메뉴 건너뛰기




Volumn 64, Issue 10, 2012, Pages 3377-3388

Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain

Author keywords

Analytical solution; Multi term time fractional diffusion equations; Multi term time fractional diffusion wave equations; Multivariate Mittag Leffler function; Nonhomogeneous initial boundary value problems; Separating of variables

Indexed keywords

DIFFUSION WAVE EQUATION; MITTAG-LEFFLER FUNCTIONS; NON-HOMOGENEOUS; SEPARATING OF VARIABLES; TIME-FRACTIONAL DIFFUSION;

EID: 84868196073     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2012.02.042     Document Type: Article
Times cited : (174)

References (59)
  • 1
    • 26444463863 scopus 로고    scopus 로고
    • Fractional diffusion in inhomogeneous media
    • A.V. Chechkin, R. Gorenflo, and I.M. Sokolov Fractional diffusion in inhomogeneous media J. Phys. A 38 2005 679 684
    • (2005) J. Phys. A , vol.38 , pp. 679-684
    • Chechkin, A.V.1    Gorenflo, R.2    Sokolov, I.M.3
  • 4
    • 0000361678 scopus 로고    scopus 로고
    • Random walk models for space-fractional diffusion processes
    • R. Gorenflo, and F. Mainardi Random walk models for space-fractional diffusion processes Fract. Calc. Appl. Anal. 1 1998 167 191
    • (1998) Fract. Calc. Appl. Anal. , vol.1 , pp. 167-191
    • Gorenflo, R.1    Mainardi, F.2
  • 6
    • 0030464353 scopus 로고    scopus 로고
    • Fractional relaxation-oscillation and fractional diffusion-wave phenomena
    • F. Mainardi Fractional relaxation-oscillation and fractional diffusion-wave phenomena Chaos Solitons Fractals 7 1996 1461 1477
    • (1996) Chaos Solitons Fractals , vol.7 , pp. 1461-1477
    • Mainardi, F.1
  • 7
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomalous diffusion: A fractional dynamics approach
    • R. Metzler, and J. Klafter The random walk's guide to anomalous diffusion:a fractional dynamics approach Phys. Rep. 339 2000 1 77
    • (2000) Phys. Rep. , vol.339 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 13
    • 33751545053 scopus 로고    scopus 로고
    • Fractional high order methods for the nonlinear fractional ordinary differential equation
    • DOI 10.1016/j.na.2005.12.027, PII S0362546X05010503
    • R. Lin, and F. Liu Fractional high order methods for the nonlinear fractional ordinary differential equation Nonlinear Anal. 66 2007 856 869 (Pubitemid 44839109)
    • (2007) Nonlinear Analysis, Theory, Methods and Applications , vol.66 , Issue.4 , pp. 856-869
    • Lin, R.1    Liu, F.2
  • 14
    • 1542425102 scopus 로고    scopus 로고
    • Numerical solution of the space fractional Fokker-Planck equation
    • DOI 10.1016/j.cam.2003.09.028, PII S0377042703008616
    • F. Liu, V. Anh, and I. Turner Numerical solution of the space Fokker-Planck equation J. Comput. Appl. Math. 166 2004 209 219 (Pubitemid 38342127)
    • (2004) Journal of Computational and Applied Mathematics , vol.166 , Issue.1 , pp. 209-219
    • Liu, F.1    Anh, V.2    Turner, I.3
  • 15
    • 33751533397 scopus 로고    scopus 로고
    • Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation
    • (E)
    • F. Liu, S. Shen, V. Anh, and I. Turner Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation ANZIAM J. 46 2005 C488 C504 (E)
    • (2005) ANZIAM J. , vol.46
    • Liu, F.1    Shen, S.2    Anh, V.3    Turner, I.4
  • 16
    • 33846798041 scopus 로고    scopus 로고
    • Approximation of the Lévy-Feller advection-dispersion press by random walk and finite difference method
    • Q. Liu, F. Liu, I. Turner, and V. Anh Approximation of the Lévy-Feller advection-dispersion press by random walk and finite difference method J. Comput. Phys. 222 2007 57 70
