-
1
-
-
84858684164
-
The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy
-
Doane TL, Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 2012;41:2885–2911.
-
(2012)
Chem Soc Rev
, vol.41
, pp. 2885-2911
-
-
Doane, T.L.1
Burda, C.2
-
2
-
-
79959224668
-
Nanoparticles in biological systems
-
Stark WJ. Nanoparticles in biological systems. Angew Chem 2011;123:1276–1293.
-
(2011)
Angew Chem
, vol.123
, pp. 1276-1293
-
-
Stark, W.J.1
-
4
-
-
77949632782
-
Frontiers in cancer nanomedicine: Directing mass transport through biological barriers
-
Ferrari M. Frontiers in cancer nanomedicine: Directing mass transport through biological barriers. Trends Biotechnol 2010;28:181–188.
-
(2010)
Trends Biotechnol
, vol.28
, pp. 181-188
-
-
Ferrari, M.1
-
5
-
-
58349119348
-
Nanomedicine-challenge and perspectives
-
Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine-challenge and perspectives. Angew Chem Int Ed 2009;48:872–897.
-
(2009)
Angew Chem Int Ed
, vol.48
, pp. 872-897
-
-
Riehemann, K.1
Schneider, S.W.2
Luger, T.A.3
Godin, B.4
Ferrari, M.5
Fuchs, H.6
-
6
-
-
33846565915
-
Nanoparticles-a historical perspective
-
Kreuter J. Nanoparticles-a historical perspective. Int J Pharm 2007;331:1–10.
-
(2007)
Int J Pharm
, vol.331
, pp. 1-10
-
-
Kreuter, J.1
-
7
-
-
84862698355
-
Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress
-
Lammers, T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J Contr Rel 2012;161:175–187.
-
(2012)
J Contr Rel
, vol.161
, pp. 175-187
-
-
Lammers, T.1
Kiessling, F.2
Hennink, W.E.3
Storm, G.4
-
8
-
-
78649315943
-
To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery
-
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Contr Rel 2010;148:135–146.
-
(2010)
J Contr Rel
, vol.148
, pp. 135-146
-
-
Danhier, F.1
Feron, O.2
Préat, V.3
-
9
-
-
3042616099
-
Techniques: New approaches to the delivery of biopharmaceuticals
-
Orive G, Gascon AR, Hernandez RM, Dominnguez-Gil A, Pedraz JL. Techniques: New approaches to the delivery of biopharmaceuticals. Trends Pharmacol Sci 2004;25:382–387.
-
(2004)
Trends Pharmacol Sci
, vol.25
, pp. 382-387
-
-
Orive, G.1
Gascon, A.R.2
Hernandez, R.M.3
Dominnguez-Gil, A.4
Pedraz, J.L.5
-
10
-
-
67649491055
-
Understanding biophysicochemical interactions at the nano-bio interface
-
Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009;8:543–557.
-
(2009)
Nat. Mater.
, vol.8
, pp. 543-557
-
-
Nel, A.E.1
Madler, L.2
Velegol, D.3
Xia, T.4
Hoek, E.M.5
Somasundaran, P.6
-
11
-
-
57849113507
-
Physical approaches to biomaterial design
-
Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nature Mat 2009;8:15–23.
-
(2009)
Nature Mat
, vol.8
, pp. 15-23
-
-
Mitragotri, S.1
Lahann, J.2
-
12
-
-
80053568565
-
Quantitative determination of the composition of multi-shell calcium phosphate-oligonucleotide nanoparticles and their application for the activation of dendritic cells
-
Sokolova V, Knuschke T, Buer J, Westendorf AM, Epple M. Quantitative determination of the composition of multi-shell calcium phosphate-oligonucleotide nanoparticles and their application for the activation of dendritic cells. Acta Biomater 2011;7:4029–4036.
-
(2011)
Acta Biomater
, vol.7
, pp. 4029-4036
-
-
Sokolova, V.1
Knuschke, T.2
Buer, J.3
Westendorf, A.M.4
Epple, M.5
-
13
-
-
84871602217
-
Effects of nanoparticle charge and shape anisotropy on translocation through cell membranes
-
Nangia S, Sureshkumar R. Effects of nanoparticle charge and shape anisotropy on translocation through cell membranes. Langmuir 2012;28:17666–17671.
-
(2012)
Langmuir
, vol.28
, pp. 17666-17671
-
-
Nangia, S.1
Sureshkumar, R.2
-
14
-
-
79952744923
-
Converting poorly soluble materials into stable aqueous nanocolloids
-
Lvov YM, Pattekari P, Zhang X, Torchilin V. Converting poorly soluble materials into stable aqueous nanocolloids. Langmuir 2011;27:1212–1217.
-
(2011)
Langmuir
, vol.27
, pp. 1212-1217
-
-
Lvov, Y.M.1
Pattekari, P.2
Zhang, X.3
Torchilin, V.4
-
15
-
-
77954645526
-
The use of nanocarriers for drug delivery in cancer therapy
-
Khan DR. The use of nanocarriers for drug delivery in cancer therapy. J Cancer Sci Ther 2010;2:58–62.
-
(2010)
J Cancer Sci Ther
, vol.2
, pp. 58-62
-
-
Khan, D.R.1
-
16
-
-
84860722540
-
Challenges in development of nanoparticle-based therapeutics
-
Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J 2012;14:282–295.
-
(2012)
AAPS J
, vol.14
, pp. 282-295
-
-
Desai, N.1
-
17
-
-
39849106393
-
Inorganic nanoparticles as carriers of nucleic acids into cells. Angew
-
Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew. Chem Int Ed 2008;47: 1382–1395.
