메뉴 건너뛰기




Volumn 1310, Issue 1, 2014, Pages 89-97

Mechanisms of oncogenic chromosomal translocations

Author keywords

Chromosomal translocation; DNA end joining repair; DNA repair; Oncogenesis

Indexed keywords

ACTIVATION INDUCED CYTIDINE DEAMINASE; ETOPOSIDE; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE 1; OLAPARIB; RAG1 PROTEIN; RAG2 PROTEIN; RUCAPARIB;

EID: 84896277262     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/nyas.12370     Document Type: Article
Times cited : (33)

References (86)
  • 1
    • 0001250708 scopus 로고
    • Chromosome aberrations induced by X-rays
    • Sax, K. 1938. Chromosome aberrations induced by X-rays. Genetics. 23: 494-516.
    • (1938) Genetics. , vol.23 , pp. 494-516
    • Sax, K.1
  • 2
    • 79960044746 scopus 로고    scopus 로고
    • Philadelphia Chromosome Symposium: commemoration of the 50th anniversary of the discovery of the Ph chromosome
    • Chandra, H.S. et al. 2011. Philadelphia Chromosome Symposium: commemoration of the 50th anniversary of the discovery of the Ph chromosome. Cancer Genet. 204: 171-179.
    • (2011) Cancer Genet. , vol.204 , pp. 171-179
    • Chandra, H.S.1
  • 3
    • 29444434887 scopus 로고    scopus 로고
    • Causes of oncogenic chromosomal translocation
    • Aplan, P.D. 2006. Causes of oncogenic chromosomal translocation. Trends. Genet. 22: 46-55.
    • (2006) Trends. Genet. , vol.22 , pp. 46-55
    • Aplan, P.D.1
  • 4
    • 47149087178 scopus 로고    scopus 로고
    • Mechanisms of leukemia translocations
    • Nickoloff, J.A. et al. 2008. Mechanisms of leukemia translocations. Curr. Opin. Hematol. 15: 338-345.
    • (2008) Curr. Opin. Hematol. , vol.15 , pp. 338-345
    • Nickoloff, J.A.1
  • 5
    • 84883795576 scopus 로고    scopus 로고
    • Molecular cytogenetics: recent developments and applications in cancer
    • Das, K. & P. Tan. 2013. Molecular cytogenetics: recent developments and applications in cancer. Clin. Genet. 84: 315-325.
    • (2013) Clin. Genet. , vol.84 , pp. 315-325
    • Das, K.1    Tan, P.2
  • 6
    • 84866128911 scopus 로고    scopus 로고
    • Mechanisms and impacts of chromosomal translocations in cancers
    • Wang, J.H. 2012. Mechanisms and impacts of chromosomal translocations in cancers. Front. Med. 6: 263-274.
    • (2012) Front. Med. , vol.6 , pp. 263-274
    • Wang, J.H.1
  • 7
    • 84860858543 scopus 로고    scopus 로고
    • The biology and clinical features of non-small cell lung cancers with EML4-ALK translocation
    • Pillai, R.N. & S.S. Ramalingam. 2012. The biology and clinical features of non-small cell lung cancers with EML4-ALK translocation. Curr. Oncol. Rep. 14: 105-110.
    • (2012) Curr. Oncol. Rep. , vol.14 , pp. 105-110
    • Pillai, R.N.1    Ramalingam, S.S.2
  • 8
    • 84887579782 scopus 로고    scopus 로고
    • Molecular pathogenesis of multiple myeloma: basic and clinical updates
    • Chesi, M. & P.L. Bergsagel. 2013. Molecular pathogenesis of multiple myeloma: basic and clinical updates. Int. J. Hematol. 97: 313-323.
    • (2013) Int. J. Hematol. , vol.97 , pp. 313-323
    • Chesi, M.1    Bergsagel, P.L.2
  • 9
    • 79955844782 scopus 로고    scopus 로고
    • Genetic abnormalities in leukemia secondary to treatment in patients with Hodgkin's disease
    • Salas, C., P. Pérez-Vera & S. Frías. 2011. Genetic abnormalities in leukemia secondary to treatment in patients with Hodgkin's disease. Rev. Invest. Clin. 63: 53-63.
