메뉴 건너뛰기




Volumn 257, Issue PA, 2014, Pages 241-258

Stable multi-domain spectral penalty methods for fractional partial differential equations

Author keywords

Fractional derivative; Fractional differential matrix; Fractional partial differential equation; Multi domain spectral method; Penalty method

Indexed keywords

ADVECTION; PARTIAL DIFFERENTIAL EQUATIONS;

EID: 84886296093     PISSN: 00219991     EISSN: 10902716     Source Type: Journal    
DOI: 10.1016/j.jcp.2013.09.041     Document Type: Article
Times cited : (55)

References (39)
  • 2
    • 0020765202 scopus 로고
    • A theoretical basis for the application of fractional calculus to viscoelasticity
    • Bagley R.L., Torvik P.J. A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheology 1983, 27(3):201-210.
    • (1983) J. Rheology , vol.27 , Issue.3 , pp. 201-210
    • Bagley, R.L.1    Torvik, P.J.2
  • 3
    • 0022076968 scopus 로고
    • Fractional calculus in the transient analysis of viscoelastically damped structures
    • Bagley R.L., Torvik P.J. Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 1985, 23(6):918-925.
    • (1985) AIAA J. , vol.23 , Issue.6 , pp. 918-925
    • Bagley, R.L.1    Torvik, P.J.2
  • 4
    • 30244493399 scopus 로고    scopus 로고
    • Long memory processes and fractional integration in econometrics
    • Baillie R.T. Long memory processes and fractional integration in econometrics. J. Econometrics 1996, 73:5-59.
    • (1996) J. Econometrics , vol.73 , pp. 5-59
    • Baillie, R.T.1
  • 5
    • 0035305938 scopus 로고    scopus 로고
    • Fractional Fokker-Planck equation, solution, and application
    • article 046118
    • Barkai E. Fractional Fokker-Planck equation, solution, and application. Phys. Rev. E. 2001, 63. article 046118.
    • (2001) Phys. Rev. E. , vol.63
    • Barkai, E.1
  • 7
    • 0030295512 scopus 로고    scopus 로고
    • Spectral methods on arbitrary grids
    • Carpenter M., Gottlieb D. Spectral methods on arbitrary grids. J. Comput. Phys. 1996, 129:74-86.
    • (1996) J. Comput. Phys. , vol.129 , pp. 74-86
    • Carpenter, M.1    Gottlieb, D.2
  • 8
    • 84855207635 scopus 로고    scopus 로고
    • Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative
    • Çelik C., Duman M. Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 2012, 231:1743-1750.
    • (2012) J. Comput. Phys. , vol.231 , pp. 1743-1750
    • Çelik, C.1    Duman, M.2
  • 9
    • 77955704784 scopus 로고    scopus 로고
    • Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation
    • Chen C.M., Liu F., Anh V., Turner I. Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 2010, 32:1740-1760.
    • (2010) SIAM J. Sci. Comput. , vol.32 , pp. 1740-1760
    • Chen, C.M.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 11
    • 59349113701 scopus 로고    scopus 로고
    • Finite element method for the space and time fractional Fokker-Planck equation
    • Deng W.H. Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 2008, 47:204-226.
    • (2008) SIAM J. Numer. Anal. , vol.47 , pp. 204-226
    • Deng, W.H.1
  • 12
    • 0002795136 scopus 로고    scopus 로고
    • On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity
    • Springer-Verlag, Heidelberg, Computational Fluid Dynamics, Reaction Engineering and Molecular Properties
    • Diethelm K., Freed A.D. On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity. Scientific Computing in Chemical Engineering 1999, vol. II:217-224. Springer-Verlag, Heidelberg.
    • (1999) Scientific Computing in Chemical Engineering , vol.2 , pp. 217-224
    • Diethelm, K.1    Freed, A.D.2
  • 13
    • 0001241567 scopus 로고    scopus 로고
    • A stable penalty method for the compressible Navier-Stokes equations. I. Open boundary conditions
    • Hesthaven J.S., Gottlieb D. A stable penalty method for the compressible Navier-Stokes equations. I. Open boundary conditions. SIAM J. Sci. Comput. 1996, 17:579-612.
    • (1996) SIAM J. Sci. Comput. , vol.17 , pp. 579-612
    • Hesthaven, J.S.1    Gottlieb, D.2
  • 14
    • 0034190379 scopus 로고    scopus 로고
    • Spectral penalty methods
    • Hesthaven J.S. Spectral penalty methods. Appl. Numer. Math. 2000, 33:23-41.
    • (2000) Appl. Numer. Math. , vol.33 , pp. 23-41
    • Hesthaven, J.S.1
  • 18
    • 17144427014 scopus 로고    scopus 로고
    • The accuracy and stability of an implicit solution method for the fractional diffusion equation
    • Langlands T.A.M., Henry B.I. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 2005, 205:719-736.
    • (2005) J. Comput. Phys. , vol.205 , pp. 719-736
    • Langlands, T.A.M.1    Henry, B.I.2
  • 19
    • 77958536189 scopus 로고    scopus 로고
    • A space-time spectral method for the time fractional diffusion equation
    • Li X.J., Xu C.J. A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 2009, 47:2108-2131.
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 2108-2131
    • Li, X.J.1    Xu, C.J.2
  • 20
    • 34547548712 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the time-fractional diffusion equation
    • Lin Y.M., Xu C.J. Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 2007, 225:1533-1552.
    • (2007) J. Comput. Phys. , vol.225 , pp. 1533-1552
    • Lin, Y.M.1    Xu, C.J.2
  • 21
    • 1542425102 scopus 로고    scopus 로고
    • Numerical solution of the fractional advection-dispersion equation
    • Liu F., Ahn V., Turner I. Numerical solution of the fractional advection-dispersion equation. J. Comput. Appl. Math. 2004, 166:209-219.
    • (2004) J. Comput. Appl. Math. , vol.166 , pp. 209-219
