-
1
-
-
0001250708
-
Chromosome aberrations induced by X-rays
-
Sax, K. 1938. Chromosome aberrations induced by X-rays. Genetics. 23: 494-516.
-
(1938)
Genetics.
, vol.23
, pp. 494-516
-
-
Sax, K.1
-
2
-
-
79960044746
-
Philadelphia Chromosome Symposium: commemoration of the 50th anniversary of the discovery of the Ph chromosome
-
Chandra, H.S. et al. 2011. Philadelphia Chromosome Symposium: commemoration of the 50th anniversary of the discovery of the Ph chromosome. Cancer Genet. 204: 171-179.
-
(2011)
Cancer Genet.
, vol.204
, pp. 171-179
-
-
Chandra, H.S.1
-
3
-
-
29444434887
-
Causes of oncogenic chromosomal translocation
-
Aplan, P.D. 2006. Causes of oncogenic chromosomal translocation. Trends. Genet. 22: 46-55.
-
(2006)
Trends. Genet.
, vol.22
, pp. 46-55
-
-
Aplan, P.D.1
-
4
-
-
47149087178
-
Mechanisms of leukemia translocations
-
Nickoloff, J.A. et al. 2008. Mechanisms of leukemia translocations. Curr. Opin. Hematol. 15: 338-345.
-
(2008)
Curr. Opin. Hematol.
, vol.15
, pp. 338-345
-
-
Nickoloff, J.A.1
-
5
-
-
84883795576
-
Molecular cytogenetics: recent developments and applications in cancer
-
Das, K. & P. Tan. 2013. Molecular cytogenetics: recent developments and applications in cancer. Clin. Genet. 84: 315-325.
-
(2013)
Clin. Genet.
, vol.84
, pp. 315-325
-
-
Das, K.1
Tan, P.2
-
6
-
-
84866128911
-
Mechanisms and impacts of chromosomal translocations in cancers
-
Wang, J.H. 2012. Mechanisms and impacts of chromosomal translocations in cancers. Front. Med. 6: 263-274.
-
(2012)
Front. Med.
, vol.6
, pp. 263-274
-
-
Wang, J.H.1
-
7
-
-
84860858543
-
The biology and clinical features of non-small cell lung cancers with EML4-ALK translocation
-
Pillai, R.N. & S.S. Ramalingam. 2012. The biology and clinical features of non-small cell lung cancers with EML4-ALK translocation. Curr. Oncol. Rep. 14: 105-110.
-
(2012)
Curr. Oncol. Rep.
, vol.14
, pp. 105-110
-
-
Pillai, R.N.1
Ramalingam, S.S.2
-
8
-
-
84887579782
-
Molecular pathogenesis of multiple myeloma: basic and clinical updates
-
Chesi, M. & P.L. Bergsagel. 2013. Molecular pathogenesis of multiple myeloma: basic and clinical updates. Int. J. Hematol. 97: 313-323.
-
(2013)
Int. J. Hematol.
, vol.97
, pp. 313-323
-
-
Chesi, M.1
Bergsagel, P.L.2
-
9
-
-
79955844782
-
Genetic abnormalities in leukemia secondary to treatment in patients with Hodgkin's disease
-
Salas, C., P. Pérez-Vera & S. Frías. 2011. Genetic abnormalities in leukemia secondary to treatment in patients with Hodgkin's disease. Rev. Invest. Clin. 63: 53-63.
-
(2011)
Rev. Invest. Clin.
, vol.63
, pp. 53-63
-
-
Salas, C.1
Pérez-Vera, P.2
Frías, S.3
-
10
-
-
84919691949
-
Targeting signaling pathways in acute lymphoblastic leukemia: new insights
-
Harrison, C.J. 2013. Targeting signaling pathways in acute lymphoblastic leukemia: new insights. Hematology Am. Soc. Hematol. Educ. Program 2013: 118-125.
