메뉴 건너뛰기




Volumn 36, Issue 10, 2012, Pages 4931-4943

A new Jacobi operational matrix: An application for solving fractional differential equations

Author keywords

Caputo derivative; Jacobi polynomials; Multi term fractional differential equations; Nonlinear fractional differential equations; Operational matrix; Spectral method

Indexed keywords

CAPUTO DERIVATIVES; FRACTIONAL DIFFERENTIAL EQUATIONS; JACOBI POLYNOMIALS; OPERATIONAL MATRICES; SPECTRAL METHODS;

EID: 84861893481     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2011.12.031     Document Type: Article
Times cited : (300)

References (29)
  • 4
    • 77957308442 scopus 로고    scopus 로고
    • A constant enclosure method for validating existence and uniqueness of the solution of an initial value problem for a fractional differential equation
    • Amairi M., Aoun M., Najar S., Abdelkrim M.N. A constant enclosure method for validating existence and uniqueness of the solution of an initial value problem for a fractional differential equation. Appl. Math. Comput. 2010, 217:2162-2168.
    • (2010) Appl. Math. Comput. , vol.217 , pp. 2162-2168
    • Amairi, M.1    Aoun, M.2    Najar, S.3    Abdelkrim, M.N.4
  • 5
    • 77950188013 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations
    • Deng J., Ma L. Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations. Appl. Math. Lett. 2010, 23:676-680.
    • (2010) Appl. Math. Lett. , vol.23 , pp. 676-680
    • Deng, J.1    Ma, L.2
  • 6
    • 79955481320 scopus 로고    scopus 로고
    • A sufficient condition of viability for fractional differential equations with the Caputo derivative
    • Girejko E., Mozyrska D., Wyrwas M. A sufficient condition of viability for fractional differential equations with the Caputo derivative. J. Math. Anal. Appl. 2011, 382(1):146-154.
    • (2011) J. Math. Anal. Appl. , vol.382 , Issue.1 , pp. 146-154
    • Girejko, E.1    Mozyrska, D.2    Wyrwas, M.3
  • 7
    • 17444386836 scopus 로고    scopus 로고
    • Solution of an extraordinary differential equation by adomian decomposition method
    • Ray S.S., Bera R.K. Solution of an extraordinary differential equation by adomian decomposition method. J. Appl. Math. 2004, 4:331-338.
    • (2004) J. Appl. Math. , vol.4 , pp. 331-338
    • Ray, S.S.1    Bera, R.K.2
  • 8
    • 76649094637 scopus 로고    scopus 로고
    • Solving nonlinear fractional partial differential equations using the homotopy analysis method
    • Dehghan M., Manafian J., Saadatmandi A. Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Diff. Eq. 2010, 26:448-479.
    • (2010) Numer. Methods Partial Diff. Eq. , vol.26 , pp. 448-479
    • Dehghan, M.1    Manafian, J.2    Saadatmandi, A.3
  • 10
    • 70350378693 scopus 로고    scopus 로고
    • A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations
    • Odibat Z., Momani S., Xu H. A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations. Appl. Math. Model. 2010, 34:593-600.
    • (2010) Appl. Math. Model. , vol.34 , pp. 593-600
    • Odibat, Z.1    Momani, S.2    Xu, H.3
  • 11
    • 78049255335 scopus 로고    scopus 로고
    • Convergence of the variational iteration method for solving multi-order fractional differential equations
    • Yang S., Xiao A., Su H. Convergence of the variational iteration method for solving multi-order fractional differential equations. Comput. Math. Appl. 2010, 60:2871-2879.
    • (2010) Comput. Math. Appl. , vol.60 , pp. 2871-2879
    • Yang, S.1    Xiao, A.2    Su, H.3
  • 13
    • 74249095517 scopus 로고    scopus 로고
    • A new operational matrix for solving fractional-order differential equations
    • Saadatmandi A., Dehghan M. A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 2010, 59:1326-1336.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1326-1336
    • Saadatmandi, A.1    Dehghan, M.2
  • 14
    • 79960555480 scopus 로고    scopus 로고
    • Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations
    • Doha E.H., Bhrawy A.H., Ezz-Eldien S.S. Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Model. 2011, 35:5662-5672.
    • (2011) Appl. Math. Model. , vol.35 , pp. 5662-5672
    • Doha, E.H.1    Bhrawy, A.H.2    Ezz-Eldien, S.S.3
  • 15
    • 79961168894 scopus 로고    scopus 로고
    • A quadrature tau method for variable coefficients fractional differential equations
    • Bhrawy A.H., Alofi A.S., Ezz-Eldien S.S. A quadrature tau method for variable coefficients fractional differential equations. Appl. Math. Lett. 2011, 24:2146-2152.
    • (2011) Appl. Math. Lett. , vol.24 , pp. 2146-2152
    • Bhrawy, A.H.1    Alofi, A.S.2    Ezz-Eldien, S.S.3