    • (2007) J. Comput. Phys. , vol.222 , pp. 57-70
    • Liu, Q.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 17
    • 34547673244 scopus 로고    scopus 로고
    • Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation
    • DOI 10.1016/j.amc.2006.08.162, PII S0096300306012100
    • F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage Stability and convergence of difference methods for the space-time fractional advection-diffusion equation Appl. Math. Comput. 191 2007 12 20 (Pubitemid 47223382)
    • (2007) Applied Mathematics and Computation , vol.191 , Issue.1 , pp. 12-20
    • Liu, F.1    Zhuang, P.2    Anh, V.3    Turner, I.4    Burrage, K.5
  • 18
    • 4444368867 scopus 로고    scopus 로고
    • Finite difference approximations for fractional advection-dispersion flow equations
    • DOI 10.1016/j.cam.2004.01.033, PII S0377042704000986
    • M. Meerschaert, and C. Tadjeran Finite difference approximations for fractional advection-dispersion flow equation J. Comput. Appl. Math. 172 2004 65 77 (Pubitemid 39204390)
    • (2004) Journal of Computational and Applied Mathematics , vol.172 , Issue.1 , pp. 65-77
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 19
    • 84867978055 scopus 로고    scopus 로고
    • Implicit difference approximation for the time fractional diffusion equation
    • Extra Edition
    • P. Zhang, and F. Liu Implicit difference approximation for the time fractional diffusion equation J. Appl. Math. Comput. 22 3 2006 87 99 (Pubitemid 44695544)
    • (2006) Journal of Applied Mathematics and Computing , vol.22 , Issue.3 , pp. 87-99
    • Zhuang, P.1    Liu, F.2
  • 20
    • 33646097441 scopus 로고    scopus 로고
    • Pattern formation in a fractional reaction diffusion system
    • V.V. Gafiychuk, and B.Yo. Datsko Pattern formation in a fractional reaction diffusion system Physica A 365 2006 300 306
    • (2006) Physica A , vol.365 , pp. 300-306
    • Gafiychuk, V.V.1    Datsko, B.Yo.2
  • 22
    • 0001983732 scopus 로고    scopus 로고
    • Fractional calculus: Some basic problems in continuum and statistical mechanics
    • A. Carpinteri, F. Mainardi, Springer New York
    • F. Mainardi Fractional calculus: some basic problems in continuum and statistical mechanics A. Carpinteri, F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics 1997 Springer New York 291 348
    • (1997) Fractals and Fractional Calculus in Continuum Mechanics , pp. 291-348
    • Mainardi, F.1
  • 23
    • 4043151477 scopus 로고    scopus 로고
    • The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
    • R. Metzler, and J. Klafter The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics J. Phys. A: Math. Gen. 37 2004 161 208
    • (2004) J. Phys. A: Math. Gen. , vol.37 , pp. 161-208
    • Metzler, R.1    Klafter, J.2
  • 24
    • 30244460855 scopus 로고    scopus 로고
    • The fundamental solutions for the fractional diffusion-wave equation
    • DOI 10.1016/0893-9659(96)00089-4, PII S0893965996000894
    • F. Mainardi The fundamental solutions for the fractional diffusion-wave equation Appl. Math. Lett. 9 1996 23 28 (Pubitemid 126365654)
    • (1996) Applied Mathematics Letters , vol.9 , Issue.6 , pp. 23-28
    • Mainardi, F.1
  • 25
    • 0001407424 scopus 로고    scopus 로고
    • The fundamental solution of the space-time fractional diffusion equation
    • F. Mainardi, Yu. Luchko, and G. Pagnini The fundamental solution of the space-time fractional diffusion equation Fract. Calc. Appl. Anal. 4 2 2001 153 192
    • (2001) Fract. Calc. Appl. Anal. , vol.4 , Issue.2 , pp. 153-192