-
(2013)
Hematology Am. Soc. Hematol. Educ. Program
, vol.2013
, pp. 118-125
-
-
Harrison, C.J.1
-
11
-
-
0034984527
-
Therapy related leukemias: susceptibility, prevention and treatment
-
Leone, G. et al. 2001. Therapy related leukemias: susceptibility, prevention and treatment. Leuk. Lymphoma. 41: 255-276.
-
(2001)
Leuk. Lymphoma
, vol.41
, pp. 255-276
-
-
Leone, G.1
-
12
-
-
0034660204
-
A novel syndrome of radiation-associated acute myeloid leukemia involving AML1 gene translocations
-
Hromas, R. et al. 2000. A novel syndrome of radiation-associated acute myeloid leukemia involving AML1 gene translocations. Blood 95: 4011-4013.
-
(2000)
Blood
, vol.95
, pp. 4011-4013
-
-
Hromas, R.1
-
13
-
-
30444458875
-
A model of oncogenic rearrangements: differences between chromosomal translocation mechanisms and simple double-strand break repair
-
Weinstock, D.M., B. Elliott & M. Jasin. 2006. A model of oncogenic rearrangements: differences between chromosomal translocation mechanisms and simple double-strand break repair. Blood 107: 777-780.
-
(2006)
Blood
, vol.107
, pp. 777-780
-
-
Weinstock, D.M.1
Elliott, B.2
Jasin, M.3
-
14
-
-
0035997348
-
V(D)J recombination: RAG proteins, repair factors, and regulation
-
Gellert, M. 2002. V(D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem. 71: 101-132.
-
(2002)
Annu. Rev. Biochem.
, vol.71
, pp. 101-132
-
-
Gellert, M.1
-
15
-
-
0034094425
-
The RAG proteins and V(D)J recombination: complexes, ends, and transposition
-
Fugmann, S.D. et al. 2000. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu. Rev. Immunol. 18: 495-527.
-
(2000)
Annu. Rev. Immunol.
, vol.18
, pp. 495-527
-
-
Fugmann, S.D.1
-
16
-
-
0034268780
-
Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme
-
Muramatsu, M. et al. 2000. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102: 553-563.
-
(2000)
Cell
, vol.102
, pp. 553-563
-
-
Muramatsu, M.1
-
17
-
-
0034264851
-
Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2)
-
Revy, P. et al. 2000. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102: 565-575.
-
(2000)
Cell
, vol.102
, pp. 565-575
-
-
Revy, P.1
-
18
-
-
0037033440
-
V(D)J-mediated translocations in lymphoid neoplasms: a functional assessment of genomic instability by cryptic sites
-
Marculescu, R. et al. 2002. V(D)J-mediated translocations in lymphoid neoplasms: a functional assessment of genomic instability by cryptic sites. J. Exp. Med. 195: 85-98.
-
(2002)
J. Exp. Med.
, vol.195
, pp. 85-98
-
-
Marculescu, R.1
-
19
-
-
77953277311
-
Non-consensus heptamer sequences destabilize the RAG post-cleavage complex, making ends available to alternative DNA repair pathways
-
Arnal, S.M. et al. 2010. Non-consensus heptamer sequences destabilize the RAG post-cleavage complex, making ends available to alternative DNA repair pathways. Nucleic. Acids. Res. 38: 2944-2954.
-
(2010)
Nucleic. Acids. Res.
, vol.38
, pp. 2944-2954
-
-
Arnal, S.M.1
-
20
-
-
84873320525
-
Mechanisms of programmed DNA lesions and genomic instability in the immune system
-
Alt, F.W. et al. 2013. Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell 152: 417-429.
-
(2013)
Cell
, vol.152
, pp. 417-429
-
-
Alt, F.W.1
-
21
-
-
84862778059
-
Spatial organization of the mouse genome and its role in recurrent chromosomal translocations
-
Zhang, Y. et al. 2012. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148: 908-921.
-
(2012)
Cell
, vol.148
, pp. 908-921
-
-
Zhang, Y.1
-
22
-
-
33751050807
-
Target DNA structure plays a critical role in RAG transposition
-
Posey, J.E. et al. 2006. Target DNA structure plays a critical role in RAG transposition. PLoS Biol. 4: e350.