    • (2011) Rev. Invest. Clin. , vol.63 , pp. 53-63
    • Salas, C.1    Pérez-Vera, P.2    Frías, S.3
  • 10
    • 84919691949 scopus 로고    scopus 로고
    • Targeting signaling pathways in acute lymphoblastic leukemia: new insights
    • Harrison, C.J. 2013. Targeting signaling pathways in acute lymphoblastic leukemia: new insights. Hematology Am. Soc. Hematol. Educ. Program 2013: 118-125.
    • (2013) Hematology Am. Soc. Hematol. Educ. Program , vol.2013 , pp. 118-125
    • Harrison, C.J.1
  • 11
    • 0034984527 scopus 로고    scopus 로고
    • Therapy related leukemias: susceptibility, prevention and treatment
    • Leone, G. et al. 2001. Therapy related leukemias: susceptibility, prevention and treatment. Leuk. Lymphoma. 41: 255-276.
    • (2001) Leuk. Lymphoma , vol.41 , pp. 255-276
    • Leone, G.1
  • 12
    • 0034660204 scopus 로고    scopus 로고
    • A novel syndrome of radiation-associated acute myeloid leukemia involving AML1 gene translocations
    • Hromas, R. et al. 2000. A novel syndrome of radiation-associated acute myeloid leukemia involving AML1 gene translocations. Blood 95: 4011-4013.
    • (2000) Blood , vol.95 , pp. 4011-4013
    • Hromas, R.1
  • 13
    • 30444458875 scopus 로고    scopus 로고
    • A model of oncogenic rearrangements: differences between chromosomal translocation mechanisms and simple double-strand break repair
    • Weinstock, D.M., B. Elliott & M. Jasin. 2006. A model of oncogenic rearrangements: differences between chromosomal translocation mechanisms and simple double-strand break repair. Blood 107: 777-780.
    • (2006) Blood , vol.107 , pp. 777-780
    • Weinstock, D.M.1    Elliott, B.2    Jasin, M.3
  • 14
    • 0035997348 scopus 로고    scopus 로고
    • V(D)J recombination: RAG proteins, repair factors, and regulation
    • Gellert, M. 2002. V(D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem. 71: 101-132.
    • (2002) Annu. Rev. Biochem. , vol.71 , pp. 101-132
    • Gellert, M.1
  • 15
    • 0034094425 scopus 로고    scopus 로고
    • The RAG proteins and V(D)J recombination: complexes, ends, and transposition
    • Fugmann, S.D. et al. 2000. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu. Rev. Immunol. 18: 495-527.
    • (2000) Annu. Rev. Immunol. , vol.18 , pp. 495-527
    • Fugmann, S.D.1
  • 16
    • 0034268780 scopus 로고    scopus 로고
    • Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme
    • Muramatsu, M. et al. 2000. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102: 553-563.
    • (2000) Cell , vol.102 , pp. 553-563
    • Muramatsu, M.1
  • 17
    • 0034264851 scopus 로고    scopus 로고
    • Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2)
    • Revy, P. et al. 2000. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102: 565-575.
    • (2000) Cell , vol.102 , pp. 565-575
    • Revy, P.1
  • 18
    • 0037033440 scopus 로고    scopus 로고
    • V(D)J-mediated translocations in lymphoid neoplasms: a functional assessment of genomic instability by cryptic sites
    • Marculescu, R. et al. 2002. V(D)J-mediated translocations in lymphoid neoplasms: a functional assessment of genomic instability by cryptic sites. J. Exp. Med. 195: 85-98.
    • (2002) J. Exp. Med. , vol.195 , pp. 85-98
    • Marculescu, R.1
  • 19
    • 77953277311 scopus 로고    scopus 로고
    • Non-consensus heptamer sequences destabilize the RAG post-cleavage complex, making ends available to alternative DNA repair pathways
    • Arnal, S.M. et al. 2010. Non-consensus heptamer sequences destabilize the RAG post-cleavage complex, making ends available to alternative DNA repair pathways. Nucleic. Acids. Res. 38: 2944-2954.
