메뉴 건너뛰기




Volumn 230, Issue 9, 2011, Pages 3352-3368

Numerical approaches to fractional calculus and fractional ordinary differential equation

Author keywords

Fractional calculus; Fractional differential equations; Numerical approach; Piecewise interpolation; Simpson method

Indexed keywords

DIFFERENTIATION (CALCULUS); INTERPOLATION; NUMERICAL METHODS;

EID: 79952454978     PISSN: 00219991     EISSN: 10902716     Source Type: Journal    
DOI: 10.1016/j.jcp.2011.01.030     Document Type: Article
Times cited : (223)

References (29)
  • 5
    • 33746208811 scopus 로고    scopus 로고
    • Approximations of fractional integral and Caputo fractional derivatives
    • Odibat Z. Approximations of fractional integral and Caputo fractional derivatives. Appl. Math. Comput. 2006, 178:527-533.
    • (2006) Appl. Math. Comput. , vol.178 , pp. 527-533
    • Odibat, Z.1
  • 6
    • 10644238068 scopus 로고    scopus 로고
    • Algorithms for the fractional calculus: a selection of numerical methods
    • Diethelm K., Ford N.J., Freed A.D., Luchko Y. Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Eng. 2005, 194(6-8):743-773.
    • (2005) Comput. Methods Appl. Mech. Eng. , vol.194 , Issue.6-8 , pp. 743-773
    • Diethelm, K.1    Ford, N.J.2    Freed, A.D.3    Luchko, Y.4
  • 7
    • 0000717432 scopus 로고
    • Discretized fractional calculus
    • Lubich C. Discretized fractional calculus. SIAM J. Math. Anal. 1986, 17(3):704-719.
    • (1986) SIAM J. Math. Anal. , vol.17 , Issue.3 , pp. 704-719
    • Lubich, C.1
  • 8
    • 34249335010 scopus 로고    scopus 로고
    • Short memory principle and a predictor-corrector approach for fractional differential equations
    • Deng W. Short memory principle and a predictor-corrector approach for fractional differential equations. J. Comput. Appl. Math. 2007, 206:174-188.
    • (2007) J. Comput. Appl. Math. , vol.206 , pp. 174-188
    • Deng, W.1
  • 9
    • 0036554885 scopus 로고    scopus 로고
    • A numerical scheme for dynamic systems containing fractional derivatives
    • Yuan L., Agrawal O.P. A numerical scheme for dynamic systems containing fractional derivatives. ASME J. Vibr. Acoust. 2002, 124:321-324.
    • (2002) ASME J. Vibr. Acoust. , vol.124 , pp. 321-324
    • Yuan, L.1    Agrawal, O.P.2
  • 10
    • 79952440038 scopus 로고    scopus 로고
    • An improvement of a nonclassical numerical method for the computation of fractional derivatives
    • Diethelm K. An improvement of a nonclassical numerical method for the computation of fractional derivatives. Numer. Algorithms 2008, 47:190-361.
    • (2008) Numer. Algorithms , vol.47 , pp. 190-361
    • Diethelm, K.1
  • 11
    • 33745699810 scopus 로고    scopus 로고
    • On the stable numerical evaluation of Caputo fractional derivatives
    • Murio D.A. On the stable numerical evaluation of Caputo fractional derivatives. Comput. Math. Appl. 2006, 51:1539-1550.
    • (2006) Comput. Math. Appl. , vol.51 , pp. 1539-1550
    • Murio, D.A.1
  • 12
    • 58149289495 scopus 로고    scopus 로고
    • Discretized fractional calculus with a series of chebyshev polynomial
    • Miyakoda T. Discretized fractional calculus with a series of chebyshev polynomial. Electron. Notes Theor. Comput. Sci. 2009, 225:239-244.
    • (2009) Electron. Notes Theor. Comput. Sci. , vol.225 , pp. 239-244
    • Miyakoda, T.1
  • 13
    • 0036650479 scopus 로고    scopus 로고
    • A predictor-corrector approach for the numerical solution of fractional differential equations
    • Dithelm K., Ford N.J., Freed A.D. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 2002, 29:3-22.
    • (2002) Nonlinear Dyn. , vol.29 , pp. 3-22
    • Dithelm, K.1    Ford, N.J.2    Freed, A.D.3
  • 14
    • 4043121080 scopus 로고    scopus 로고
    • Detailed error analysis for a fractional adams method
    • Dithelm K., Ford N.J., Freed A.D. Detailed error analysis for a fractional adams method. Numer. Algorithms 2004, 36:31-52.
    • (2004) Numer. Algorithms , vol.36 , pp. 31-52
    • Dithelm, K.1    Ford, N.J.2    Freed, A.D.3
  • 15
    • 69749102394 scopus 로고    scopus 로고
    • On the fractional adams method
    • Li C.P., Tao C.X. On the fractional adams method. Comput. Math. Appl. 2009, 58(8):1573-1588.
    • (2009) Comput. Math. Appl. , vol.58 , Issue.8 , pp. 1573-1588
    • Li, C.P.1    Tao, C.X.2
  • 16