-
(2006)
PLoS Biol.
, vol.4
-
-
Posey, J.E.1
-
23
-
-
34247604497
-
The structure-specific nicking of small heteroduplexes by the RAG complex: implications for lymphoid chromosomal translocations
-
Raghavan, S.C. et al. 2007. The structure-specific nicking of small heteroduplexes by the RAG complex: implications for lymphoid chromosomal translocations. D.N.A. Repair (Amst.). 6: 751-759.
-
(2007)
D.N.A. Repair (Amst.).
, vol.6
, pp. 751-759
-
-
Raghavan, S.C.1
-
24
-
-
20744431751
-
Evidence for a triplex DNA conformation at the bcl-2 major breakpoint region of the t(14;18) translocation
-
Raghavan, S.C. et al. 2005. Evidence for a triplex DNA conformation at the bcl-2 major breakpoint region of the t(14;18) translocation. J. Biol. Chem. 280: 22749-22760.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 22749-22760
-
-
Raghavan, S.C.1
-
25
-
-
1542287213
-
A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex
-
Raghavan, S.C. et al. 2004. A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex. Nature. 428: 88-93.
-
(2004)
Nature.
, vol.428
, pp. 88-93
-
-
Raghavan, S.C.1
-
26
-
-
79951567895
-
Formation of a G-quadruplex at the BCL2 major breakpoint region of the t(14;18) translocation in follicular lymphoma
-
Nambiar, M. et al. 2011. Formation of a G-quadruplex at the BCL2 major breakpoint region of the t(14;18) translocation in follicular lymphoma. Nucleic. Acids. Res. 39: 936-948.
-
(2011)
Nucleic. Acids. Res.
, vol.39
, pp. 936-948
-
-
Nambiar, M.1
-
27
-
-
58049215497
-
DNA structure-induced genomic instability in vivo
-
Wang, G. et al. 2008. DNA structure-induced genomic instability in vivo. J. Natl. Cancer Inst. 100: 1815-1817.
-
(2008)
J. Natl. Cancer Inst.
, vol.100
, pp. 1815-1817
-
-
Wang, G.1
-
28
-
-
79953314970
-
Large duplications at reciprocal translocation breakpoints that might be the counterpart of large deletions and could arise from stalled replication bubbles
-
Howarth, K.D. et al. 2011. Large duplications at reciprocal translocation breakpoints that might be the counterpart of large deletions and could arise from stalled replication bubbles. Genome. Res. 21: 525-534.
-
(2011)
Genome. Res.
, vol.21
, pp. 525-534
-
-
Howarth, K.D.1
-
29
-
-
84860181097
-
Mechanisms of replication fork protection: a safeguard for genome stability
-
Errico, A. & V. Costanzo. 2012. Mechanisms of replication fork protection: a safeguard for genome stability. Crit. Rev. Biochem. Mol. Biol. 47: 222-235.
-
(2012)
Crit. Rev. Biochem. Mol. Biol.
, vol.47
, pp. 222-235
-
-
Errico, A.1
Costanzo, V.2
-
30
-
-
70449641054
-
AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations
-
Robbiani, D.F. et al. 2009. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol. Cell. 36: 631-641.
-
(2009)
Mol. Cell.
, vol.36
, pp. 631-641
-
-
Robbiani, D.F.1
-
31
-
-
57149146036
-
AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations
-
Robbiani, D.F. et al. 2008. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell. 135: 1028-1038.
-
(2008)
Cell.
, vol.135
, pp. 1028-1038
-
-
Robbiani, D.F.1
-
32
-
-
84863229246
-
Dendritic cell-mediated activation-induced cytidine deaminase (AID)-dependent induction of genomic instability in human myeloma
-
Koduru, S. et al. 2012. Dendritic cell-mediated activation-induced cytidine deaminase (AID)-dependent induction of genomic instability in human myeloma. Blood 119: 2302-2309.
