메뉴 건너뛰기




Volumn 230, Issue 3, 2011, Pages 586-595

A compact finite difference scheme for the fractional sub-diffusion equations

Author keywords

Compact scheme; Convergence; Energy method; Fractional sub diffusion equation; L1 discretization; Stability

Indexed keywords

DIFFUSION; NUMERICAL METHODS; PARTIAL DIFFERENTIAL EQUATIONS;

EID: 78649334165     PISSN: 00219991     EISSN: 10902716     Source Type: Journal    
DOI: 10.1016/j.jcp.2010.10.007     Document Type: Article
Times cited : (395)

References (26)
  • 2
    • 0034502929 scopus 로고    scopus 로고
    • Fractional calculus and continuous-time finance II: the waiting-time distribution
    • Mainardi F., Raberto M., Gorenflo R., Scalas E. Fractional calculus and continuous-time finance II: the waiting-time distribution. Physica A 2000, 287:468-481.
    • (2000) Physica A , vol.287 , pp. 468-481
    • Mainardi, F.1    Raberto, M.2    Gorenflo, R.3    Scalas, E.4
  • 6
    • 4444368867 scopus 로고    scopus 로고
    • Finite difference approximations for fractional advection-dispersion flow equations
    • Meerschaert M., Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 2004, 172:65-77.
    • (2004) J. Comput. Appl. Math. , vol.172 , pp. 65-77
    • Meerschaert, M.1    Tadjeran, C.2
  • 7
    • 17144427014 scopus 로고    scopus 로고
    • The accuracy and stability of an implicit solution method for the fractional diffusion equation
    • Langlands T., Henry B. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 2005, 205:719-736.
    • (2005) J. Comput. Phys. , vol.205 , pp. 719-736
    • Langlands, T.1    Henry, B.2
  • 9
    • 77952888765 scopus 로고    scopus 로고
    • A compact difference scheme for the fractional diffusion-wave equation
    • Du R., Cao W., Sun Z.Z. A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 2010, 34:2998-3007.
    • (2010) Appl. Math. Model. , vol.34 , pp. 2998-3007
    • Du, R.1    Cao, W.2    Sun, Z.Z.3
  • 10
    • 33744801528 scopus 로고    scopus 로고
    • Matrix approach to disctete fractional calculus
    • Podlubny I. Matrix approach to disctete fractional calculus. Fract. Calculus Appl. Anal. 2000, 3:359-386.
    • (2000) Fract. Calculus Appl. Anal. , vol.3 , pp. 359-386
    • Podlubny, I.1
  • 11
    • 61349186917 scopus 로고    scopus 로고
    • Matrix approach to discrete fractional calculus II: partial fractional differential equations
    • Podlubny I. Matrix approach to discrete fractional calculus II: partial fractional differential equations. J. Comput. Phys. 2009, 228:3137-3153.
    • (2009) J. Comput. Phys. , vol.228 , pp. 3137-3153
    • Podlubny, I.1
  • 12
    • 25444472344 scopus 로고    scopus 로고
    • An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations
    • Yuste S., Acedo L. An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 2005, 42(5):1862-1874.
    • (2005) SIAM J. Numer. Anal. , vol.42 , Issue.5 , pp. 1862-1874
    • Yuste, S.1    Acedo, L.2
  • 13
    • 33646128485 scopus 로고    scopus 로고
    • Weighted average finite difference methods for fractional diffusion equations
    • Yuste S. Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 2006, 216:264-274.
    • (2006) J. Comput. Phys. , vol.216 , pp. 264-274
    • Yuste, S.1
  • 14
    • 36149001420 scopus 로고    scopus 로고
    • A Fourier method for the fractional diffusion equation describing sub-diffusion
    • Chen C., Liu F., Turner I., Anh V. A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 2007, 227:886-897.
    • (2007) J. Comput. Phys. , vol.227 , pp. 886-897
    • Chen, C.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 15
    • 40849115179 scopus 로고    scopus 로고
    • Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation
    • Chen C., Liu F., Burrage K. Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation. Appl. Math. Comput. 2008, 198:754-769.
    • (2008) Appl. Math. Comput. , vol.198 , pp. 754-769
    • Chen, C.1    Liu, F.2    Burrage, K.3
  • 16
    • 51749116733 scopus 로고    scopus 로고
    • Finite difference approximations for the fractional Fokker-Planck equation
    • Chen S., Liu F., Zhuang P., Anh V. Finite difference approximations for the fractional Fokker-Planck equation. Appl. Math. Model. 2009, 33:256-273.
    • (2009) Appl. Math. Model. , vol.33 , pp. 256-273
    • Chen, S.1    Liu, F.2    Zhuang, P.3    Anh, V.4
  • 17
    • 55549107511 scopus 로고    scopus 로고
    • New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
    • Zhuang P., Liu F., Anh V., Turner I. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 2008, 46(2):1079-1095.
    • (2008) SIAM J. Numer. Anal. , vol.46 , Issue.2 , pp. 1079-1095
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 18
    • 70350134071 scopus 로고    scopus 로고
    • Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process
    • Zhuang P., Liu F., Anh V., Turner I. Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process. IMA J. Appl. Math. 2009, 74:645-667.
    • (2009) IMA J. Appl. Math. , vol.74 , pp. 645-667
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 19
    • 67349231192 scopus 로고    scopus 로고
    • Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
    • Liu F., Yang C., Burrage K. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 2009, 231:160-176.
    • (2009) J. Comput. Appl. Math. , vol.231 , pp. 160-176
    • Liu, F.1    Yang, C.2    Burrage, K.3
  • 20
    • 77950690888 scopus 로고    scopus 로고
    • Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation
    • Chen C., Liu F., Turner I., Anh V. Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation. Numer. Algor. 2010, 54:1-21.
    • (2010) Numer. Algor. , vol.54 , pp. 1-21
    • Chen, C.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 21
    • 69049086472 scopus 로고    scopus 로고
    • Compact finite difference method for the fractional diffusion equation
    • Cui M. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 2009, 228:7792-7804.
    • (2009) J. Comput. Phys. , vol.228 , pp. 7792-7804
    • Cui, M.1
  • 22
    • 77955704784 scopus 로고    scopus 로고
    • Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation
    • Chen C., Liu F., Turner I., Anh V. Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 2010, 32:1740-1760.
    • (2010) SIAM J. Sci. Comput. , vol.32 , pp. 1740-1760
    • Chen, C.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 25
    • 73449143894 scopus 로고    scopus 로고
    • Maximum norm error bounds for ADI and compact ADI methods for solving parabolic equations
    • Liao H., Sun Z.Z. Maximum norm error bounds for ADI and compact ADI methods for solving parabolic equations. Numer. Meth. Partial Differential Equ. 2010, 26:37-60.
    • (2010) Numer. Meth. Partial Differential Equ. , vol.26 , pp. 37-60
    • Liao, H.1    Sun, Z.Z.2
  • 26
    • 30744474991 scopus 로고    scopus 로고
    • A fully discrete difference scheme for a diffusion-wave system
    • Sun Z.Z., Wu X. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56:193-209.
    • (2006) Appl. Numer. Math. , vol.56 , pp. 193-209
    • Sun, Z.Z.1    Wu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.