-
5
-
-
33746208811
-
Approximations of fractional integral and Caputo fractional derivatives
-
Odibat Z. Approximations of fractional integral and Caputo fractional derivatives. Appl. Math. Comput. 2006, 178:527-533.
-
(2006)
Appl. Math. Comput.
, vol.178
, pp. 527-533
-
-
Odibat, Z.1
-
6
-
-
10644238068
-
Algorithms for the fractional calculus: a selection of numerical methods
-
Diethelm K., Ford N.J., Freed A.D., Luchko Y. Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Eng. 2005, 194(6-8):743-773.
-
(2005)
Comput. Methods Appl. Mech. Eng.
, vol.194
, Issue.6-8
, pp. 743-773
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
Luchko, Y.4
-
7
-
-
0000717432
-
Discretized fractional calculus
-
Lubich C. Discretized fractional calculus. SIAM J. Math. Anal. 1986, 17(3):704-719.
-
(1986)
SIAM J. Math. Anal.
, vol.17
, Issue.3
, pp. 704-719
-
-
Lubich, C.1
-
8
-
-
34249335010
-
Short memory principle and a predictor-corrector approach for fractional differential equations
-
Deng W. Short memory principle and a predictor-corrector approach for fractional differential equations. J. Comput. Appl. Math. 2007, 206:174-188.
-
(2007)
J. Comput. Appl. Math.
, vol.206
, pp. 174-188
-
-
Deng, W.1
-
9
-
-
0036554885
-
A numerical scheme for dynamic systems containing fractional derivatives
-
Yuan L., Agrawal O.P. A numerical scheme for dynamic systems containing fractional derivatives. ASME J. Vibr. Acoust. 2002, 124:321-324.
-
(2002)
ASME J. Vibr. Acoust.
, vol.124
, pp. 321-324
-
-
Yuan, L.1
Agrawal, O.P.2
-
10
-
-
79952440038
-
An improvement of a nonclassical numerical method for the computation of fractional derivatives
-
Diethelm K. An improvement of a nonclassical numerical method for the computation of fractional derivatives. Numer. Algorithms 2008, 47:190-361.
-
(2008)
Numer. Algorithms
, vol.47
, pp. 190-361
-
-
Diethelm, K.1
-
11
-
-
33745699810
-
On the stable numerical evaluation of Caputo fractional derivatives
-
Murio D.A. On the stable numerical evaluation of Caputo fractional derivatives. Comput. Math. Appl. 2006, 51:1539-1550.
-
(2006)
Comput. Math. Appl.
, vol.51
, pp. 1539-1550
-
-
Murio, D.A.1
-
12
-
-
58149289495
-
Discretized fractional calculus with a series of chebyshev polynomial
-
Miyakoda T. Discretized fractional calculus with a series of chebyshev polynomial. Electron. Notes Theor. Comput. Sci. 2009, 225:239-244.
-
(2009)
Electron. Notes Theor. Comput. Sci.
, vol.225
, pp. 239-244
-
-
Miyakoda, T.1
-
13
-
-
0036650479
-
A predictor-corrector approach for the numerical solution of fractional differential equations
-
Dithelm K., Ford N.J., Freed A.D. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 2002, 29:3-22.
-
(2002)
Nonlinear Dyn.
, vol.29
, pp. 3-22
-
-
Dithelm, K.1
Ford, N.J.2
Freed, A.D.3
-
14
-
-
4043121080
-
Detailed error analysis for a fractional adams method
-
Dithelm K., Ford N.J., Freed A.D. Detailed error analysis for a fractional adams method. Numer. Algorithms 2004, 36:31-52.
-
(2004)
Numer. Algorithms
, vol.36
, pp. 31-52
-
-
Dithelm, K.1
Ford, N.J.2
Freed, A.D.3
-
15
-
-
69749102394
-
On the fractional adams method
-
Li C.P., Tao C.X. On the fractional adams method. Comput. Math. Appl. 2009, 58(8):1573-1588.
-
(2009)
Comput. Math. Appl.
, vol.58
, Issue.8
, pp. 1573-1588
-
-
Li, C.P.1
Tao, C.X.2
-
16
-
-
65049090377
-
Numerical algorithm based on adomian decomposition for fractional differential equations
-
Li C.P., Wang Y.H. Numerical algorithm based on adomian decomposition for fractional differential equations. Comput. Math. Appl. 2009, 57:1672-1681.