-
(2012)
Blood
, vol.119
, pp. 2302-2309
-
-
Koduru, S.1
-
34
-
-
71249101060
-
Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer
-
Lin, C. et al. 2009. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell. 139: 1069-1083.
-
(2009)
Cell.
, vol.139
, pp. 1069-1083
-
-
Lin, C.1
-
35
-
-
70849135782
-
Induced chromosomal proximity and gene fusions in prostate cancer
-
Mani, R.S. et al. 2009. Induced chromosomal proximity and gene fusions in prostate cancer. Science 326: 1230.
-
(2009)
Science
, vol.326
, pp. 1230
-
-
Mani, R.S.1
-
36
-
-
84864449290
-
TMPRSS2- driven ERG expression in vivo increases self-renewal and maintains expression in a castration resistant subpopulation
-
Casey, O.M. et al. 2012. TMPRSS2- driven ERG expression in vivo increases self-renewal and maintains expression in a castration resistant subpopulation. PLoS One 7: e41668.
-
(2012)
PLoS One
, vol.7
-
-
Casey, O.M.1
-
37
-
-
0036778597
-
The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors
-
Kolomietz, E. et al. 2002. The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes. Chromosomes. Cancer. 35: 97-112.
-
(2002)
Genes. Chromosomes. Cancer.
, vol.35
, pp. 97-112
-
-
Kolomietz, E.1
-
38
-
-
15244361942
-
Chromosomal translocation mechanisms at intronic alu elements in mammalian cells
-
Elliott, B., C. Richardson & M. Jasin. 2005. Chromosomal translocation mechanisms at intronic alu elements in mammalian cells. Mol. Cell. 17: 885-894.
-
(2005)
Mol. Cell.
, vol.17
, pp. 885-894
-
-
Elliott, B.1
Richardson, C.2
Jasin, M.3
-
39
-
-
4644220954
-
MLL: a histone methyltransferase disrupted in leukemia
-
Hess, J.L. 2004. MLL: a histone methyltransferase disrupted in leukemia. Trends. Mol. Med. 10: 500-507.
-
(2004)
Trends. Mol. Med.
, vol.10
, pp. 500-507
-
-
Hess, J.L.1
-
40
-
-
0034855753
-
Nonrandom distribution of interspersed repeat elements in the BCR and ABL1 genes and its relation to breakpoint cluster regions
-
Jeffs, A.R., E. Wells & C.M. Morris. 2001. Nonrandom distribution of interspersed repeat elements in the BCR and ABL1 genes and its relation to breakpoint cluster regions. Genes. Chromosomes. Cancer 32: 144-154.
-
(2001)
Genes. Chromosomes. Cancer
, vol.32
, pp. 144-154
-
-
Jeffs, A.R.1
Wells, E.2
Morris, C.M.3
-
41
-
-
33747874030
-
Palindrome-mediated chromosomal translocations in humans
-
Kurahashi, H. et al. 2006. Palindrome-mediated chromosomal translocations in humans. DNA Repair (Amst.) 5: 1136-1145.
-
(2006)
DNA Repair (Amst.)
, vol.5
, pp. 1136-1145
-
-
Kurahashi, H.1
-
42
-
-
0034234453
-
Regions of genomic instability on 22q11 and 11q23 as the etiology for the recurrent constitutional t(11;22)
-
Kurahashi, H. et al. 2000. Regions of genomic instability on 22q11 and 11q23 as the etiology for the recurrent constitutional t(11;22). Hum. Mol. Genet. 9: 1665-1670.
-
(2000)
Hum. Mol. Genet.