    • (2010) Nucleic. Acids. Res. , vol.38 , pp. 2944-2954
    • Arnal, S.M.1
  • 20
    • 84873320525 scopus 로고    scopus 로고
    • Mechanisms of programmed DNA lesions and genomic instability in the immune system
    • Alt, F.W. et al. 2013. Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell 152: 417-429.
    • (2013) Cell , vol.152 , pp. 417-429
    • Alt, F.W.1
  • 21
    • 84862778059 scopus 로고    scopus 로고
    • Spatial organization of the mouse genome and its role in recurrent chromosomal translocations
    • Zhang, Y. et al. 2012. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148: 908-921.
    • (2012) Cell , vol.148 , pp. 908-921
    • Zhang, Y.1
  • 22
    • 33751050807 scopus 로고    scopus 로고
    • Target DNA structure plays a critical role in RAG transposition
    • Posey, J.E. et al. 2006. Target DNA structure plays a critical role in RAG transposition. PLoS Biol. 4: e350.
    • (2006) PLoS Biol. , vol.4
    • Posey, J.E.1
  • 23
    • 34247604497 scopus 로고    scopus 로고
    • The structure-specific nicking of small heteroduplexes by the RAG complex: implications for lymphoid chromosomal translocations
    • Raghavan, S.C. et al. 2007. The structure-specific nicking of small heteroduplexes by the RAG complex: implications for lymphoid chromosomal translocations. D.N.A. Repair (Amst.). 6: 751-759.
    • (2007) D.N.A. Repair (Amst.). , vol.6 , pp. 751-759
    • Raghavan, S.C.1
  • 24
    • 20744431751 scopus 로고    scopus 로고
    • Evidence for a triplex DNA conformation at the bcl-2 major breakpoint region of the t(14;18) translocation
    • Raghavan, S.C. et al. 2005. Evidence for a triplex DNA conformation at the bcl-2 major breakpoint region of the t(14;18) translocation. J. Biol. Chem. 280: 22749-22760.
    • (2005) J. Biol. Chem. , vol.280 , pp. 22749-22760
    • Raghavan, S.C.1
  • 25
    • 1542287213 scopus 로고    scopus 로고
    • A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex
    • Raghavan, S.C. et al. 2004. A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex. Nature. 428: 88-93.
    • (2004) Nature. , vol.428 , pp. 88-93
    • Raghavan, S.C.1
  • 26
    • 79951567895 scopus 로고    scopus 로고
    • Formation of a G-quadruplex at the BCL2 major breakpoint region of the t(14;18) translocation in follicular lymphoma
    • Nambiar, M. et al. 2011. Formation of a G-quadruplex at the BCL2 major breakpoint region of the t(14;18) translocation in follicular lymphoma. Nucleic. Acids. Res. 39: 936-948.
    • (2011) Nucleic. Acids. Res. , vol.39 , pp. 936-948
    • Nambiar, M.1
  • 27
    • 58049215497 scopus 로고    scopus 로고
    • DNA structure-induced genomic instability in vivo
    • Wang, G. et al. 2008. DNA structure-induced genomic instability in vivo. J. Natl. Cancer Inst. 100: 1815-1817.
    • (2008) J. Natl. Cancer Inst. , vol.100 , pp. 1815-1817
    • Wang, G.1
  • 28
    • 79953314970 scopus 로고    scopus 로고
    • Large duplications at reciprocal translocation breakpoints that might be the counterpart of large deletions and could arise from stalled replication bubbles
    • Howarth, K.D. et al. 2011. Large duplications at reciprocal translocation breakpoints that might be the counterpart of large deletions and could arise from stalled replication bubbles. Genome. Res. 21: 525-534.
    • (2011) Genome. Res. , vol.21 , pp. 525-534
    • Howarth, K.D.1
  • 29
    • 84860181097 scopus 로고    scopus 로고
    • Mechanisms of replication fork protection: a safeguard for genome stability
    • Errico, A. & V. Costanzo. 2012. Mechanisms of replication fork protection: a safeguard for genome stability. Crit. Rev. Biochem. Mol. Biol. 47: 222-235.