-
(2008)
Chem Int Ed
, vol.47
, pp. 1382-1395
-
-
Sokolova, V.1
Epple, M.2
-
18
-
-
84879093054
-
Immunization with biodegradable nanoparticles efficiently induces cellular immunity and protects against influenza virus infection
-
Knuschke TSokolova V, Rotan O, Wadwa M, Tenbusch M, Hansen W, et al. Immunization with biodegradable nanoparticles efficiently induces cellular immunity and protects against influenza virus infection. J Immunol 2013;12:6221–6229.
-
(2013)
J Immunol
, vol.12
, pp. 6221-6229
-
-
Knuschke TSokolova, V.1
Rotan, O.2
Wadwa, M.3
Tenbusch, M.4
Hansen, W.5
-
19
-
-
77950199443
-
On the application potential of gold nanoparticles in nanoelectronics and biomedicine
-
Homberger M, Simon U. On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Phil Trans R Soc A 2010;368:1405–1453.
-
(2010)
Phil Trans R Soc A
, vol.368
, pp. 1405-1453
-
-
Homberger, M.1
Simon, U.2
-
20
-
-
77951683095
-
Gold nanoparticles for biology and medicine
-
Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angew Chem Int Ed 2010;49:3280–3294.
-
(2010)
Angew Chem Int Ed
, vol.49
, pp. 3280-3294
-
-
Giljohann, D.A.1
Seferos, D.S.2
Daniel, W.L.3
Massich, M.D.4
Patel, P.C.5
Mirkin, C.A.6
-
21
-
-
73949084168
-
Gold nanorods: From synthesis and properties to biological and biomedical applications
-
Huang X, Neretina S, El-Sayed MA. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv Mater 2009;21:4880–4910.
-
(2009)
Adv Mater
, vol.21
, pp. 4880-4910
-
-
Huang, X.1
Neretina, S.2
El-Sayed, M.A.3
-
22
-
-
50949106021
-
The use of gold nanoparticles in diagnostics and detection
-
Wilson R. The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 2008;37:2028–2045.
-
(2008)
Chem Soc Rev
, vol.37
, pp. 2028-2045
-
-
Wilson, R.1
-
23
-
-
51149090145
-
Biological applications of gold nanoparticles
-
Sperling RA, Rivera P, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chem Soc Rev 2008;37:1896–1908.
-
(2008)
Chem Soc Rev
, vol.37
, pp. 1896-1908
-
-
Sperling, R.A.1
Rivera, P.2
Zhang, F.3
Zanella, M.4
Parak, W.J.5
-
24
-
-
58149102337
-
Gold nanoparticles in biology: Beyond toxicity to cellular imaging
-
Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, et al. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc Chem Res 2008;41:1721–1730.
-
(2008)
Acc Chem Res
, vol.41
, pp. 1721-1730
-
-
Murphy, C.J.1
Gole, A.M.2
Stone, J.W.3
Sisco, P.N.4
Alkilany, A.M.5
Goldsmith, E.C.6
-
25
-
-
51849157131
-
Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine
-
Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 2008;41:1578–1586.
-
(2008)
Acc Chem Res
, vol.41
, pp. 1578-1586
-
-
Jain, P.K.1
Huang, X.2
El-Sayed, I.H.3
El-Sayed, M.A.4
-
26
-
-
49449105371
-
Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer
-
Cheng Y, Samia AC, Meyers JD, Panagopoulos I, Fei B, Burda C. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc 2008;130:10643–10647.
-
(2008)
J Am Chem Soc
, vol.130
, pp. 10643-10647
-
-
Cheng, Y.1
Samia, A.C.2
Meyers, J.D.3
Panagopoulos, I.4
Fei, B.5
Burda, C.6
-
27
-
-
43949111032
-
Gold nanoparticles for the development of clinical diagnosis methods
-
Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, et al. Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 2008;391:943–950.
-
(2008)
Anal Bioanal Chem
, vol.391
, pp. 943-950
-
-
Baptista, P.1
Pereira, E.2
Eaton, P.3
Doria, G.4
Miranda, A.5
Gomes, I.6
-
29
-
-
70450216842
-
Progress in the preparation of magnetic nanoparticles for applications in biomedicine
-
Roca AG, Costo R, Rebolledo AF, Veintemillas-Verdaguer S, Tartaj P, Gonzalez-Carreno T, et al. Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J Phys D: Appl Phys 2009;42:224002.
-
(2009)
J Phys D: Appl Phys
, vol.42
, pp. 224002
-
-
Roca, A.G.1
Costo, R.2
Rebolledo, A.F.3
Veintemillas-Verdaguer, S.4
Tartaj, P.5
Gonzalez-Carreno, T.6
-
31
-
-
35748979689
-
Thermotherapy of prostate cancer using magnetic nanoparticles: Feasibility, imaging, and three-dimensional temperature distribution
-
Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldöfner N, et al. Thermotherapy of prostate cancer using magnetic nanoparticles: Feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 2007;52:1653–1661.
-
(2007)
Eur Urol
, vol.52
, pp. 1653-1661
-
-
Johannsen, M.1
Gneveckow, U.2
Thiesen, B.3
Taymoorian, K.4
Cho, C.H.5
Waldöfner, N.6
-
32
-
-
79959846524
-
Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme
-
Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 2011;103:317–324.