    • Mainardi, F.1    Luchko, Yu.2    Pagnini, G.3
  • 27
    • 0009481303 scopus 로고
    • The fractional diffusion equation
    • W. Wyss The fractional diffusion equation J. Math. Phys. 27 1986 2782 2785
    • (1986) J. Math. Phys. , vol.27 , pp. 2782-2785
    • Wyss, W.1
  • 28
    • 0001553919 scopus 로고
    • Fractional diffusion and wave equations
    • W.R. Schneider, and W. Wyss Fractional diffusion and wave equations J. Math. Phys. 30 1989 134 144
    • (1989) J. Math. Phys. , vol.30 , pp. 134-144
    • Schneider, W.R.1    Wyss, W.2
  • 29
    • 0036650559 scopus 로고    scopus 로고
    • Solution for a fractional diffusion-wave equation defined in a bounded domain
    • DOI 10.1023/A:1016539022492, Fractional Order Calculus and Its Applications
    • O.P. Agrawal Solution for a fractional diffusion-wave equation defined in a bounded domain Nonlinear Dynam. 29 2002 145 155 (Pubitemid 34945396)
    • (2002) Nonlinear Dynamics , vol.29 , Issue.1-4 , pp. 145-155
    • Agrawal, O.P.1
  • 30
    • 21144451936 scopus 로고    scopus 로고
    • Response of a diffusion-wave system subjected to deterministic and stochastic fields
    • O.P. Agrawal Response of a diffusion-wave system subjected to deterministic and stochastic fields ZAMM Z. Angew. Math. Mech. 83 2003 265 274
    • (2003) ZAMM Z. Angew. Math. Mech. , vol.83 , pp. 265-274
    • Agrawal, O.P.1
  • 31
    • 0040478884 scopus 로고    scopus 로고
    • Signalling problem and Dirichlet-Neumann map for time-fractional diffusion-wave equation
    • R. Gorenflo, and F. Mainardi Signalling problem and Dirichlet-Neumann map for time-fractional diffusion-wave equation Matimyas Mat. 21 1998 109 118
    • (1998) Matimyas Mat. , vol.21 , pp. 109-118
    • Gorenflo, R.1    Mainardi, F.2
  • 33
    • 79952190735 scopus 로고    scopus 로고
    • Numerical method for solving diffusion-wave phenomena
    • M. Stojanovic Numerical method for solving diffusion-wave phenomena J. Comput. Appl. Math. 235 10 2011 3121 3137
    • (2011) J. Comput. Appl. Math. , vol.235 , Issue.10 , pp. 3121-3137
    • Stojanovic, M.1
  • 34
    • 0036339696 scopus 로고    scopus 로고
    • Time-domain modeling of constant-Q seismic waves using fractional derivatives
    • DOI 10.1007/s00024-002-8705-z, Seismic waves in laterally inhomogenous media
    • J.M. Carcione, F. Cavallini, F. Mainardi, and A. Hanyga Time-domain modeling of constant-Q seismic waves using fractional derivatives Pure Appl. Geophys. 159 2002 1719 1736 (Pubitemid 34861557)
    • (2002) Pure and Applied Geophysics , vol.159 , Issue.7-8 , pp. 1719-1736
    • Carcione, J.M.1    Cavallini, F.2    Mainardi, F.3    Hanyga, A.4
  • 35
    • 33846862055 scopus 로고    scopus 로고
    • Two-dimensional axisymmetric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation
    • DOI 10.1016/j.ijsolstr.2006.07.008, PII S0020768306002757
    • Y.Z. Povstenko Two-dimensional axisymmetric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation Internat. J. Solids Structures 44 2007 2324 2348 (Pubitemid 46221404)
    • (2007) International Journal of Solids and Structures , vol.44 , Issue.7-8 , pp. 2324-2348
    • Povstenko, Y.Z.1
  • 36
    • 77949262762 scopus 로고    scopus 로고
    • Signaling problem for time-fractional diffusion-wave equation in a half-plane
    • Y.Z. Povstenko Signaling problem for time-fractional diffusion-wave equation in a half-plane Fract. Calc. Appl. Anal. 11 2008 329 352
    • (2008) Fract. Calc. Appl. Anal. , vol.11 , pp. 329-352
    • Povstenko, Y.Z.1
  • 37
    • 38349128567 scopus 로고    scopus 로고