    • (2012) Crit. Rev. Biochem. Mol. Biol. , vol.47 , pp. 222-235
    • Errico, A.1    Costanzo, V.2
  • 30
    • 70449641054 scopus 로고    scopus 로고
    • AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations
    • Robbiani, D.F. et al. 2009. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol. Cell. 36: 631-641.
    • (2009) Mol. Cell. , vol.36 , pp. 631-641
    • Robbiani, D.F.1
  • 31
    • 57149146036 scopus 로고    scopus 로고
    • AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations
    • Robbiani, D.F. et al. 2008. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell. 135: 1028-1038.
    • (2008) Cell. , vol.135 , pp. 1028-1038
    • Robbiani, D.F.1
  • 32
    • 84863229246 scopus 로고    scopus 로고
    • Dendritic cell-mediated activation-induced cytidine deaminase (AID)-dependent induction of genomic instability in human myeloma
    • Koduru, S. et al. 2012. Dendritic cell-mediated activation-induced cytidine deaminase (AID)-dependent induction of genomic instability in human myeloma. Blood 119: 2302-2309.
    • (2012) Blood , vol.119 , pp. 2302-2309
    • Koduru, S.1
  • 34
    • 71249101060 scopus 로고    scopus 로고
    • Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer
    • Lin, C. et al. 2009. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell. 139: 1069-1083.
    • (2009) Cell. , vol.139 , pp. 1069-1083
    • Lin, C.1
  • 35
    • 70849135782 scopus 로고    scopus 로고
    • Induced chromosomal proximity and gene fusions in prostate cancer
    • Mani, R.S. et al. 2009. Induced chromosomal proximity and gene fusions in prostate cancer. Science 326: 1230.
    • (2009) Science , vol.326 , pp. 1230
    • Mani, R.S.1
  • 36
    • 84864449290 scopus 로고    scopus 로고
    • TMPRSS2- driven ERG expression in vivo increases self-renewal and maintains expression in a castration resistant subpopulation
    • Casey, O.M. et al. 2012. TMPRSS2- driven ERG expression in vivo increases self-renewal and maintains expression in a castration resistant subpopulation. PLoS One 7: e41668.
    • (2012) PLoS One , vol.7
    • Casey, O.M.1
  • 37
    • 0036778597 scopus 로고    scopus 로고
    • The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors
    • Kolomietz, E. et al. 2002. The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes. Chromosomes. Cancer. 35: 97-112.
    • (2002) Genes. Chromosomes. Cancer. , vol.35 , pp. 97-112
    • Kolomietz, E.1
  • 38
    • 15244361942 scopus 로고    scopus 로고
    • Chromosomal translocation mechanisms at intronic alu elements in mammalian cells
    • Elliott, B., C. Richardson & M. Jasin. 2005. Chromosomal translocation mechanisms at intronic alu elements in mammalian cells. Mol. Cell. 17: 885-894.
    • (2005) Mol. Cell. , vol.17 , pp. 885-894
    • Elliott, B.1    Richardson, C.2    Jasin, M.3
  • 39
    • 4644220954 scopus 로고    scopus 로고
    • MLL: a histone methyltransferase disrupted in leukemia
    • Hess, J.L. 2004. MLL: a histone methyltransferase disrupted in leukemia. Trends. Mol. Med. 10: 500-507.
    • (2004) Trends. Mol. Med. , vol.10 , pp. 500-507
    • Hess, J.L.1
  • 40
    • 0034855753 scopus 로고    scopus 로고
    • Nonrandom distribution of interspersed repeat elements in the BCR and ABL1 genes and its relation to breakpoint cluster regions
    • Jeffs, A.R., E. Wells & C.M. Morris. 2001. Nonrandom distribution of interspersed repeat elements in the BCR and ABL1 genes and its relation to breakpoint cluster regions. Genes. Chromosomes. Cancer 32: 144-154.