-
(2011)
J Neurooncol
, vol.103
, pp. 317-324
-
-
Maier-Hauff, K.1
Ulrich, F.2
Nestler, D.3
Niehoff, H.4
Wust, P.5
Thiesen, B.6
-
33
-
-
42349094203
-
Nanoparticles in medicine: Therapeutic applications and developments
-
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: Therapeutic applications and developments. Clin Pharmacol Ther 2008;83:761–769.
-
(2008)
Clin Pharmacol Ther
, vol.83
, pp. 761-769
-
-
Zhang, L.1
Gu, F.X.2
Chan, J.M.3
Wang, A.Z.4
Langer, R.S.5
Farokhzad, O.C.6
-
35
-
-
77957322515
-
Characterization, purification, and stability of gold nanoparticles
-
Balasubramanian SK, Liming Yang L, Yung LY, Ong CN, Ong WY, Yu LE. Characterization, purification, and stability of gold nanoparticles. Biomaterials 2010;31:9023–9030.
-
(2010)
Biomaterials
, vol.31
, pp. 9023-9030
-
-
Balasubramanian, S.K.1
Liming Yang, L.2
Yung, L.Y.3
Ong, C.N.4
Ong, W.Y.5
Yu, L.E.6
-
37
-
-
0034996764
-
Long-circulating and target-specific nanoparticles: Theory to practice
-
Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol Rev 2001;53:283–318.
-
(2001)
Pharmacol Rev
, vol.53
, pp. 283-318
-
-
Moghimi, S.M.1
Hunter, A.C.2
Murray, J.C.3
-
38
-
-
41549123975
-
Nanoparticles for drug delivery: The need for precision in reporting particle size parameters
-
Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur J Pharm Biopharm 2008;69:1–9.
-
(2008)
Eur J Pharm Biopharm
, vol.69
, pp. 1-9
-
-
Gaumet, M.1
Vargas, A.2
Gurny, R.3
Delie, F.4
-
39
-
-
72949100964
-
The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles
-
Kittler S, Greulich C, Gebauer JS, Diendorf J, Treuel L, Ruiz L, et al. The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. J Mater Chem 2010;20:512–518.
-
(2010)
J Mater Chem
, vol.20
, pp. 512-518
-
-
Kittler, S.1
Greulich, C.2
Gebauer, J.S.3
Diendorf, J.4
Treuel, L.5
Ruiz, L.6
-
40
-
-
48249124002
-
Nanobiomaterials and nanoanalysis: Opportunities for improving the science to benefit biomedical technologies
-
Grainger DW, Castner DG. Nanobiomaterials and nanoanalysis: Opportunities for improving the science to benefit biomedical technologies. Adv Mater 2008;20:867–877.
-
(2008)
Adv Mater
, vol.20
, pp. 867-877
-
-
Grainger, D.W.1
Castner, D.G.2
-
42
-
-
77249104877
-
Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles
-
He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010;31:3657–3666.
-
(2010)
Biomaterials
, vol.31
, pp. 3657-3666
-
-
He, C.1
Hu, Y.2
Yin, L.3
Tang, C.4
Yin, C.5
-
44
-
-
84880334959
-
Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle
-
Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle. J Nanobiotechnol 2013;11:1–12.
-
(2013)
J Nanobiotechnol
, vol.11
, pp. 1-12
-
-
Saptarshi, S.R.1
Duschl, A.2
Lopata, A.L.3
-
45
-
-
84873564939
-
Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface
-
Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nano 2013;8:137–143.
-
(2013)
Nat Nano
, vol.8
, pp. 137-143
-
-
Salvati, A.1
Pitek, A.S.2
Monopoli, M.P.3
Prapainop, K.4
Bombelli, F.B.5
Hristov, D.R.6
-
46
-
-
84873831094
-
Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency
-
Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 2013;135:1438–1444.
-
(2013)
J Am Chem Soc
, vol.135
, pp. 1438-1444
-
-
Lesniak, A.1
Salvati, A.2
Santos-Martinez, M.J.3
Radomski, M.W.4
Dawson, K.A.5
Åberg, C.6
-
47
-
-
84873853768
-
Biomolecular coronas provide the biological identity of nanosized materials
-
Monopoli MP, Åberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotech 2012;7:779–786.
-
(2012)
Nature Nanotech
, vol.7
, pp. 779-786
-
-
Monopoli, M.P.1
Åberg, C.2
Salvati, A.3
Dawson, K.A.4
-
48
-
-
84867783533
-
Molecular interaction of poly(acrylic acid) gold nanoparticles with human fibrinogen
-
Deng ZJ, Liang M, Toth I, Monteiro MJ, Minchin RF. Molecular interaction of poly(acrylic acid) gold nanoparticles with human fibrinogen. ACS Nano 2012;6:8962–8969.
-
(2012)
ACS Nano
, vol.6
, pp. 8962-8969
-
-
Deng, Z.J.1
Liang, M.2
Toth, I.3
Monteiro, M.J.4
Minchin, R.F.5
-
49
-
-
4043075579
-
Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme
-
Vertegel AA, Siegel RW, Dordick JS. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 2004;20:6800–6807.
-
(2004)
Langmuir
, vol.20
, pp. 6800-6807
-
-
Vertegel, A.A.1
Siegel, R.W.2
Dordick, J.S.3
-
51
-
-
84888300943
-
A review on PEG-ylationin anti-cancer drug delivery systems
-
Kavitha K, BhalaMurugan GL. A review on PEG-ylationin anti-cancer drug delivery systems. Int J Pharm Biomed Sci 2013;4:296–304.