    • 65049090377 scopus 로고    scopus 로고
    • Numerical algorithm based on adomian decomposition for fractional differential equations
    • Li C.P., Wang Y.H. Numerical algorithm based on adomian decomposition for fractional differential equations. Comput. Math. Appl. 2009, 57:1672-1681.
    • (2009) Comput. Math. Appl. , vol.57 , pp. 1672-1681
    • Li, C.P.1    Wang, Y.H.2
  • 17
    • 34548226960 scopus 로고    scopus 로고
    • A general finite element formulation for fractional variational problems
    • Agrawal O.P. A general finite element formulation for fractional variational problems. J. Math. Anal. Appl. 2008, 337:1-12.
    • (2008) J. Math. Anal. Appl. , vol.337 , pp. 1-12
    • Agrawal, O.P.1
  • 18
    • 0012661804 scopus 로고
    • A finite difference scheme for partial integro-differential equations with weakly singular kernel
    • Tang T. A finite difference scheme for partial integro-differential equations with weakly singular kernel. Appl. Numer. Math. 1993, 11:309-319.
    • (1993) Appl. Numer. Math. , vol.11 , pp. 309-319
    • Tang, T.1
  • 19
    • 58149320535 scopus 로고
    • Optimal convergence of an euler and finite difference method for nonlinear partial integro-differential equations
    • Sheng Q., Tang T. Optimal convergence of an euler and finite difference method for nonlinear partial integro-differential equations. Math. Comput. Model. 1995, 21:1-11.
    • (1995) Math. Comput. Model. , vol.21 , pp. 1-11
    • Sheng, Q.1    Tang, T.2
  • 20
    • 33744801528 scopus 로고    scopus 로고
    • Matrix approach to discrete fractional calculus
    • Podlubny I. Matrix approach to discrete fractional calculus. Int. J. Theor. Appl. 2000, 3:359-386.
    • (2000) Int. J. Theor. Appl. , vol.3 , pp. 359-386
    • Podlubny, I.1
  • 21
    • 61349186917 scopus 로고    scopus 로고
    • Matrix approach to discrete fractional calculus. II: Partial fractional differential equations
    • Podlubny I., Chechkin A., Skovranek T., Chen Y., Jara B.M.V. Matrix approach to discrete fractional calculus. II: Partial fractional differential equations. J. Comput. Phys. 2009, 228:3137-3153.
    • (2009) J. Comput. Phys. , vol.228 , pp. 3137-3153
    • Podlubny, I.1    Chechkin, A.2    Skovranek, T.3    Chen, Y.4    Jara, B.M.V.5
  • 22
    • 69249214155 scopus 로고    scopus 로고
    • Numerical methods for fractional partial differential equations with riesz space fractional derivatives
    • Yang Q., Liu F., Turner I. Numerical methods for fractional partial differential equations with riesz space fractional derivatives. Appl. Math. Model. 2010, 34:200-218.
    • (2010) Appl. Math. Model. , vol.34 , pp. 200-218
    • Yang, Q.1    Liu, F.2    Turner, I.3
  • 23
    • 33751545053 scopus 로고    scopus 로고
    • Fractional high order methods for the nonlinear fractional ordinary differential equation
    • Lin R., Liu F. Fractional high order methods for the nonlinear fractional ordinary differential equation. Nonlinear Anal. 2007, 66:856-869.
    • (2007) Nonlinear Anal. , vol.66 , pp. 856-869
    • Lin, R.1    Liu, F.2
  • 24
    • 77954143774 scopus 로고    scopus 로고
    • Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation
    • Li X., Xu C. Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 2010, 8:1016-1051.
    • (2010) Commun. Comput. Phys. , vol.8 , pp. 1016-1051
    • Li, X.1    Xu, C.2
  • 25
    • 0004459487 scopus 로고    scopus 로고
    • University of Science and Technology of China Press
    • Xi M. Numerical Analysis Method 2004, University of Science and Technology of China Press.
    • (2004) Numerical Analysis Method
    • Xi, M.1
  • 26
    • 61449085393 scopus 로고    scopus 로고
    • Computational algorithms for computing the fractional derivatives of functions
    • Odibat Z. Computational algorithms for computing the fractional derivatives of functions. Math. Comput. Simul. 2009, 79(7):2013-2020.
    • (2009) Math. Comput. Simul. , vol.79 , Issue.7 , pp. 2013-2020
    • Odibat, Z.1
  • 28
    • 0001618393 scopus 로고    scopus 로고
    • An algorithm for the numerical solution of differential equations of fractional order
    • Diethelm K. An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 1997, 5:1-6.
    • (1997) Electron. Trans. Numer. Anal. , vol.5 , pp. 1-6
    • Diethelm, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.