    • (2001) Genes. Chromosomes. Cancer , vol.32 , pp. 144-154
    • Jeffs, A.R.1    Wells, E.2    Morris, C.M.3
  • 41
    • 33747874030 scopus 로고    scopus 로고
    • Palindrome-mediated chromosomal translocations in humans
    • Kurahashi, H. et al. 2006. Palindrome-mediated chromosomal translocations in humans. DNA Repair (Amst.) 5: 1136-1145.
    • (2006) DNA Repair (Amst.) , vol.5 , pp. 1136-1145
    • Kurahashi, H.1
  • 42
    • 0034234453 scopus 로고    scopus 로고
    • Regions of genomic instability on 22q11 and 11q23 as the etiology for the recurrent constitutional t(11;22)
    • Kurahashi, H. et al. 2000. Regions of genomic instability on 22q11 and 11q23 as the etiology for the recurrent constitutional t(11;22). Hum. Mol. Genet. 9: 1665-1670.
    • (2000) Hum. Mol. Genet. , vol.9 , pp. 1665-1670
    • Kurahashi, H.1
  • 43
    • 4143085977 scopus 로고    scopus 로고
    • Cruciform DNA structure underlies the etiology for palindrome-mediated human chromosomal translocations
    • Kurahashi, H. et al. 2004. Cruciform DNA structure underlies the etiology for palindrome-mediated human chromosomal translocations. J. Biol. Chem. 279: 35377-35383.
    • (2004) J. Biol. Chem. , vol.279 , pp. 35377-35383
    • Kurahashi, H.1
  • 44
    • 52049119340 scopus 로고    scopus 로고
    • Mus81-dependent double-strand DNA breaks at in vivo-generated cruciform structures in S. cerevisiae
    • Coté, A.G. & S.M. Lewis. 2008. Mus81-dependent double-strand DNA breaks at in vivo-generated cruciform structures in S. cerevisiae. Mol. Cell. 31: 800-812.
    • (2008) Mol. Cell. , vol.31 , pp. 800-812
    • Coté, A.G.1    Lewis, S.M.2
  • 45
    • 79951470434 scopus 로고    scopus 로고
    • More forks on the road to replication stress recovery
    • Allen, C. et al. 2011. More forks on the road to replication stress recovery. J. Mol. Cell. Biol. 3: 4-12.
    • (2011) J. Mol. Cell. Biol. , vol.3 , pp. 4-12
    • Allen, C.1
  • 46
    • 78650664775 scopus 로고    scopus 로고
    • Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells
    • Fenech, M. et al. 2011. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis. 26: 125-132.
    • (2011) Mutagenesis. , vol.26 , pp. 125-132
    • Fenech, M.1
  • 47
    • 77956172250 scopus 로고    scopus 로고
    • Topoisomerase IIalpha maintains genomic stability through decatenation G(2) checkpoint signaling
    • Bower, J.J. et al. 2010. Topoisomerase IIalpha maintains genomic stability through decatenation G(2) checkpoint signaling. Oncogene. 29: 4787-4799.
    • (2010) Oncogene. , vol.29 , pp. 4787-4799
    • Bower, J.J.1
  • 48
    • 33745074915 scopus 로고    scopus 로고
    • Dangerous entanglements
    • Kaufmann, W.K. 2006. Dangerous entanglements. Trends. Mol. Med. 12: 235-237.
    • (2006) Trends. Mol. Med. , vol.12 , pp. 235-237
    • Kaufmann, W.K.1
  • 49
    • 33747888767 scopus 로고    scopus 로고
    • Biochemical mechanisms of chromosomal translocations resulting from DNA double-strand breaks
    • Povirk, L.F. 2006. Biochemical mechanisms of chromosomal translocations resulting from DNA double-strand breaks. DNA Repair (Amst.) 5: 1199-1212.
    • (2006) DNA Repair (Amst.) , vol.5 , pp. 1199-1212
    • Povirk, L.F.1
  • 50
    • 79959397953 scopus 로고    scopus 로고
    • Synthetic lethality: exploiting the addiction of cancer to DNA repair
    • Shaheen, M. et al. 2011. Synthetic lethality: exploiting the addiction of cancer to DNA repair. Blood 117: 6074-6082.