    • Liu, F.1    Ahn, V.2    Turner, I.3
  • 22
    • 0001983732 scopus 로고    scopus 로고
    • Fractional calculus: Some basic problems in continuum and statistical mechanics
    • Springer-Verlag, New York, A. Carpinteri, F. Mainardi (Eds.)
    • Mainardi F. Fractional calculus: Some basic problems in continuum and statistical mechanics. Fractals and Fractional Calculus in Continuum Mechanics 1997, 291-348. Springer-Verlag, New York. A. Carpinteri, F. Mainardi (Eds.).
    • (1997) Fractals and Fractional Calculus in Continuum Mechanics , pp. 291-348
    • Mainardi, F.1
  • 23
    • 4043151477 scopus 로고    scopus 로고
    • The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
    • Metzler R., Klafter J. The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 2004, 37:161-208.
    • (2004) J. Phys. A , vol.37 , pp. 161-208
    • Metzler, R.1    Klafter, J.2
  • 24
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomalous diffusion: A fractional dynamics approach
    • Metzler R., Klafter J. The random walk's guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339:1-77.
    • (2000) Phys. Rep. , vol.339 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 25
    • 4444368867 scopus 로고    scopus 로고
    • Finite difference approximations for fractional advection-dispersion flow equations
    • Meerschaert M.M., Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 2004, 172:65-77.
    • (2004) J. Comput. Appl. Math. , vol.172 , pp. 65-77
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 26
    • 25444463578 scopus 로고    scopus 로고
    • Finite difference methods for two-dimensional fractional dispersion equation
    • Meerschaert M.M., Scheffler H.P., Tadjeran C. Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 2006, 211:249-261.
    • (2006) J. Comput. Phys. , vol.211 , pp. 249-261
    • Meerschaert, M.M.1    Scheffler, H.P.2    Tadjeran, C.3
  • 28
    • 0030867045 scopus 로고    scopus 로고
    • Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids
    • Rossikhin Y.A., Shitikova M.V. Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 1997, 50:15-67.
    • (1997) Appl. Mech. Rev. , vol.50 , pp. 15-67
    • Rossikhin, Y.A.1    Shitikova, M.V.2
  • 29
    • 74249095517 scopus 로고    scopus 로고
    • A new operational matrix for solving fractional-order differential equations
    • Saadatmandia A., Dehghan M. A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 2010, 59:1326-1336.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1326-1336
    • Saadatmandia, A.1    Dehghan, M.2
  • 30
    • 57649137996 scopus 로고    scopus 로고
    • The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation
    • Shen S., Liu F., Anh V., Turner I. The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation. IMA J. Appl. Math. 2008, 73:850-872.
    • (2008) IMA J. Appl. Math. , vol.73 , pp. 850-872
    • Shen, S.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 31
    • 79960979931 scopus 로고    scopus 로고
    • Numerical approximations for fractional diffusion equations via splines
    • Sousa E. Numerical approximations for fractional diffusion equations via splines. Comput. Math. Appl. 2011, 62:938-944.
    • (2011) Comput. Math. Appl. , vol.62 , pp. 938-944
    • Sousa, E.1
  • 33
    • 31744438550 scopus 로고    scopus 로고
    • A second-order accurate numerical approximation for the fractional diffusion equation
    • Tadjeran C., Meerschaert M.M., Scheffler H.P. A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 2006, 213:205-213.
    • (2006) J. Comput. Phys. , vol.213 , pp. 205-213
    • Tadjeran, C.1    Meerschaert, M.M.2    Scheffler, H.P.3
  • 34
    • 33845628108 scopus 로고    scopus 로고
    • A second-order accurate numerical method for the two-dimensional fractional diffusion equation
    • Tadjeran C., Meerschaert M.M. A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 2007, 220:813-823.
    • (2007) J. Comput. Phys. , vol.220 , pp. 813-823
    • Tadjeran, C.1    Meerschaert, M.M.2
  • 35
    • 84860390012 scopus 로고    scopus 로고
    • log2N) alternating-direction finite difference method for two-dimensional fractional diffusion equations
    • log2N) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 2011, 230:7830-7839.
    • (2011) J. Comput. Phys. , vol.230 , pp. 7830-7839
    • Wang, H.1    Wang, K.2
  • 36
    • 25444472344 scopus 로고    scopus 로고
    • An explicit finite difference method and a new Von-Neumann Type stability analysis for fractional diffusion equations
    • Yuste S.B., Acedo L. An explicit finite difference method and a new Von-Neumann Type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 2005, 42:1862-1874.
    • (2005) SIAM J. Numer. Anal. , vol.42 , pp. 1862-1874
    • Yuste, S.B.1    Acedo, L.2
  • 37
    • 84862921732 scopus 로고    scopus 로고
    • Error estimates of Crank-Nicolson type difference schemes for the sub-diffusion equation
    • Zhang Y., Sun Z.Z., Wu H.W. Error estimates of Crank-Nicolson type difference schemes for the sub-diffusion equation. SIAM J. Numer. Anal. 2011, 49:2302-2322.
    • (2011) SIAM J. Numer. Anal. , vol.49 , pp. 2302-2322
    • Zhang, Y.1    Sun, Z.Z.2    Wu, H.W.3
  • 38
    • 79956124918 scopus 로고    scopus 로고
    • A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions
    • Zhao X., Sun Z.Z. A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 2011, 230:6061-6074.
    • (2011) J. Comput. Phys. , vol.230 , pp. 6061-6074
    • Zhao, X.1    Sun, Z.Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.