  • 16
    • 80052270048 scopus 로고    scopus 로고
    • A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order
    • Doha E.H., Bhrawy A.H., Ezz-Eldien S.S. A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 2011, 62:2364-2373.
    • (2011) Comput. Math. Appl. , vol.62 , pp. 2364-2373
    • Doha, E.H.1    Bhrawy, A.H.2    Ezz-Eldien, S.S.3
  • 17
    • 78649445937 scopus 로고    scopus 로고
    • An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis
    • Ghoreishi F., Yazdani S. An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis. Comput. Math. Appl. 2011, 61:30-43.
    • (2011) Comput. Math. Appl. , vol.61 , pp. 30-43
    • Ghoreishi, F.1    Yazdani, S.2
  • 18
    • 79960988872 scopus 로고    scopus 로고
    • Tau approximate solution of fractional partial differential equations
    • Vanani S.K., Aminataei A. Tau approximate solution of fractional partial differential equations. Comput. Math. Appl. 2011, 62:1075-1083.
    • (2011) Comput. Math. Appl. , vol.62 , pp. 1075-1083
    • Vanani, S.K.1    Aminataei, A.2
  • 19
    • 79953828683 scopus 로고    scopus 로고
    • On the convergence of spline collocation methods for solving fractional differential equations
    • Pedas A., Tamme E. On the convergence of spline collocation methods for solving fractional differential equations. J. Comput. Appl. Math. 2011, 235:3502-3514.
    • (2011) J. Comput. Appl. Math. , vol.235 , pp. 3502-3514
    • Pedas, A.1    Tamme, E.2
  • 20
    • 79953684270 scopus 로고    scopus 로고
    • A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations
    • Esmaeili S., Shamsi M. A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2011, 16:3646-3654.
    • (2011) Commun. Nonlinear Sci. Numer. Simul. , vol.16 , pp. 3646-3654
    • Esmaeili, S.1    Shamsi, M.2
  • 21
    • 79961002199 scopus 로고    scopus 로고
    • Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials
    • Esmaeili S., Shamsi M., Luchko Y. Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials. Comput. Math. Appl. 2011, 62:918-929.
    • (2011) Comput. Math. Appl. , vol.62 , pp. 918-929
    • Esmaeili, S.1    Shamsi, M.2    Luchko, Y.3
  • 23
    • 79951948499 scopus 로고    scopus 로고
    • Jacobi-Jacobi dual-Petrov-Galerkin method for third- and fifth- order differential equations
    • Doha E.H., Bhrawy A.H., Hafez R.M. Jacobi-Jacobi dual-Petrov-Galerkin method for third- and fifth- order differential equations. Math. Comput. Model. 2011, 53:1820-1832.
    • (2011) Math. Comput. Model. , vol.53 , pp. 1820-1832
    • Doha, E.H.1    Bhrawy, A.H.2    Hafez, R.M.3
  • 24
    • 0742271179 scopus 로고    scopus 로고
    • On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials
    • Doha E.H. On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials. J. Phys. A Math. Gen. 2004, 37:657-675.
    • (2004) J. Phys. A Math. Gen. , vol.37 , pp. 657-675
    • Doha, E.H.1
  • 26
    • 3042709180 scopus 로고    scopus 로고
    • Multi-order fractional differential equations and their numerical solutions
    • Diethelm K., Ford N.J. Multi-order fractional differential equations and their numerical solutions. Appl. Math. Comput. 2004, 154:621-640.
    • (2004) Appl. Math. Comput. , vol.154 , pp. 621-640
    • Diethelm, K.1    Ford, N.J.2
  • 27
    • 77952705214 scopus 로고    scopus 로고
    • A collocation-shooting method for solving fractional boundary value problems
    • Mdallal Q.M., Syam M.I., Anwar M.N. A collocation-shooting method for solving fractional boundary value problems. Commun. Nonlinear Sci. Numer. Simul. 2010, 15:3814-3822.
    • (2010) Commun. Nonlinear Sci. Numer. Simul. , vol.15 , pp. 3814-3822
    • Mdallal, Q.M.1    Syam, M.I.2    Anwar, M.N.3
  • 28
    • 0036650479 scopus 로고    scopus 로고
    • A predictor-corrector approach for the numerical solution of fractional differential equation
    • Diethelm K., Ford N.J., Freed A.D. A predictor-corrector approach for the numerical solution of fractional differential equation. Nonlinear Dyn. 2002, 29:3-22.
    • (2002) Nonlinear Dyn. , vol.29 , pp. 3-22
    • Diethelm, K.1    Ford, N.J.2    Freed, A.D.3
  • 29
    • 80052264305 scopus 로고    scopus 로고
    • Solving a multi-order fractional differential equation using homotopy analysis method
    • Jafari H., Das S., Tajadodi H. Solving a multi-order fractional differential equation using homotopy analysis method. J. King Saud University Sci. 2011, 23:151-155.
    • (2011) J. King Saud University Sci. , vol.23 , pp. 151-155
    • Jafari, H.1    Das, S.2    Tajadodi, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.