-
3
-
-
0033899008
-
Introduction to fractional linear systems. Part 2: Discrete-time case
-
DOI 10.1049/ip-vis:20000273
-
M. Ortigueira Introduction to fraction linear systems. Part 2: discrete-time case IEE Proc., Vis. Image Signal Process. 147 2000 71 78 (Pubitemid 30589668)
-
(2000)
IEE Proceedings: Vision, Image and Signal Processing
, vol.147
, Issue.1
, pp. 71-78
-
-
Ortigueira, M.D.1
-
4
-
-
77950188013
-
Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations
-
J. Deng, and L. Ma Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations Appl. Math. Lett. 23 2010 676 680
-
(2010)
Appl. Math. Lett.
, vol.23
, pp. 676-680
-
-
Deng, J.1
Ma, L.2
-
6
-
-
17444386836
-
Solution of an extraordinary differential equation by Adomian decomposition method
-
DOI 10.1155/S1110757X04311010
-
S.S. Ray, and R.K. Bera Solution of an extraordinary differential equation by Adomian decomposition method J. Appl. Math. 4 2004 331 338 (Pubitemid 40809689)
-
(2004)
Journal of Applied Mathematics
, vol.2004
, Issue.4
, pp. 331-338
-
-
Saha Ray, S.1
Bera, R.K.2
-
7
-
-
77953168484
-
Analytical and numerical solutions of multi-term nonlinear fractional orders differential equations
-
A.M.A. El-Sayed, I.L. El-Kalla, and E.A.A. Ziada Analytical and numerical solutions of multi-term nonlinear fractional orders differential equations Appl. Numer. Math. 60 2010 788 797
-
(2010)
Appl. Numer. Math.
, vol.60
, pp. 788-797
-
-
El-Sayed, A.M.A.1
El-Kalla, I.L.2
Ziada, E.A.A.3
-
8
-
-
41949112904
-
Application of homotopy-perturbation method to fractional IVPs
-
DOI 10.1016/j.cam.2007.06.010, PII S0377042707003081
-
O. Abdulaziz, I. Hashim, and S. Momani Application of homotopy-perturbation method to fractional IVPs J. Comput. Appl. Math. 216 2008 574 584 (Pubitemid 351509724)
-
(2008)
Journal of Computational and Applied Mathematics
, vol.216
, Issue.2
, pp. 574-584
-
-
Abdulaziz, O.1
Hashim, I.2
Momani, S.3
-
9
-
-
78049255335
-
Convergence of the variational iteration method for solving multi-order fractional differential equations
-
S. Yanga, A. Xiao, and H. Su Convergence of the variational iteration method for solving multi-order fractional differential equations Comput. Math. Appl. 60 2010 2871 2879
-
(2010)
Comput. Math. Appl.
, vol.60
, pp. 2871-2879
-
-
Yanga, S.1
Xiao, A.2
Su, H.3
-
10
-
-
70350378693
-
A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations
-
Z. Odibat, S. Momani, and H. Xu A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations Appl. Math. Model. 34 2010 593 600
-
(2010)
Appl. Math. Model.
, vol.34
, pp. 593-600
-
-
Odibat, Z.1
Momani, S.2
Xu, H.3
-
11
-
-
0036650479
-
A predictor-corrector approach for the numerical solution of fractional differential equations
-
DOI 10.1023/A:1016592219341, Fractional Order Calculus and Its Applications
-
K. Diethelm, N.J. Ford, and A.D. Freed A predictorcorrector approach for the numerical solution of fractional differential equations Nonlinear Dynam. 29 2002 3 22 (Pubitemid 34945390)
-
(2002)
Nonlinear Dynamics
, vol.29
, Issue.1-4
, pp. 3-22
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
12
-
-
33745712076
-
An approximate method for numerical solution of fractional differential equations
-
P. Kumer, and O.P. Agrawal An approximate method for numerical solution of fractional differential equations Signal Process. 84 2006 2602 2610
-
(2006)
Signal Process.