-
(2013)
Int J Pharm Biomed Sci
, vol.4
, pp. 296-304
-
-
Kavitha, K.1
BhalaMurugan, G.L.2
-
52
-
-
84876554446
-
Design principles for clinical efficacy of cancer nanomedicine: A look into the basics
-
Sengupta S, Kulkarni A. Design principles for clinical efficacy of cancer nanomedicine: A look into the basics. ACS Nano 2013;7:2878–2882.
-
(2013)
ACS Nano
, vol.7
, pp. 2878-2882
-
-
Sengupta, S.1
Kulkarni, A.2
-
53
-
-
1142285430
-
Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors
-
Gupta AK, Curtis ASG. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials 2004;25:3029–3040.
-
(2004)
Biomaterials
, vol.25
, pp. 3029-3040
-
-
Gupta, A.K.1
Curtis, A.S.G.2
-
54
-
-
84863116512
-
The design and utility of polymer-stabilized iron-oxide nanoparticlesfor nanomedicine applications
-
Boyer C, Whittaker MR, Bulmus V, Liu J, Davis TP. The design and utility of polymer-stabilized iron-oxide nanoparticlesfor nanomedicine applications. NPG Asia Mater 2010;2:23–30.
-
(2010)
NPG Asia Mater
, vol.2
, pp. 23-30
-
-
Boyer, C.1
Whittaker, M.R.2
Bulmus, V.3
Liu, J.4
Davis, T.P.5
-
55
-
-
0019212263
-
Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A
-
Leserman LD, Barbet J, Kourilsky F, Weinstein JN. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature 1980;288:602–604.
-
(1980)
Nature
, vol.288
, pp. 602-604
-
-
Leserman, L.D.1
Barbet, J.2
Kourilsky, F.3
Weinstein, J.N.4
-
57
-
-
84879083289
-
Targeted delivery of nanomedicines
-
Khanna VK. Targeted delivery of nanomedicines. ISRN Pharmacology 2012;2012:571394.
-
(2012)
ISRN Pharmacology
, vol.2012
, pp. 571394
-
-
Khanna, V.K.1
-
59
-
-
84878832899
-
Nanoparticles for targeted and temporally controlled drug delivery
-
Svenson S, Prud'homme RK, editors US: Springer. Available at: http://www.springer.com/engineering/book/978–1–4614–2304–1
-
Swami A, Shi J, Gadde S, Votruba AR, Kolishetti N, Farokhzad OC. Nanoparticles for targeted and temporally controlled drug delivery. In: Svenson S, Prud'homme RK, editors. Multifunctional nanoparticles for drug delivery applications: imaging, targeting, and delivery. US: Springer. Available at: http://www.springer.com/engineering/book/978–1–4614–2304–1.
-
Multifunctional nanoparticles for drug delivery applications: imaging, targeting, and delivery
-
-
Swami, A.1
Shi, J.2
Gadde, S.3
Votruba, A.R.4
Kolishetti, N.5
Farokhzad, O.C.6
-
60
-
-
47949120334
-
Biofunctionalized targeted nanoparticles for therapeutic applications
-
Wang AZ, Gu F, Zhang L, Chan JM, Radovic-Moreno A, Shaikh MR, et al. Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther 2008;8:1063–1070.
-
(2008)
Expert Opin Biol Ther
, vol.8
, pp. 1063-1070
-
-
Wang, A.Z.1
Gu, F.2
Zhang, L.3
Chan, J.M.4
Radovic-Moreno, A.5
Shaikh, M.R.6
-
61
-
-
84857371220
-
Transferrin receptors and the targeted delivery of therapeutic agents against cancer
-
Daniels TR, Bernabeu E, Rodríguez JA, Patel S, Kozman M, Chiappetta DA, et al. Transferrin receptors and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta 2012;1820:291–317.
-
(2012)
Biochim Biophys Acta
, vol.1820
, pp. 291-317
-
-
Daniels, T.R.1
Bernabeu, E.2
Rodríguez, J.A.3
Patel, S.4
Kozman, M.5
Chiappetta, D.A.6
-
62
-
-
1142273203
-
Drug targeting to the colon with lectins and neoglycoconjugates
-
Minko T. Drug targeting to the colon with lectins and neoglycoconjugates. Adv Drug Deliv Rev 2004;56:491–509.
-
(2004)
Adv Drug Deliv Rev
, vol.56
, pp. 491-509
-
-
Minko, T.1
-
63
-
-
79952140378
-
Aptamer-conjugated nanoparticles for cancer cell detection
-
Medley CD, Bamrungsap S, Tan W, Smith JE. Aptamer-conjugated nanoparticles for cancer cell detection. Anal Chem 2011;83: 727–734.
-
(2011)
Anal Chem
, vol.83
, pp. 727-734
-
-
Medley, C.D.1
Bamrungsap, S.2
Tan, W.3
Smith, J.E.4
-
65
-
-
36248973801
-
Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer
-
Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 2007;7:3065–3070.
-
(2007)
Nano Lett
, vol.7
, pp. 3065-3070
-
-
Bagalkot, V.1
Zhang, L.2
Levy-Nissenbaum, E.3
Jon, S.4
Kantoff, P.W.5
Langer, R.6
-
66
-
-
63949086746
-
Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering
-
Huang YF, Lin YW, Lin ZH, Chang HC. Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering. J Nanopart Res 2009;11:775–783.
-
(2009)
J Nanopart Res
, vol.11
, pp. 775-783
-
-
Huang, Y.F.1
Lin, Y.W.2
Lin, Z.H.3
Chang, H.C.4
-
67
-
-
33646582037
-
-
Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo PNAS 2006;103:6315–6320.