-
(2009)
Comput. Math. Appl.
, vol.57
, pp. 1672-1681
-
-
Li, C.P.1
Wang, Y.H.2
-
17
-
-
34548226960
-
A general finite element formulation for fractional variational problems
-
Agrawal O.P. A general finite element formulation for fractional variational problems. J. Math. Anal. Appl. 2008, 337:1-12.
-
(2008)
J. Math. Anal. Appl.
, vol.337
, pp. 1-12
-
-
Agrawal, O.P.1
-
18
-
-
0012661804
-
A finite difference scheme for partial integro-differential equations with weakly singular kernel
-
Tang T. A finite difference scheme for partial integro-differential equations with weakly singular kernel. Appl. Numer. Math. 1993, 11:309-319.
-
(1993)
Appl. Numer. Math.
, vol.11
, pp. 309-319
-
-
Tang, T.1
-
19
-
-
58149320535
-
Optimal convergence of an euler and finite difference method for nonlinear partial integro-differential equations
-
Sheng Q., Tang T. Optimal convergence of an euler and finite difference method for nonlinear partial integro-differential equations. Math. Comput. Model. 1995, 21:1-11.
-
(1995)
Math. Comput. Model.
, vol.21
, pp. 1-11
-
-
Sheng, Q.1
Tang, T.2
-
20
-
-
33744801528
-
Matrix approach to discrete fractional calculus
-
Podlubny I. Matrix approach to discrete fractional calculus. Int. J. Theor. Appl. 2000, 3:359-386.
-
(2000)
Int. J. Theor. Appl.
, vol.3
, pp. 359-386
-
-
Podlubny, I.1
-
21
-
-
61349186917
-
Matrix approach to discrete fractional calculus. II: Partial fractional differential equations
-
Podlubny I., Chechkin A., Skovranek T., Chen Y., Jara B.M.V. Matrix approach to discrete fractional calculus. II: Partial fractional differential equations. J. Comput. Phys. 2009, 228:3137-3153.
-
(2009)
J. Comput. Phys.
, vol.228
, pp. 3137-3153
-
-
Podlubny, I.1
Chechkin, A.2
Skovranek, T.3
Chen, Y.4
Jara, B.M.V.5
-
22
-
-
69249214155
-
Numerical methods for fractional partial differential equations with riesz space fractional derivatives
-
Yang Q., Liu F., Turner I. Numerical methods for fractional partial differential equations with riesz space fractional derivatives. Appl. Math. Model. 2010, 34:200-218.
-
(2010)
Appl. Math. Model.
, vol.34
, pp. 200-218
-
-
Yang, Q.1
Liu, F.2
Turner, I.3
-
23
-
-
33751545053
-
Fractional high order methods for the nonlinear fractional ordinary differential equation
-
Lin R., Liu F. Fractional high order methods for the nonlinear fractional ordinary differential equation. Nonlinear Anal. 2007, 66:856-869.
-
(2007)
Nonlinear Anal.
, vol.66
, pp. 856-869
-
-
Lin, R.1
Liu, F.2
-
24
-
-
77954143774
-
Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation
-
Li X., Xu C. Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 2010, 8:1016-1051.
-
(2010)
Commun. Comput. Phys.
, vol.8
, pp. 1016-1051
-
-
Li, X.1
Xu, C.2
-
25
-
-
0004459487
-
-
University of Science and Technology of China Press
-
Xi M. Numerical Analysis Method 2004, University of Science and Technology of China Press.
-
(2004)
Numerical Analysis Method
-
-
Xi, M.1
-
26
-
-
61449085393
-
Computational algorithms for computing the fractional derivatives of functions
-
Odibat Z. Computational algorithms for computing the fractional derivatives of functions. Math. Comput. Simul. 2009, 79(7):2013-2020.
-
(2009)
Math. Comput. Simul.
, vol.79
, Issue.7
, pp. 2013-2020
-
-
Odibat, Z.1
-
28
-
-
0001618393
-
An algorithm for the numerical solution of differential equations of fractional order
-
Diethelm K. An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 1997, 5:1-6.
-
(1997)
Electron. Trans. Numer. Anal.
, vol.5
, pp. 1-6
-
-
Diethelm, K.1
|