메뉴 건너뛰기




Volumn 62, Issue 3, 2011, Pages 1135-1142

A tau approach for solution of the space fractional diffusion equation

Author keywords

Caputo derivative; Fractional diffusion equation; Legendre polynomials; Operational matrix; Tau method

Indexed keywords

CAPUTO DERIVATIVES; FRACTIONAL DIFFUSION EQUATION; LEGENDRE POLYNOMIALS; OPERATIONAL MATRICES; TAU METHOD;

EID: 79960977916     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2011.04.014     Document Type: Article
Times cited : (211)

References (30)
  • 2
    • 77953332285 scopus 로고    scopus 로고
    • Applications of fractional calculus
    • M. Dalir, and M. Bashour Applications of fractional calculus Appl. Math. Sci. 4 2010 1021 1032
    • (2010) Appl. Math. Sci. , vol.4 , pp. 1021-1032
    • Dalir, M.1    Bashour, M.2
  • 3
    • 78649918171 scopus 로고    scopus 로고
    • Finite difference methods for fractional dispersion equations
    • L. Su, W. Wang, and Q. Xu Finite difference methods for fractional dispersion equations Appl. Math. Comput. 216 2010 3329 3334
    • (2010) Appl. Math. Comput. , vol.216 , pp. 3329-3334
    • Su, L.1    Wang, W.2    Xu, Q.3
  • 8
    • 43949121726 scopus 로고    scopus 로고
    • The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method
    • M. Inc The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method J. Math. Anal. Appl. 345 2008 476 484
    • (2008) J. Math. Anal. Appl. , vol.345 , pp. 476-484
    • Inc, M.1
  • 9
    • 33646878106 scopus 로고    scopus 로고
    • Analytical approach to linear fractional partial differential equations arising in fluid mechanics
    • DOI 10.1016/j.physleta.2006.02.048, PII S0375960106003148
    • S. Momanim, and Z. Odibat Analytical approach to linear fractional partial differential equations arising in fluid mechanics Phys. Lett. A 355 2006 271 279 (Pubitemid 43783194)
    • (2006) Physics Letters, Section A: General, Atomic and Solid State Physics , vol.355 , Issue.4-5 , pp. 271-279
    • Momani, S.1    Odibat, Z.2
  • 10
    • 33751512215 scopus 로고    scopus 로고
    • Decomposition method for solving fractional Riccati differential equations
    • DOI 10.1016/j.amc.2006.05.008, PII S0096300306004231
    • S. Momani, and N.T. Shawagfeh Decomposition method for solving fractional Riccati differential equations Appl. Math. Comput. 182 2006 1083 1092 (Pubitemid 44838818)
    • (2006) Applied Mathematics and Computation , vol.182 , Issue.2 , pp. 1083-1092
    • Momani, S.1    Shawagfeh, N.2
  • 11
    • 55749086649 scopus 로고    scopus 로고
    • Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method
    • S.S. Ray Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method Commun. Nonlinear Sci. Numer. Simul. 14 2009 1295 1306
    • (2009) Commun. Nonlinear Sci. Numer. Simul. , vol.14 , pp. 1295-1306
    • Ray, S.S.1
  • 12
    • 76649094637 scopus 로고    scopus 로고
    • Solving nonlinear fractional partial differential equations using the homotopy analysis method
    • M. Dehghan, J. Manafian, and A. Saadatmandi Solving nonlinear fractional partial differential equations using the homotopy analysis method Numer. Methods Partial Differential Equations 26 2010 448 479
    • (2010) Numer. Methods Partial Differential Equations , vol.26 , pp. 448-479
    • Dehghan, M.1    Manafian, J.2    Saadatmandi, A.3
  • 13
    • 78649487054 scopus 로고    scopus 로고
    • The solution of the linear fractional partial differential equations using the homotopy analysis method
    • M. Dehghan, J. Manafian, and A. Saadatmandi The solution of the linear fractional partial differential equations using the homotopy analysis method Z. Naturforsch. A 65 2010 935 945
    • (2010) Z. Naturforsch. A , vol.65 , pp. 935-945
    • Dehghan, M.1    Manafian, J.2    Saadatmandi, A.3
  • 14
    • 31744438550 scopus 로고    scopus 로고
    • A second-order accurate numerical approximation for the fractional diffusion equation
    • DOI 10.1016/j.jcp.2005.08.008, PII S0021999105003773
    • C. Tadjeran, M.M. Meerschaert, and H.P. Scheffler A second-order accurate numerical approximation for the fractional diffusion equation J. Comput. Phys. 213 2006 205 213 (Pubitemid 43174872)
    • (2006) Journal of Computational Physics , vol.213 , Issue.1 , pp. 205-213
    • Tadjeran, C.1    Meerschaert, M.M.2    Scheffler, H.-P.3
  • 15
    • 33745712076 scopus 로고    scopus 로고
    • An approximate method for numerical solution of fractional differential equations
    • P. Kumar, and O.P. Agrawal An approximate method for numerical solution of fractional differential equations Signal Process. 86 2006 2602 2610
    • (2006) Signal Process. , vol.86 , pp. 2602-2610
    • Kumar, P.1    Agrawal, O.P.2
  • 16
    • 33646128485 scopus 로고    scopus 로고
    • Weighted average finite difference methods for fractional diffusion equations
    • DOI 10.1016/j.jcp.2005.12.006, PII S0021999105005516