-
(2006)
Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo PNAS
, vol.103
, pp. 6315-6320
-
-
Farokhzad, O.C.1
Cheng, J.2
Teply, B.A.3
Sherifi, I.4
Jon, S.5
Kantoff, P.W.6
-
68
-
-
79954458306
-
Peptides for specific intracellular delivery and targeting of nanoparticles: Implications for developing nanoparticle-mediated drug delivery
-
Delehanty JB, Boeneman K, Bradburne CE, Robertson K, Bongard JE, Medintz IL. Peptides for specific intracellular delivery and targeting of nanoparticles: Implications for developing nanoparticle-mediated drug delivery. Therapeutic Delivery 2010;13:411–433.
-
(2010)
Therapeutic Delivery
, vol.13
, pp. 411-433
-
-
Delehanty, J.B.1
Boeneman, K.2
Bradburne, C.E.3
Robertson, K.4
Bongard, J.E.5
Medintz, I.L.6
-
69
-
-
70350619897
-
Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel
-
Danhier F, Vroman B, Lecouturier N, Crokart C, Pourcelle V, Freichels H, et al. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel. J Contr Rel 2009;140:166–173.
-
(2009)
J Contr Rel
, vol.140
, pp. 166-173
-
-
Danhier, F.1
Vroman, B.2
Lecouturier, N.3
Crokart, C.4
Pourcelle, V.5
Freichels, H.6
-
70
-
-
77955113615
-
Targeted gene silencing using RGD-labeled chitosan nanoparticles
-
Han HD, Mangala LS, Lee JW, Shahzad MMK, Kim HS, Shen D, et al. Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res 2010;16:3910–3922.
-
(2010)
Clin Cancer Res
, vol.16
, pp. 3910-3922
-
-
Han, H.D.1
Mangala, L.S.2
Lee, J.W.3
Shahzad, M.M.K.4
Kim, H.S.5
Shen, D.6
-
71
-
-
84879607836
-
Folic acid-modified mesoporous silica nanoparticles for cellular and nuclear targeted drug delivery
-
Porta F, Lamers GE, Morrhayim J, Chatzopoulou A, Schaaf M, den Dulk H, et al. Folic acid-modified mesoporous silica nanoparticles for cellular and nuclear targeted drug delivery. Adv Healthcare Mater 2013;2:281–286.
-
(2013)
Adv Healthcare Mater
, vol.2
, pp. 281-286
-
-
Porta, F.1
Lamers, G.E.2
Morrhayim, J.3
Chatzopoulou, A.4
Schaaf, M.5
den Dulk, H.6
-
72
-
-
80052966711
-
Folate-targeted nanoparticle delivery of chemo-and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis
-
Werner ME, Karve S, Sukumar R, Cummings ND, Copp JA, Chen RC, et al. Folate-targeted nanoparticle delivery of chemo-and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials 2011;32: 8548–8554.
-
(2011)
Biomaterials
, vol.32
, pp. 8548-8554
-
-
Werner, M.E.1
Karve, S.2
Sukumar, R.3
Cummings, N.D.4
Copp, J.A.5
Chen, R.C.6
-
73
-
-
65249186414
-
Chemoselective synthesis of folic acid-functionalized magnetite nanoparticles via click chemistry for magnetic hyperthermia
-
Hayashi K, Moriya M, Sakamoto W, Yogo T. Chemoselective synthesis of folic acid-functionalized magnetite nanoparticles via click chemistry for magnetic hyperthermia. Chem Mater 2009;21:1318–1325.
-
(2009)
Chem Mater
, vol.21
, pp. 1318-1325
-
-
Hayashi, K.1
Moriya, M.2
Sakamoto, W.3
Yogo, T.4
-
74
-
-
84863666971
-
Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy
-
Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012;2:3–44.
-
(2012)
Theranostics
, vol.2
, pp. 3-44
-
-
Yu, M.K.1
Park, J.2
Jon, S.3
-
75
-
-
68649094217
-
Targeting cells for drug and gene delivery: Emerging applications of mannans and mannan binding lectins
-
Gupta A, Gupta RK, Gupta GS. Targeting cells for drug and gene delivery: Emerging applications of mannans and mannan binding lectins. J Sci Ind Res 2009;68:465–483.
-
(2009)
J Sci Ind Res
, vol.68
, pp. 465-483
-
-
Gupta, A.1
Gupta, R.K.2
Gupta, G.S.3
-
76
-
-
84881156379
-
Galactosylated chitosan oligosaccharide nanoparticles for hepatocellular carcinoma cell-targeted delivery of adenosine triphosphate
-
Zhu XL, Du YZ, Yu RS, Liu P, Shi D, Chen Y, et al. Galactosylated chitosan oligosaccharide nanoparticles for hepatocellular carcinoma cell-targeted delivery of adenosine triphosphate. Int J Mol Sci 2013;14:15755–15766.
-
(2013)
Int J Mol Sci
, vol.14
, pp. 15755-15766
-
-
Zhu, X.L.1
Du, Y.Z.2
Yu, R.S.3
Liu, P.4
Shi, D.5
Chen, Y.6
-
77
-
-
84863249761
-
Hyaluronic acid-conjugated mesoporous silica nanoparticles: Excellent colloidal dispersity in physiological fluids and targeting efficacy
-
Ma MY, Chen H, Chen Y, Zhang K, Wang X, Cui X, et al. Hyaluronic acid-conjugated mesoporous silica nanoparticles: Excellent colloidal dispersity in physiological fluids and targeting efficacy. J Mater Chem 2012;22:5615–5621.