    • Fundamental solution to three dimensional diffusion-wave equation and associated diffusive stresses
    • Y.Z. Povstenko Fundamental solution to three dimensional diffusion-wave equation and associated diffusive stresses Chaos Solitons Fractals 36 2008 961 972
    • (2008) Chaos Solitons Fractals , vol.36 , pp. 961-972
    • Povstenko, Y.Z.1
  • 38
    • 84862805797 scopus 로고    scopus 로고
    • Analysis of fundamental solutions to fractional diffusion-wave equation in polar coordinates
    • Y.Z. Povstenko Analysis of fundamental solutions to fractional diffusion-wave equation in polar coordinates Sci. Issues Jan. D Lugosz Univ. Czestochowa, Math. XIV 2009 97 104
    • (2009) Sci. Issues Jan. D Lugosz Univ. Czestochowa, Math. , vol.14 , pp. 97-104
    • Povstenko, Y.Z.1
  • 39
    • 77949274545 scopus 로고    scopus 로고
    • Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry
    • Y.Z. Povstenko Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry Nonlinear Dynam. 55 2010 593 605
    • (2010) Nonlinear Dynam. , vol.55 , pp. 593-605
    • Povstenko, Y.Z.1
  • 40
    • 67149125441 scopus 로고    scopus 로고
    • Time distributed order diffusion-wave equations. II. Applications of Laplace and Fouirer transformations
    • T.M. Atanackovic, S. Pilipovic, and D. Zorica Time distributed order diffusion-wave equations. II. Applications of Laplace and Fouirer transformations Proc. R. Soc. Lond. Ser. A 465 2009 1893 1917
    • (2009) Proc. R. Soc. Lond. Ser. A , vol.465 , pp. 1893-1917
    • Atanackovic, T.M.1    Pilipovic, S.2    Zorica, D.3
  • 41
  • 42
    • 33845323067 scopus 로고    scopus 로고
    • Solution of generalized fractional reaction-diffusion equations
    • DOI 10.1007/s10509-006-9191-z
    • R.K. Saxena, A.M. Mathai, and H.J. Haubold Solution of generalized fractional reaction-diffusion equations Astrophys. Space Sci. 305 2006 305 313 (Pubitemid 44877998)
    • (2006) Astrophysics and Space Science , vol.305 , Issue.3 , pp. 305-313
    • Saxena, R.K.1    Mathai, A.M.2    Haubold, H.J.3
  • 43
    • 78449236821 scopus 로고    scopus 로고
    • Analytical solution for the time-fractional telegraph equation
    • doi:10.1155/2009/890158 Article ID 890158, 9 pages
    • F. Huang, Analytical solution for the time-fractional telegraph equation, J. Appl. Math. vol. 2009, Article ID 890158, 9 pages doi:10.1155/2009/890158.
    • J. Appl. Math. , vol.2009
    • Huang, F.1
  • 44
    • 0742323831 scopus 로고    scopus 로고
    • Time-fractional telegraph equations and telegraph processes with brownian time
    • DOI 10.1007/s00440-003-0309-8
    • E. Orsingher, and L. Beghin Time-fractional telegraph equations and telegraph processes with Brownian time Probab. Theory Related Fields 128 1 2004 141 160 (Pubitemid 38157144)
    • (2004) Probability Theory and Related Fields , vol.128 , Issue.1 , pp. 141-160
    • Orsingher, E.1    Beghin, L.2
  • 45
    • 0035538580 scopus 로고    scopus 로고
    • Spectral analysis of fractional kinetic equations with random data
    • DOI 10.1023/A:1010474332598
    • V.V. Anh, and N.N. Leonenko Spectral analysis of fractional kinetic equations with random data J. Stat. Phys. 104 5-6 2001 1349 1387 (Pubitemid 33386576)
    • (2001) Journal of Statistical Physics , vol.104 , Issue.5-6 , pp. 1349-1387
    • Anh, V.V.1    Leonenko, N.N.2
  • 46
    • 84868213660 scopus 로고    scopus 로고
    • Solutions of unified fractional Schrodinger equations
    • Articale ID 935365, 7 pages
    • V.B.L. Chaurasia, and D. Kumar Solutions of unified fractional Schrodinger equations ISRN Math. Phys. 2012 Articale ID 935365, 7 pages
    • (2012) ISRN Math. Phys.