    • (2011) Blood , vol.117 , pp. 6074-6082
    • Shaheen, M.1
  • 51
    • 84865620494 scopus 로고    scopus 로고
    • Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography
    • Thompson, L.H. 2012. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat. Res. 751: 158-246.
    • (2012) Mutat. Res. , vol.751 , pp. 158-246
    • Thompson, L.H.1
  • 52
    • 79956215808 scopus 로고    scopus 로고
    • Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways
    • Mladenov, E. & G. Iliakis. 2011. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat. Res. 711: 61-72.
    • (2011) Mutat. Res. , vol.711 , pp. 61-72
    • Mladenov, E.1    Iliakis, G.2
  • 53
    • 84873440196 scopus 로고    scopus 로고
    • Pathway choice in DNA double strand break repair: observations of a balancing act
    • Brandsma, I. & D.C. Gent. 2012. Pathway choice in DNA double strand break repair: observations of a balancing act. Genome. Integr. 3: 9.
    • (2012) Genome. Integr. , vol.3 , pp. 9
    • Brandsma, I.1    Gent, D.C.2
  • 54
    • 84865364870 scopus 로고    scopus 로고
    • Playing the end game: DNA double-strand break repair pathway choice
    • Chapman, J.R., M.R. Taylor & S.J. Boulton. 2012. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell. 47: 497-510.
    • (2012) Mol. Cell. , vol.47 , pp. 497-510
    • Chapman, J.R.1    Taylor, M.R.2    Boulton, S.J.3
  • 55
    • 0032717039 scopus 로고    scopus 로고
    • The role of chromosome translocations in leukemogenesis
    • Rowley, J.D. 1999. The role of chromosome translocations in leukemogenesis. Semin. Hematol. 36: 59-72.
    • (1999) Semin. Hematol. , vol.36 , pp. 59-72
    • Rowley, J.D.1
  • 56
    • 33747873409 scopus 로고    scopus 로고
    • Chromatin structural elements and chromosomal translocations in leukemia
    • Zhang, Y. & J.D. Rowley. 2006. Chromatin structural elements and chromosomal translocations in leukemia. DNA Repair. (Amst.) 5: 1282-1297.
    • (2006) DNA Repair. (Amst.) , vol.5 , pp. 1282-1297
    • Zhang, Y.1    Rowley, J.D.2
  • 58
    • 44349086949 scopus 로고    scopus 로고
    • Microhomologies and interspersed repeat elements at genomic breakpoints in chronic myeloid leukemia
    • Mattarucchi, E. et al. 2008. Microhomologies and interspersed repeat elements at genomic breakpoints in chronic myeloid leukemia. Genes. Chromosomes. Cancer 47: 625-632.
    • (2008) Genes. Chromosomes. Cancer , vol.47 , pp. 625-632
    • Mattarucchi, E.1
  • 59
    • 84864342422 scopus 로고    scopus 로고
    • Live imaging of induced and controlled DNA double-strand break formation reveals extremely low repair by homologous recombination in human cells
    • Shahar, O.D. et al. 2012. Live imaging of induced and controlled DNA double-strand break formation reveals extremely low repair by homologous recombination in human cells. Oncogene. 31: 3495-3504.
    • (2012) Oncogene. , vol.31 , pp. 3495-3504
    • Shahar, O.D.1
  • 60
    • 84867386682 scopus 로고    scopus 로고
    • Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks
    • Boboila, C., F.W. Alt & B. Schwer. 2012. Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks. Adv. Immunol. 116: 1-49.
    • (2012) Adv. Immunol. , vol.116 , pp. 1-49
    • Boboila, C.1    Alt, F.W.2    Schwer, B.3
  • 61
    • 54849404458 scopus 로고    scopus 로고
    • MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings
    • McVey, M. & S.E. Lee. 2008. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends. Genet. 24: 529-538.