-
(2012)
J Mater Chem
, vol.22
, pp. 5615-5621
-
-
Ma, M.Y.1
Chen, H.2
Chen, Y.3
Zhang, K.4
Wang, X.5
Cui, X.6
-
78
-
-
77956648862
-
Functionalisation of nanoparticles for biomedical applications
-
Thanh NKT, Green LAW. Functionalisation of nanoparticles for biomedical applications. Nano Today 2010;5:213–230.
-
(2010)
Nano Today
, vol.5
, pp. 213-230
-
-
Thanh, N.K.T.1
Green, L.A.W.2
-
79
-
-
56349166047
-
Applications of nanoparticles in biology
-
De M, Ghosh PS, Rotello VM. Applications of nanoparticles in biology. Adv Mater 2008;20:4225–4241.
-
(2008)
Adv Mater
, vol.20
, pp. 4225-4241
-
-
De, M.1
Ghosh, P.S.2
Rotello, V.M.3
-
80
-
-
0035915124
-
Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science
-
Niemeyer CM. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew Chem 2001;40:4128–4158.
-
(2001)
Angew Chem
, vol.40
, pp. 4128-4158
-
-
Niemeyer, C.M.1
-
81
-
-
0031445623
-
Antibody immobilization using heterobifunctional crosslinkers
-
Shiver-Lake LC, Donner B, Edelstein R, Breslin K, Bhatia SK, Ligler FS. Antibody immobilization using heterobifunctional crosslinkers. Biosens Bioelectron 1997;12:1101–1106.
-
(1997)
Biosens Bioelectron
, vol.12
, pp. 1101-1106
-
-
Shiver-Lake, L.C.1
Donner, B.2
Edelstein, R.3
Breslin, K.4
Bhatia, S.K.5
Ligler, F.S.6
-
82
-
-
77953138053
-
Optimization of covalent antibody immobilization on macroporous silicon solid supports
-
Dev Das R, Maji S, Das S, RoyChaudhuri C. Optimization of covalent antibody immobilization on macroporous silicon solid supports. Appl Surf Sci 2010;256:5867–5875.
-
(2010)
Appl Surf Sci
, vol.256
, pp. 5867-5875
-
-
Dev Das, R.1
Maji, S.2
Das, S.3
RoyChaudhuri, C.4
-
83
-
-
33645678218
-
Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins
-
Wolcott A, Gerion D, Visconte M, Sun J, Schwartzberg A, Chen S, et al. Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins. J Phys Chem 2006;110: 5779–5789.
-
(2006)
J Phys Chem
, vol.110
, pp. 5779-5789
-
-
Wolcott, A.1
Gerion, D.2
Visconte, M.3
Sun, J.4
Schwartzberg, A.5
Chen, S.6
-
84
-
-
77951091135
-
Highly luminescent quantum dots functionalized and their conjugation with IgG
-
Yang P, Zhang A, Sun H, Liu F, Jiang Q, Cheng X. Highly luminescent quantum dots functionalized and their conjugation with IgG. J Colloid Interface Sci 2010;345:222–227.
-
(2010)
J Colloid Interface Sci
, vol.345
, pp. 222-227
-
-
Yang, P.1
Zhang, A.2
Sun, H.3
Liu, F.4
Jiang, Q.5
Cheng, X.6
-
85
-
-
84862646346
-
Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”
-
Mahon E, Salvati A, Bombelli FB, Lynch I, Dawson KA. Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J Contr Rel 2012;161:164–174.
-
(2012)
J Contr Rel
, vol.161
, pp. 164-174
-
-
Mahon, E.1
Salvati, A.2
Bombelli, F.B.3
Lynch, I.4
Dawson, K.A.5
-
86
-
-
67249140529
-
Colloidal particles for cellular uptake and delivery
-
Hu L, Mao Z, Gao C. Colloidal particles for cellular uptake and delivery. J Mater Chem 2009;19:3108–3115.
-
(2009)
J Mater Chem
, vol.19
, pp. 3108-3115
-
-
Hu, L.1
Mao, Z.2
Gao, C.3
-
87
-
-
0037422066
-
Regulated portals of entry into the cell
-
Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003;422:37–44.
-
(2003)
Nature
, vol.422
, pp. 37-44
-
-
Conner, S.D.1
Schmid, S.L.2
-
88
-
-
34548767810
-
Nanoparticles for applications in cellular imaging
-
Thurn KT, Brown EMB, Wu A, Vogt S, Lai B, Maser J, et al. Nanoparticles for applications in cellular imaging. Nanoscale Res Lett 2007;2:430–441.
-
(2007)
Nanoscale Res Lett
, vol.2
, pp. 430-441
-
-
Thurn, K.T.1
Brown, E.M.B.2
Wu, A.3
Vogt, S.4
Lai, B.5
Maser, J.6
-
89
-
-
77957864823
-
Mechanism of cellular uptake of highly fluorescent conjugated polymer nanoparticles
-
Fernando LP, Kandel PK, Yu J, McNeill J, Ackroyd PC, Christensen KA. Mechanism of cellular uptake of highly fluorescent conjugated polymer nanoparticles. Biomacromolecules 2010;11:2675–2682.
-
(2010)
Biomacromolecules
, vol.11
, pp. 2675-2682
-
-
Fernando, L.P.1
Kandel, P.K.2
Yu, J.3
McNeill, J.4
Ackroyd, P.C.5
Christensen, K.A.6
-
90
-
-
60549116957
-
Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells
-
Dausend J, Musyanovych A, Dass M, Walther P, Schrezenmeier H, Landfester K, et al. Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromol Biosci 2008;8:1135–1143.