    • Chaurasia, V.B.L.1    Kumar, D.2
  • 47
    • 0346897985 scopus 로고    scopus 로고
    • Mechanics with variable-order differential opearators
    • C.F.M. Coimdra Mechanics with variable-order differential opearators Ann. Phys. 12 2003 692 703
    • (2003) Ann. Phys. , vol.12 , pp. 692-703
    • Coimdra, C.F.M.1
  • 48
    • 67349184476 scopus 로고    scopus 로고
    • Some recent advances in theory and simulation of fractional diffusion processes
    • R. Gorenflo, and F. Mainardi Some recent advances in theory and simulation of fractional diffusion processes J. Comput. Appl. Math. 299 2009 400 415
    • (2009) J. Comput. Appl. Math. , vol.299 , pp. 400-415
    • Gorenflo, R.1    Mainardi, F.2
  • 49
    • 0036650957 scopus 로고    scopus 로고
    • Variable order and distributed order fractional operators
    • DOI 10.1023/A:1016586905654, Fractional Order Calculus and Its Applications
    • C.F. Lorenzo, and T.T. Hartley Variable order and distributed order fractional operators Nonlinear Dynam. 29 2002 57 98 (Pubitemid 34945393)
    • (2002) Nonlinear Dynamics , vol.29 , Issue.1-4 , pp. 57-98
    • Lorenzo, C.F.1    Hartley, T.T.2
  • 51
    • 77957822720 scopus 로고    scopus 로고
    • Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation
    • Y. Luchko Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation J. Math. Anal. Appl. 374 2011 538 548
    • (2011) J. Math. Anal. Appl. , vol.374 , pp. 538-548
    • Luchko, Y.1
  • 52
    • 52349084738 scopus 로고    scopus 로고
    • Variable order modelling of diffusive-convective effects on the oscillatory flow past a sphere
    • H.T.C. Pedro, M.H. Kobayashi, J.M.C. Pereira, and C.F.M. Coimbra Variable order modelling of diffusive-convective effects on the oscillatory flow past a sphere J. Vib. Control 14 2008 1659 1672
    • (2008) J. Vib. Control , vol.14 , pp. 1659-1672
    • Pedro, H.T.C.1    Kobayashi, M.H.2    Pereira, J.M.C.3    Coimbra, C.F.M.4
  • 53
    • 56549085438 scopus 로고    scopus 로고
    • Maximum principle for the generalized time-fractional diffusion equation
    • Y. Luchko Maximum principle for the generalized time-fractional diffusion equation J. Math. Anal. Appl. 351 2009 218 223
    • (2009) J. Math. Anal. Appl. , vol.351 , pp. 218-223
    • Luchko, Y.1
  • 54
    • 34848822538 scopus 로고    scopus 로고
    • Analytical solution for the time-fractional telegraph equation by the method of separating variables
    • J. Chen, F. Liu, and V. Anh Analytical solution for the time-fractional telegraph equation by the method of separating variables J. Math. Anal. Appl. 338 2008 1364 1377
    • (2008) J. Math. Anal. Appl. , vol.338 , pp. 1364-1377
    • Chen, J.1    Liu, F.2    Anh, V.3
  • 55
    • 0004182307 scopus 로고
    • Publ. House of Bulgarian Academy of Science Sofia
    • I.H. Dimovski Convolutional Calculus 1982 Publ. House of Bulgarian Academy of Science Sofia
    • (1982) Convolutional Calculus
    • Dimovski, I.H.1
  • 56
    • 0012659515 scopus 로고    scopus 로고
    • An operational method for solving fractional differential equations with the Caputo derivatives
    • Y. Luchko, and R. Gorenflo An operational method for solving fractional differential equations with the Caputo derivatives Acta Math. Vietnam. 24 1999 207 233
    • (1999) Acta Math. Vietnam. , vol.24 , pp. 207-233
    • Luchko, Y.1    Gorenflo, R.2
  • 58
    • 44649089038 scopus 로고    scopus 로고
    • Boundary value problems for fractional diffusion-wave equation
    • V. Dafterdar-Gejji, and H. Jafari Boundary value problems for fractional diffusion-wave equation Aust. J. Math. Anal. Appl. 3 1 2006
    • (2006) Aust. J. Math. Anal. Appl. , vol.3 , Issue.1
    • Dafterdar-Gejji, V.1    Jafari, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.