, vol.9
, pp. 1665-1670
-
-
Kurahashi, H.1
-
43
-
-
4143085977
-
Cruciform DNA structure underlies the etiology for palindrome-mediated human chromosomal translocations
-
Kurahashi, H. et al. 2004. Cruciform DNA structure underlies the etiology for palindrome-mediated human chromosomal translocations. J. Biol. Chem. 279: 35377-35383.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 35377-35383
-
-
Kurahashi, H.1
-
44
-
-
52049119340
-
Mus81-dependent double-strand DNA breaks at in vivo-generated cruciform structures in S. cerevisiae
-
Coté, A.G. & S.M. Lewis. 2008. Mus81-dependent double-strand DNA breaks at in vivo-generated cruciform structures in S. cerevisiae. Mol. Cell. 31: 800-812.
-
(2008)
Mol. Cell.
, vol.31
, pp. 800-812
-
-
Coté, A.G.1
Lewis, S.M.2
-
45
-
-
79951470434
-
More forks on the road to replication stress recovery
-
Allen, C. et al. 2011. More forks on the road to replication stress recovery. J. Mol. Cell. Biol. 3: 4-12.
-
(2011)
J. Mol. Cell. Biol.
, vol.3
, pp. 4-12
-
-
Allen, C.1
-
46
-
-
78650664775
-
Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells
-
Fenech, M. et al. 2011. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis. 26: 125-132.
-
(2011)
Mutagenesis.
, vol.26
, pp. 125-132
-
-
Fenech, M.1
-
47
-
-
77956172250
-
Topoisomerase IIalpha maintains genomic stability through decatenation G(2) checkpoint signaling
-
Bower, J.J. et al. 2010. Topoisomerase IIalpha maintains genomic stability through decatenation G(2) checkpoint signaling. Oncogene. 29: 4787-4799.
-
(2010)
Oncogene.
, vol.29
, pp. 4787-4799
-
-
Bower, J.J.1
-
48
-
-
33745074915
-
Dangerous entanglements
-
Kaufmann, W.K. 2006. Dangerous entanglements. Trends. Mol. Med. 12: 235-237.
-
(2006)
Trends. Mol. Med.
, vol.12
, pp. 235-237
-
-
Kaufmann, W.K.1
-
49
-
-
33747888767
-
Biochemical mechanisms of chromosomal translocations resulting from DNA double-strand breaks
-
Povirk, L.F. 2006. Biochemical mechanisms of chromosomal translocations resulting from DNA double-strand breaks. DNA Repair (Amst.) 5: 1199-1212.
-
(2006)
DNA Repair (Amst.)
, vol.5
, pp. 1199-1212
-
-
Povirk, L.F.1
-
50
-
-
79959397953
-
Synthetic lethality: exploiting the addiction of cancer to DNA repair
-
Shaheen, M. et al. 2011. Synthetic lethality: exploiting the addiction of cancer to DNA repair. Blood 117: 6074-6082.
-
(2011)
Blood
, vol.117
, pp. 6074-6082
-
-
Shaheen, M.1
-
51
-
-
84865620494
-
Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography
-
Thompson, L.H. 2012. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat. Res. 751: 158-246.
-
(2012)
Mutat. Res.
, vol.751
, pp. 158-246
-
-
Thompson, L.H.1
-
52
-
-
79956215808
-
Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways
-
Mladenov, E. & G. Iliakis. 2011. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat. Res. 711: 61-72.
-
(2011)
Mutat. Res.
, vol.711
, pp. 61-72
-
-
Mladenov, E.1
Iliakis, G.2
-
53
-
-
84873440196
-
Pathway choice in DNA double strand break repair: observations of a balancing act
-
Brandsma, I. & D.C. Gent. 2012. Pathway choice in DNA double strand break repair: observations of a balancing act. Genome. Integr. 3: 9.
-
(2012)
Genome. Integr.
, vol.3
, pp. 9
-
-
Brandsma, I.1
Gent, D.C.2
-
54
-
-
84865364870
-
Playing the end game: DNA double-strand break repair pathway choice
-
Chapman, J.R., M.R. Taylor & S.J. Boulton. 2012. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell. 47: 497-510.
-
(2012)
Mol. Cell.