-
(2008)
Macromol Biosci
, vol.8
, pp. 1135-1143
-
-
Dausend, J.1
Musyanovych, A.2
Dass, M.3
Walther, P.4
Schrezenmeier, H.5
Landfester, K.6
-
91
-
-
84878297703
-
Mechanism of the uptake of cationic and anionic calcium phosphate nanoparticles by cells
-
Sokolova V, Kozlova D, Knuschke T, Buer J, Westendorf AM, Epple M. Mechanism of the uptake of cationic and anionic calcium phosphate nanoparticles by cells. Acta Biomater 2013;9:7527–7535.
-
(2013)
Acta Biomater
, vol.9
, pp. 7527-7535
-
-
Sokolova, V.1
Kozlova, D.2
Knuschke, T.3
Buer, J.4
Westendorf, A.M.5
Epple, M.6
-
92
-
-
84858665557
-
Endocytosis at the nanoscale
-
Canton I, Battaglia G. Endocytosis at the nanoscale. Chem Soc Rev 2012;41:2718–2739.
-
(2012)
Chem Soc Rev
, vol.41
, pp. 2718-2739
-
-
Canton, I.1
Battaglia, G.2
-
93
-
-
79954417654
-
Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies
-
Iversen TG, Skotland T, Sandvig K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today 2011;6:176–185.
-
(2011)
Nano Today
, vol.6
, pp. 176-185
-
-
Iversen, T.G.1
Skotland, T.2
Sandvig, K.3
-
94
-
-
78049423673
-
Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells
-
Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Köller M. Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater 2011;7:347–354.
-
(2011)
Acta Biomater
, vol.7
, pp. 347-354
-
-
Greulich, C.1
Diendorf, J.2
Simon, T.3
Eggeler, G.4
Epple, M.5
Köller, M.6
-
96
-
-
79960925147
-
Targeted drug delivery to tumors: Myths, reality and possibility
-
Bae YH, Park K. Targeted drug delivery to tumors: Myths, reality and possibility. J Contr Rel 2011;153:198–205.
-
(2011)
J Contr Rel
, vol.153
, pp. 198-205
-
-
Bae, Y.H.1
Park, K.2
-
97
-
-
64049086772
-
Nanoparticles in cellular drug delivery
-
Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem 2009;17:2950–2962.
-
(2009)
Bioorg Med Chem
, vol.17
, pp. 2950-2962
-
-
Faraji, A.H.1
Wipf, P.2
-
100
-
-
45149100245
-
Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging
-
Kumar R, Roy I, Ohulchanskyy TY, Goswami LN, Bonoiu AC, Bergey EJ, et al. Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano 2008;2:449–456.
-
(2008)
ACS Nano
, vol.2
, pp. 449-456
-
-
Kumar, R.1
Roy, I.2
Ohulchanskyy, T.Y.3
Goswami, L.N.4
Bonoiu, A.C.5
Bergey, E.J.6
-
101
-
-
7444223607
-
Nanoparticle-aptamer bioconjugates: A new approach for targeting prostate cancer cells
-
Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, LaVan DA, Langer R. Nanoparticle-aptamer bioconjugates: A new approach for targeting prostate cancer cells. Cancer Res 2004;64:7668–7672.
-
(2004)
Cancer Res
, vol.64
, pp. 7668-7672
-
-
Farokhzad, O.C.1
Jon, S.2
Khademhosseini, A.3
Tran, T.-N.T.4
LaVan, D.A.5
Langer, R.6
-
102
-
-
45749083773
-
Multifunctional inorganic nanoparticles for imaging, targeting and drug delivery
-
Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, et al. Multifunctional inorganic nanoparticles for imaging, targeting and drug delivery. ASC Nano 2008;2:889–896.
-
(2008)
ASC Nano
, vol.2
, pp. 889-896
-
-
Liong, M.1
Lu, J.2
Kovochich, M.3
Xia, T.4
Ruehm, S.G.5
Nel, A.E.6
-
103
-
-
83455220234
-
Cell targeting by antibody-functionalized calcium phosphate nanoparticles
-
Kozlova D, Chernousova S, Knuschke T, Buer J, Westendorf AM, Epple M. Cell targeting by antibody-functionalized calcium phosphate nanoparticles. J Mater Chem 2012;22:396–404.
-
(2012)
J Mater Chem
, vol.22
, pp. 396-404
-
-
Kozlova, D.1
Chernousova, S.2
Knuschke, T.3
Buer, J.4
Westendorf, A.M.5
Epple, M.6
-
104
-
-
79951577063
-
The impact of nanoparticle ligand density on dendritic-cell targeted vaccines
-
Bandyopadhyay A, Fine RL, Demento S, Bockenstedt LK, Fahmy TM. The impact of nanoparticle ligand density on dendritic-cell targeted vaccines. Biomaterials 2011;32:3094–3105.
-
(2011)
Biomaterials
, vol.32
, pp. 3094-3105
-
-
Bandyopadhyay, A.1
Fine, R.L.2
Demento, S.3
Bockenstedt, L.K.4
Fahmy, T.M.5
-
105
-
-
80053609371
-
The effect of hydrophilic chain length and iRGD on drug delivery from poly(∊-caprolactone)-poly(N-vinylpyrrolidone) nanoparticles
-
Zhu Z, Xie C, Liu Q, Zhen X, Zheng X, Wu W, et al. The effect of hydrophilic chain length and iRGD on drug delivery from poly(∊-caprolactone)-poly(N-vinylpyrrolidone) nanoparticles. Biomaterials 2011;32:9525–9535.