, vol.84
, pp. 2602-2610
-
-
Kumer, P.1
Agrawal, O.P.2
-
13
-
-
74249095517
-
A new operational matrix for solving fractional-order differential equations
-
A. Saadatmandi, and M. Dehghan A new operational matrix for solving fractional-order differential equations Comput. Math. Appl. 59 2010 1326 1336
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1326-1336
-
-
Saadatmandi, A.1
Dehghan, M.2
-
15
-
-
44149096688
-
Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials
-
DOI 10.1016/j.apnum.2007.07.001, PII S0168927407001109
-
E.H. Doha, and A.H. Bhrawy Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials Appl. Numer. Math. 58 2008 1224 1244 (Pubitemid 351718463)
-
(2008)
Applied Numerical Mathematics
, vol.58
, Issue.8
, pp. 1224-1244
-
-
Doha, E.H.1
Bhrawy, A.H.2
-
16
-
-
66049087571
-
Jacobi spectral Galerkin method for the integrated forms of fourth-order elliptic differential equations
-
E.H. Doha, and A.H. Bhrawy Jacobi spectral Galerkin method for the integrated forms of fourth-order elliptic differential equations Numer. Methods Partial Differential Equations 25 2009 712 739
-
(2009)
Numer. Methods Partial Differential Equations
, vol.25
, pp. 712-739
-
-
Doha, E.H.1
Bhrawy, A.H.2
-
17
-
-
79951948499
-
A JacobiJacobi dual-PetrovGalerkin method for third- and fifth-order differential equations
-
E.H. Doha, A.H. Bhrawy, and R.M. Hafez A JacobiJacobi dual-PetrovGalerkin method for third- and fifth-order differential equations Math. Comput. Modelling 53 2011 1820 1832
-
(2011)
Math. Comput. Modelling
, vol.53
, pp. 1820-1832
-
-
Doha, E.H.1
Bhrawy, A.H.2
Hafez, R.M.3
-
18
-
-
79960555480
-
Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations
-
10.1016/j.apm.2011.05.011
-
E.H. Doha, A.H. Bhrawy, and S.S. Ezzeldeen Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations Appl. Math. Model. 2011 10.1016/j.apm.2011.05.011
-
(2011)
Appl. Math. Model.
-
-
Doha, E.H.1
Bhrawy, A.H.2
Ezzeldeen, S.S.3
-
19
-
-
79961168894
-
A quadrature tau method for variable coefficients fractional differential equations
-
10.1016/j.aml.2011.06.016
-
A.H. Bhrawy, A.S. Alofi, and S.S. Ezzeldeen A quadrature tau method for variable coefficients fractional differential equations Appl. Math. Lett. 2011 10.1016/j.aml.2011.06.016
-
(2011)
Appl. Math. Lett.
-
-
Bhrawy, A.H.1
Alofi, A.S.2
Ezzeldeen, S.S.3
-
20
-
-
78649445937
-
An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis
-
F. Ghoreishi, and S. Yazdani An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis Comput. Math. Appl. 61 2011 30 43
-
(2011)
Comput. Math. Appl.
, vol.61
, pp. 30-43
-
-
Ghoreishi, F.1
Yazdani, S.2
-
21
-
-
79960988872
-
Tau approximate solution of fractional partial differential equations
-
10.1016/j.camwa.2011.03.013
-
S. Karimi Vanani, and A. Aminataei Tau approximate solution of fractional partial differential equations Comput. Math. Appl. 2011 10.1016/j.camwa.2011. 03.013
-
(2011)
Comput. Math. Appl.
-
-
Karimi Vanani, S.1
Aminataei, A.2
-
22
-
-
79953684270
-
A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations
-
S. Esmaeili, and M. Shamsi A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations Commun. Nonlinear Sci. Numer. Simul. 16 2011 3646 3654
-
(2011)
Commun. Nonlinear Sci. Numer. Simul.
, vol.16
, pp. 3646-3654
-
-
Esmaeili, S.1
Shamsi, M.2
-
23
-
-
79953828683
-
On the convergence of spline collocation methods for solving fractional differential equations
-
A. Pedas, and E. Tamme On the convergence of spline collocation methods for solving fractional differential equations J. Comput. Appl. Math. 235 2011 3502 3514
-
(2011)
J. Comput. Appl. Math.
, vol.235
, pp. 3502-3514
-
-
Pedas, A.1
Tamme, E.2
-
24
-
-
3042709180
-
Multi-order fractional differential equations and their numerical solutions
-
K. Diethelm, and N.J. Ford Multi-order fractional differential equations and their numerical solutions Appl. Math. Comput. 154 2004 621 640
-
(2004)
Appl. Math. Comput.
, vol.154
, pp. 621-640
-
-
Diethelm, K.1
Ford, N.J.2
-
25
-
-
67349259080
-
Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations
-
N.J. Ford, and J.A. Connolly Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations Comput. Appl. Math. 229 2009 382 391
-
(2009)
Comput. Appl. Math.
, vol.229
, pp. 382-391
-
-
Ford, N.J.1
Connolly, J.A.2
-
26
-
-
77952705214
-
A collocation-shooting method for solving fractional boundary value problems
-
Q.M. Mdallal, M.I. Syam, and M.N. Anwar A collocation-shooting method for solving fractional boundary value problems Commun. Nonlinear Sci. Numer. Simul. 15 2010 3814 3822
-
(2010)
Commun. Nonlinear Sci. Numer. Simul.
, vol.15
, pp. 3814-3822
-
-
Mdallal, Q.M.1
Syam, M.I.2
Anwar, M.N.3
-
27
-
-
80052264305
-
Solving a multi-order fractional differential equation using homotopy analysis method
-
H. Jafari, S. Das, and H. Tajadodi Solving a multi-order fractional differential equation using homotopy analysis method J. King Saud Univ. Sci. 23 2011 151 155
-
(2011)
J. King Saud Univ. Sci.
, vol.23
, pp. 151-155
-
-
Jafari, H.1
Das, S.2
Tajadodi, H.3
|