, vol.47
, pp. 497-510
-
-
Chapman, J.R.1
Taylor, M.R.2
Boulton, S.J.3
-
55
-
-
0032717039
-
The role of chromosome translocations in leukemogenesis
-
Rowley, J.D. 1999. The role of chromosome translocations in leukemogenesis. Semin. Hematol. 36: 59-72.
-
(1999)
Semin. Hematol.
, vol.36
, pp. 59-72
-
-
Rowley, J.D.1
-
56
-
-
33747873409
-
Chromatin structural elements and chromosomal translocations in leukemia
-
Zhang, Y. & J.D. Rowley. 2006. Chromatin structural elements and chromosomal translocations in leukemia. DNA Repair. (Amst.) 5: 1282-1297.
-
(2006)
DNA Repair. (Amst.)
, vol.5
, pp. 1282-1297
-
-
Zhang, Y.1
Rowley, J.D.2
-
58
-
-
44349086949
-
Microhomologies and interspersed repeat elements at genomic breakpoints in chronic myeloid leukemia
-
Mattarucchi, E. et al. 2008. Microhomologies and interspersed repeat elements at genomic breakpoints in chronic myeloid leukemia. Genes. Chromosomes. Cancer 47: 625-632.
-
(2008)
Genes. Chromosomes. Cancer
, vol.47
, pp. 625-632
-
-
Mattarucchi, E.1
-
59
-
-
84864342422
-
Live imaging of induced and controlled DNA double-strand break formation reveals extremely low repair by homologous recombination in human cells
-
Shahar, O.D. et al. 2012. Live imaging of induced and controlled DNA double-strand break formation reveals extremely low repair by homologous recombination in human cells. Oncogene. 31: 3495-3504.
-
(2012)
Oncogene.
, vol.31
, pp. 3495-3504
-
-
Shahar, O.D.1
-
60
-
-
84867386682
-
Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks
-
Boboila, C., F.W. Alt & B. Schwer. 2012. Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks. Adv. Immunol. 116: 1-49.
-
(2012)
Adv. Immunol.
, vol.116
, pp. 1-49
-
-
Boboila, C.1
Alt, F.W.2
Schwer, B.3
-
61
-
-
54849404458
-
MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings
-
McVey, M. & S.E. Lee. 2008. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends. Genet. 24: 529-538.
-
(2008)
Trends. Genet.
, vol.24
, pp. 529-538
-
-
McVey, M.1
Lee, S.E.2
-
62
-
-
83755224388
-
Ku counteracts mobilization of PARP1 and MRN in chromatin damaged with DNA double-strand breaks
-
Cheng, Q. et al. 2011. Ku counteracts mobilization of PARP1 and MRN in chromatin damaged with DNA double-strand breaks. Nucleic. Acids. Res. 39: 9605-9619.
-
(2011)
Nucleic. Acids. Res.
, vol.39
, pp. 9605-9619
-
-
Cheng, Q.1
-
63
-
-
33845657443
-
PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways
-
Wang, M. et al. 2006. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic. Acids. Res. 34: 6170-6182.
-
(2006)
Nucleic. Acids. Res.
, vol.34
, pp. 6170-6182
-
-
Wang, M.1
-
64
-
-
68249116573
-
DNA end resection: many nucleases make light work
-
Mimitou, E.P., & L.S. Symington. 2009. DNA end resection: many nucleases make light work. DNA Repair. (Amst.) 8: 983-995.
-
(2009)
DNA Repair. (Amst.)
, vol.8
, pp. 983-995
-
-
Mimitou, E.P.1
Symington, L.S.2
-
65
-
-
20644463916
-
The Artemis:DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps
-
Ma, Y., K. Schwarz & M.R. Lieber. 2005. The Artemis:DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps. DNA Repair (Amst.) 4: 845-851.
-
(2005)
DNA Repair (Amst.)
