The fundamental solution of the space-time fractional diffusion equation Fract. Calculus Appl. Anal. 4 2001 153 192
-
(2001)
Fract. Calculus Appl. Anal.
, vol.4
, pp. 153-192
-
-
Mainardi, F.1
Luchko, Y.2
Pagnini, G.3
-
25
-
-
21144451936
-
Response of a diffusion-wave system subjected to deterministic and stochastic fields [J]
-
O.P. Agrawal Response of a diffusion-wave system subjected to deterministic and stochastic fields [J] Angew. Math. Mech. 83 2003 265 274
-
(2003)
Angew. Math. Mech.
, vol.83
, pp. 265-274
-
-
Agrawal, O.P.1
-
26
-
-
0037254447
-
The space-fractional telegraph equation and the related fractional telegraph process
-
E. Orsingher, and X. Zhao The space-fractional telegraph equation and the related fractional telegraph process Chin. Ann. Math. Ser. B 1 2003 45 56
-
(2003)
Chin. Ann. Math. Ser. B
, vol.1
, pp. 45-56
-
-
Orsingher, E.1
Zhao, X.2
-
27
-
-
34848861554
-
The telegraph process stopped at stable-distributed times and its connection with the fractional telegraph equation
-
L. Beghin, and E. Orsingher The telegraph process stopped at stable-distributed times and its connection with the fractional telegraph equation Fract. Calc. Appl. Anal. 6 2 2003 187 204
-
(2003)
Fract. Calc. Appl. Anal.
, vol.6
, Issue.2
, pp. 187-204
-
-
Beghin, L.1
Orsingher, E.2
-
28
-
-
0037457782
-
Harmonic analysis of random fractional diffusion-wave equations
-
V. Anh, and N. Leonenko Harmonic analysis of random fractional diffusion-wave equations Appl. Math. Comput. 141 1 2003 77 85
-
(2003)
Appl. Math. Comput.
, vol.141
, Issue.1
, pp. 77-85
-
-
Anh, V.1
Leonenko, N.2
-
29
-
-
0742323831
-
Time-fractional telegraph equations and telegraph processes with Brownian time
-
E. Orsingher, and L. Beghin Time-fractional telegraph equations and telegraph processes with Brownian time Probab. Theory Related Fields 128 1 2004 141 160
-
(2004)
Probab. Theory Related Fields
, vol.128
, Issue.1
, pp. 141-160
-
-
Orsingher, E.1
Beghin, L.2
-
30
-
-
34848822538
-
Methods of separating variables for the time-fractional telegraph equation
-
J. Chen, F. Liu, V. Anh, and I. Turner Methods of separating variables for the time-fractional telegraph equation J. Math. Anal. Appl. 338 2008 1364 1377
-
(2008)
J. Math. Anal. Appl.
, vol.338
, pp. 1364-1377
-
-
Chen, J.1
Liu, F.2
Anh, V.3
Turner, I.4
-
31
-
-
77949274545
-
Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry
-
Y. Povstenko Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry Nonlinear Dynam. 59 2010 593 605
-
(2010)
Nonlinear Dynam.
, vol.59
, pp. 593-605
-
-
Povstenko, Y.1
-
32
-
-
33845751607
-
A second-order accurate numerical method for a fractional wave equation
-
M. William, and M. Kassem A second-order accurate numerical method for a fractional wave equation Numer. Math. 105 2007 481 510
-
(2007)
Numer. Math.
, vol.105
, pp. 481-510
-
-
William, M.1
Kassem, M.2
-
33
-
-
30744474991
-
A fully discrete difference scheme for a diffusion-wave system
-
Z.Z. Sun, and X.N. Wu A fully discrete difference scheme for a diffusion-wave system Appl. Numer. Math. 56 2006 193 209
-
(2006)
Appl. Numer. Math.
, vol.56
, pp. 193-209
-
-
Sun, Z.Z.1
Wu, X.N.2
-
37
-
-
0012659515
-
An operational method for solving fractional differential equations with the Caputo derivatives
-
Y. Luchko, and R. Gorenflo An operational method for solving fractional differential equations with the Caputo derivatives Acta Math. Vietnam. 24 1999 207 233
-
(1999)
Acta Math. Vietnam.
, vol.24
, pp. 207-233
-
-
Luchko, Y.1
Gorenflo, R.2
-
38
-
-
77957822720
-
Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation
-
Y. Luchko Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation J. Math. Anal. Appl. 374 2011 538 548
-
(2011)
J. Math. Anal. Appl.
, vol.374
, pp. 538-548
-
-
Luchko, Y.1
|