    • S.B. Yuste Weighted average finite difference methods for fractional diffusion equations J. Comput. Phys. 216 2006 264 274 (Pubitemid 43632555)
    • (2006) Journal of Computational Physics , vol.216 , Issue.1 , pp. 264-274
    • Yuste, S.B.1
  • 17
    • 74249095517 scopus 로고    scopus 로고
    • A new operational matrix for solving fractional-order differential equations
    • A. Saadatmandi, and M. Dehghan A new operational matrix for solving fractional-order differential equations Comput. Math. Appl. 59 2010 1326 1336
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1326-1336
    • Saadatmandi, A.1    Dehghan, M.2
  • 18
    • 78651444144 scopus 로고    scopus 로고
    • On the numerical solutions for the fractional diffusion equation
    • M.M. Khader On the numerical solutions for the fractional diffusion equation Commun. Nonlinear Sci. Numer. Simul. 16 2011 2535 2542
    • (2011) Commun. Nonlinear Sci. Numer. Simul. , vol.16 , pp. 2535-2542
    • Khader, M.M.1
  • 19
    • 79251549814 scopus 로고    scopus 로고
    • The use of He's variational iteration method for solving the telegraph and fractional telegraph equations
    • M. Dehghan, S.A. Yousefi, and A. Lotfi The use of He's variational iteration method for solving the telegraph and fractional telegraph equations Internat. J. Numer. Methods Biomed. Eng. 27 2011 219 231
    • (2011) Internat. J. Numer. Methods Biomed. Eng. , vol.27 , pp. 219-231
    • Dehghan, M.1    Yousefi, S.A.2    Lotfi, A.3
  • 20
    • 79960999102 scopus 로고    scopus 로고
    • A numerical technique for solving fractional optimal control problems
    • A. Lotfi, M. Dehghan, and S.A. Yousefi A numerical technique for solving fractional optimal control problems Comput. Math. Appl. 62 3 2011 1055 1067
    • (2011) Comput. Math. Appl. , vol.62 , Issue.3 , pp. 1055-1067
    • Lotfi, A.1    Dehghan, M.2    Yousefi, S.A.3
  • 21
    • 32644435892 scopus 로고    scopus 로고
    • Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
    • DOI 10.1016/j.matcom.2005.10.001, PII S0378475405002259
    • M. Dehghan Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices Math. Comput. Simulation 71 2006 16 30 (Pubitemid 43243672)
    • (2006) Mathematics and Computers in Simulation , vol.71 , Issue.1 , pp. 16-30
    • Dehghan, M.1
  • 22
    • 85162699057 scopus 로고
    • Trigonometric interpolation of empirical and analytic functions
    • C. Lanczos Trigonometric interpolation of empirical and analytic functions J. Math. Phys. 17 1938 123 199
    • (1938) J. Math. Phys. , vol.17 , pp. 123-199
    • Lanczos, C.1
  • 24
    • 0021177673 scopus 로고
    • Numerical solution of partial differential equations with variable coefficients with an operational approach to the tau method
    • E.L. Ortiz, and H. Samara Numerical solution of partial differential equations with variable coefficients with an operational approach to the tau method Comput. Math. Appl. 10 4 1984 5 13 (Pubitemid 14526353)
    • (1984) Computers & mathematics with applications , vol.10 , Issue.1 , pp. 5-13
    • Ortiz, E.L.1    Samara, H.2
  • 25
    • 0040679523 scopus 로고
    • The algebraic kernel method for the numerical solution of partial differential equations
    • M.H.A. Abadi, and E.L. Ortiz The algebraic kernel method for the numerical solution of partial differential equations J. Numer. Funct. Anal. Optim. 12 1991 339 360
    • (1991) J. Numer. Funct. Anal. Optim. , vol.12 , pp. 339-360
    • Abadi, M.H.A.1    Ortiz, E.L.2
  • 26
    • 33847786088 scopus 로고    scopus 로고
    • Numerical solution of the one-dimensional wave equation with an integral condition
    • DOI 10.1002/num.20177
    • A. Saadatmandi, and M. Dehghan Numerical solution of the one-dimensional wave equation with an integral condition Numer. Methods Partial Differential Equations 23 2007 282 292 (Pubitemid 46388374)
    • (2007) Numerical Methods for Partial Differential Equations , vol.23 , Issue.2 , pp. 282-292
    • Saadatmandi, A.1    Dehghan, M.2
  • 27
    • 33846930099 scopus 로고    scopus 로고
    • A Tau Method for the One-Dimensional Parabolic Inverse Problem Subject to Temperature Overspecification
    • DOI 10.1016/j.camwa.2006.04.017, PII S0898122106002677
    • A. Saadatmandi, and M. Dehghan A tau method for the one-dimensional parabolic inverse problem subject to temperature overspecification Comput. Math. Appl. 52 2006 933 940 (Pubitemid 46237722)
    • (2006) Computers and Mathematics with Applications , vol.52 , Issue.6-7 , pp. 933-940
    • Dehghan, M.1    Saadatmandi, A.2
  • 28
    • 79955463402 scopus 로고    scopus 로고
    • Application of Taylor series in obtaining the orthogonal operational matrix
    • doi:10.1016/j.camwa.2011.03.004
    • M.R. Eslahchi, M. Dehghan, Application of Taylor series in obtaining the orthogonal operational matrix, Comput. Math. Appl., in press (doi:10.1016/j.camwa.2011.03.004).
    • Comput. Math. Appl.
    • Eslahchi, M.R.1    Dehghan, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.