, vol.4
, pp. 845-851
-
-
Ma, Y.1
Schwarz, K.2
Lieber, M.R.3
-
66
-
-
79956223052
-
Biochemical characterization of metnase's endonuclease activity and its role in NHEJ repair
-
Beck, B.D. et al. 2011. Biochemical characterization of metnase's endonuclease activity and its role in NHEJ repair. Biochemistry 50: 4360-4370.
-
(2011)
Biochemistry
, vol.50
, pp. 4360-4370
-
-
Beck, B.D.1
-
67
-
-
80755187806
-
Double-strand break end resection and repair pathway choice
-
Symington, L.S. & J. Gautier. 2011. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45: 247-271.
-
(2011)
Annu. Rev. Genet.
, vol.45
, pp. 247-271
-
-
Symington, L.S.1
Gautier, J.2
-
68
-
-
84874543760
-
Mechanism of DNA resection during intrachromosomal recombination and immunoglobulin class switching
-
Bothmer, A. et al. 2013. Mechanism of DNA resection during intrachromosomal recombination and immunoglobulin class switching. J. Exp. Med. 210: 115-123.
-
(2013)
J. Exp. Med.
, vol.210
, pp. 115-123
-
-
Bothmer, A.1
-
69
-
-
77950462986
-
Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation
-
Simsek, D. & M. Jasin. 2010. Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nat. Struct. Mol. Biol. 17: 410-416.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 410-416
-
-
Simsek, D.1
Jasin, M.2
-
70
-
-
77953743403
-
The transposase domain protein Metnase/SETMAR suppresses chromosomal translocations
-
Wray, J. et al. 2010. The transposase domain protein Metnase/SETMAR suppresses chromosomal translocations. Cancer. Genet. Cytogenet. 200: 184-190.
-
(2010)
Cancer. Genet. Cytogenet.
, vol.200
, pp. 184-190
-
-
Wray, J.1
-
71
-
-
34547589577
-
Formation of NHEJ-derived reciprocal chromosomal translocations does not require Ku70
-
Weinstock, D.M., E. Brunet & M. Jasin. 2007. Formation of NHEJ-derived reciprocal chromosomal translocations does not require Ku70. Nat. Cell. Biol. 9: 978-981.
-
(2007)
Nat. Cell. Biol.
, vol.9
, pp. 978-981
-
-
Weinstock, D.M.1
Brunet, E.2
Jasin, M.3
-
72
-
-
40749132229
-
S-phase progression stimulates both the mutagenic KU-independent pathway and mutagenic processing of KU-dependent intermediates, for nonhomologous end joining
-
Guirouilh-Barbat, J., S. Huck & B.S. Lopez. 2008. S-phase progression stimulates both the mutagenic KU-independent pathway and mutagenic processing of KU-dependent intermediates, for nonhomologous end joining. Oncogene. 27: 1726-1736.
-
(2008)
Oncogene.
, vol.27
, pp. 1726-1736
-
-
Guirouilh-Barbat, J.1
Huck, S.2
Lopez, B.S.3
-
73
-
-
79959814259
-
DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation
-
Simsek, D. et al. 2011. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS. Genet. 7: e1002080.
-
(2011)
PLoS. Genet.
, vol.7
-
-
Simsek, D.1
-
74
-
-
78650995499
-
An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway
-
Zhang, Y. & M. Jasin. 2011. An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat. Struct. Mol. Biol. 18: 80-84.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 80-84
-
-
Zhang, Y.1
Jasin, M.2
-
75
-
-
78650988959
-
CtIP promotes microhomology-mediated alternative end joining during class-switch recombination
-
Lee-Theilen, M. et al. 2011. CtIP promotes microhomology-mediated alternative end joining during class-switch recombination. Nat. Struct. Mol. Biol. 18: 75-79.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 75-79
-
-
Lee-Theilen, M.1
-
76
-
-
79959363092
-
SIRT6 promotes DNA repair under stress by activating PARP1
-
Mao, Z. et al. 2011. SIRT6 promotes DNA repair under stress by activating PARP1. Science 332: 1443-1446.