-
(2011)
Biomaterials
, vol.32
, pp. 9525-9535
-
-
Zhu, Z.1
Xie, C.2
Liu, Q.3
Zhen, X.4
Zheng, X.5
Wu, W.6
-
106
-
-
34547655840
-
Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration
-
Gao X, Wu B, Zhang Q, Chen J, Zhu J, Zhang W, et al. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J Contr Rel 2007;121:156–167.
-
(2007)
J Contr Rel
, vol.121
, pp. 156-167
-
-
Gao, X.1
Wu, B.2
Zhang, Q.3
Chen, J.4
Zhu, J.5
Zhang, W.6
-
107
-
-
33847148515
-
Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle
-
Lu W, Wan J, She Z, Jiang X. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J Contr Rel 2007;118:38–53.
-
(2007)
J Contr Rel
, vol.118
, pp. 38-53
-
-
Lu, W.1
Wan, J.2
She, Z.3
Jiang, X.4
-
108
-
-
79960167888
-
Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: Preparation, characterization and efficacy in Parkinson's disease
-
Hu K, Shi Y, Jiang W, Han J, Huang S, Jiag X. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: Preparation, characterization and efficacy in Parkinson's disease. Int J Pharm 2011;415:273–283.
-
(2011)
Int J Pharm
, vol.415
, pp. 273-283
-
-
Hu, K.1
Shi, Y.2
Jiang, W.3
Han, J.4
Huang, S.5
Jiag, X.6
-
109
-
-
77952289786
-
A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery
-
Liu Y, Li J, Shao K, Huang R, Ye L, Lou J, et al. A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery. Biomaterials 2010;31:5246–5257.
-
(2010)
Biomaterials
, vol.31
, pp. 5246-5257
-
-
Liu, Y.1
Li, J.2
Shao, K.3
Huang, R.4
Ye, L.5
Lou, J.6
-
110
-
-
84862322970
-
In vitro and in vivo studies on gelatin-siloxane nanoparticles conjugated with SynB peptide to increase drug delivery to the brain
-
Tian X-H, Wei F, Wang T-X, Wang P, Lin X-N, Wang J, et al. In vitro and in vivo studies on gelatin-siloxane nanoparticles conjugated with SynB peptide to increase drug delivery to the brain. Int J Nanomed 2012;7:1031–1041.
-
(2012)
Int J Nanomed
, vol.7
, pp. 1031-1041
-
-
Tian, X.-H.1
Wei, F.2
Wang, T.-X.3
Wang, P.4
Lin, X.-N.5
Wang, J.6
-
111
-
-
79960835810
-
A review of NIR dyes in cancer targeting and imaging
-
Luo S, Zhang E, Su Y, Cheng T, Shi C. A review of NIR dyes in cancer targeting and imaging. Biomaterials 2011;32:7127–7138.
-
(2011)
Biomaterials
, vol.32
, pp. 7127-7138
-
-
Luo, S.1
Zhang, E.2
Su, Y.3
Cheng, T.4
Shi, C.5
-
112
-
-
84880330028
-
Near-infrared fluorescent nanoprobes for in vivo optical imaging
-
Quek C-H, Leong KW. Near-infrared fluorescent nanoprobes for in vivo optical imaging. Nanomaterials 2012;2:92–112.
-
(2012)
Nanomaterials
, vol.2
, pp. 92-112
-
-
Quek, C.-H.1
Leong, K.W.2
-
114
-
-
84873683949
-
Near infrared fluorescence for image-guided surgery
-
Gibbs SL. Near infrared fluorescence for image-guided surgery. Quant Imaging Med Surg 2012;2:177–187.
-
(2012)
Quant Imaging Med Surg
, vol.2
, pp. 177-187
-
-
Gibbs, S.L.1
-
115
-
-
77649146256
-
In vivo biodistribution and clearance studies using multimodal ormosil nanoparticles
-
Kumar R, Roy I, Ohulchanskky TY, Vathy LA, Bergey EJ, Sajjad MS, et al. In vivo biodistribution and clearance studies using multimodal ormosil nanoparticles. ACS Nano 2010;23:699–708.
-
(2010)
ACS Nano
, vol.23
, pp. 699-708
-
-
Kumar, R.1
Roy, I.2
Ohulchanskky, T.Y.3
Vathy, L.A.4
Bergey, E.J.5
Sajjad, M.S.6
-
116
-
-
84875860826
-
Synthesis and drug delivery of novel amphiphilic block copolymers containing hydrophobic dehydroabietic moiety
-
Wang J, Yao K, Wang C, Tang C, Jiang X. Synthesis and drug delivery of novel amphiphilic block copolymers containing hydrophobic dehydroabietic moiety. J Mater Chem B 2013;1:2324–2332.
-
(2013)
J Mater Chem B
, vol.1
, pp. 2324-2332
-
-
Wang, J.1
Yao, K.2
Wang, C.3
Tang, C.4
Jiang, X.5
-
117
-
-
77958583915
-
Manufacture of IRDye800CWcoupled Fe3O4 nanoparticles and their applications in cell labeling and in vivo imaging
-
Hou Y, Liu Y, Chen Z, Gu N, Wang J. Manufacture of IRDye800CWcoupled Fe3O4 nanoparticles and their applications in cell labeling and in vivo imaging. J Nanobiotechnol 2010;8:1–14.
-
(2010)
J Nanobiotechnol
, vol.8
, pp. 1-14
-
-
Hou, Y.1
Liu, Y.2
Chen, Z.3
Gu, N.4
Wang, J.5
|