-
(2011)
Science
, vol.332
, pp. 1443-1446
-
-
Mao, Z.1
-
77
-
-
84862758175
-
New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs
-
Gibson, B.A. & W.L. Kraus. 2012. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell. Biol. 13: 411-424.
-
(2012)
Nat. Rev. Mol. Cell. Biol.
, vol.13
, pp. 411-424
-
-
Gibson, B.A.1
Kraus, W.L.2
-
78
-
-
11244280890
-
Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining
-
Audebert, M., B. Salles & P. Calsou. 2004. Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J. Biol. Chem. 279: 55117-55126.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 55117-55126
-
-
Audebert, M.1
Salles, B.2
Calsou, P.3
-
79
-
-
78049446968
-
The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies
-
Mansour, W.Y., T. Rhein & J. Dahm-Daphi. 2010. The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies. Nucleic. Acids. Res. 38: 6065-6077.
-
(2010)
Nucleic. Acids. Res.
, vol.38
, pp. 6065-6077
-
-
Mansour, W.Y.1
Rhein, T.2
Dahm-Daphi, J.3
-
80
-
-
77956819782
-
ATM regulates Mre11-dependent DNA end-degradation and microhomology-mediated end joining
-
Rahal, E.A. et al. 2010. ATM regulates Mre11-dependent DNA end-degradation and microhomology-mediated end joining. Cell. Cycle. 9: 2866-2877.
-
(2010)
Cell. Cycle.
, vol.9
, pp. 2866-2877
-
-
Rahal, E.A.1
-
81
-
-
80053212145
-
Human Mre11/human Rad50/Nbs1 and DNA ligase IIIalpha/XRCC1 protein complexes act together in an alternative nonhomologous end joining pathway
-
Della-Maria, J. et al. 2011. Human Mre11/human Rad50/Nbs1 and DNA ligase IIIalpha/XRCC1 protein complexes act together in an alternative nonhomologous end joining pathway. J. Biol. Chem. 286: 33845-33853.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 33845-33853
-
-
Della-Maria, J.1
-
82
-
-
77956399970
-
Small-molecule PARP modulators: current status and future therapeutic potential
-
Penning, T.D. 2010. Small-molecule PARP modulators: current status and future therapeutic potential. Curr. Opin. Drug. Discov. Devel. 13: 577-586.
-
(2010)
Curr. Opin. Drug. Discov. Devel.
, vol.13
, pp. 577-586
-
-
Penning, T.D.1
-
83
-
-
84880415836
-
PARP1 is required for chromosomal translocations
-
Wray, J. et al. 2013. PARP1 is required for chromosomal translocations. Blood 121: 4359-4365.
-
(2013)
Blood
, vol.121
, pp. 4359-4365
-
-
Wray, J.1
-
84
-
-
62849083222
-
The emerging role of nuclear architecture in DNA repair and genome maintenance
-
Misteli, T. & E. Soutoglou. 2009. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat. Rev. Mol. Cell. Biol. 10: 243-254.
-
(2009)
Nat. Rev. Mol. Cell. Biol.
, vol.10
, pp. 243-254
-
-
Misteli, T.1
Soutoglou, E.2
-
85
-
-
17144366223
-
Increasing incidence of late second malignancies after conditioning with cyclophosphamide and total-body irradiation and autologous bone marrow transplantation for non-Hodgkin's lymphoma
-
Brown, J.R. et al. 2005. Increasing incidence of late second malignancies after conditioning with cyclophosphamide and total-body irradiation and autologous bone marrow transplantation for non-Hodgkin's lymphoma. J. Clin. Oncol. 23: 2208-2214.
-
(2005)
J. Clin. Oncol.
, vol.23
, pp. 2208-2214
-
-
Brown, J.R.1
-
86
-
-
0029051495
-
Late effects of total body irradiation
-
Leiper, A.D. 1995. Late effects of total body irradiation. Arch. Dis. Child. 72: 382-385.
-
(1995)
Arch. Dis. Child.
, vol.72
, pp. 382-385
-
-
Leiper, A.D.1
|