    • (2008) Trends. Genet. , vol.24 , pp. 529-538
    • McVey, M.1    Lee, S.E.2
  • 62
    • 83755224388 scopus 로고    scopus 로고
    • Ku counteracts mobilization of PARP1 and MRN in chromatin damaged with DNA double-strand breaks
    • Cheng, Q. et al. 2011. Ku counteracts mobilization of PARP1 and MRN in chromatin damaged with DNA double-strand breaks. Nucleic. Acids. Res. 39: 9605-9619.
    • (2011) Nucleic. Acids. Res. , vol.39 , pp. 9605-9619
    • Cheng, Q.1
  • 63
    • 33845657443 scopus 로고    scopus 로고
    • PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways
    • Wang, M. et al. 2006. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic. Acids. Res. 34: 6170-6182.
    • (2006) Nucleic. Acids. Res. , vol.34 , pp. 6170-6182
    • Wang, M.1
  • 64
    • 68249116573 scopus 로고    scopus 로고
    • DNA end resection: many nucleases make light work
    • Mimitou, E.P., & L.S. Symington. 2009. DNA end resection: many nucleases make light work. DNA Repair. (Amst.) 8: 983-995.
    • (2009) DNA Repair. (Amst.) , vol.8 , pp. 983-995
    • Mimitou, E.P.1    Symington, L.S.2
  • 65
    • 20644463916 scopus 로고    scopus 로고
    • The Artemis:DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps
    • Ma, Y., K. Schwarz & M.R. Lieber. 2005. The Artemis:DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps. DNA Repair (Amst.) 4: 845-851.
    • (2005) DNA Repair (Amst.) , vol.4 , pp. 845-851
    • Ma, Y.1    Schwarz, K.2    Lieber, M.R.3
  • 66
    • 79956223052 scopus 로고    scopus 로고
    • Biochemical characterization of metnase's endonuclease activity and its role in NHEJ repair
    • Beck, B.D. et al. 2011. Biochemical characterization of metnase's endonuclease activity and its role in NHEJ repair. Biochemistry 50: 4360-4370.
    • (2011) Biochemistry , vol.50 , pp. 4360-4370
    • Beck, B.D.1
  • 67
    • 80755187806 scopus 로고    scopus 로고
    • Double-strand break end resection and repair pathway choice
    • Symington, L.S. & J. Gautier. 2011. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45: 247-271.
    • (2011) Annu. Rev. Genet. , vol.45 , pp. 247-271
    • Symington, L.S.1    Gautier, J.2
  • 68
    • 84874543760 scopus 로고    scopus 로고
    • Mechanism of DNA resection during intrachromosomal recombination and immunoglobulin class switching
    • Bothmer, A. et al. 2013. Mechanism of DNA resection during intrachromosomal recombination and immunoglobulin class switching. J. Exp. Med. 210: 115-123.
    • (2013) J. Exp. Med. , vol.210 , pp. 115-123
    • Bothmer, A.1
  • 69
    • 77950462986 scopus 로고    scopus 로고
    • Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation
    • Simsek, D. & M. Jasin. 2010. Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nat. Struct. Mol. Biol. 17: 410-416.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 410-416
    • Simsek, D.1    Jasin, M.2
  • 70
    • 77953743403 scopus 로고    scopus 로고
    • The transposase domain protein Metnase/SETMAR suppresses chromosomal translocations
    • Wray, J. et al. 2010. The transposase domain protein Metnase/SETMAR suppresses chromosomal translocations. Cancer. Genet. Cytogenet. 200: 184-190.
    • (2010) Cancer. Genet. Cytogenet. , vol.200 , pp. 184-190
    • Wray, J.1
  • 71
    • 34547589577 scopus 로고    scopus 로고
    • Formation of NHEJ-derived reciprocal chromosomal translocations does not require Ku70
    • Weinstock, D.M., E. Brunet & M. Jasin. 2007. Formation of NHEJ-derived reciprocal chromosomal translocations does not require Ku70. Nat. Cell. Biol. 9: 978-981.
    • (2007) Nat. Cell. Biol. , vol.9 , pp. 978-981
    • Weinstock, D.M.1    Brunet, E.2    Jasin, M.3
  • 72
    • 40749132229 scopus 로고    scopus 로고
    • S-phase progression stimulates both the mutagenic KU-independent pathway and mutagenic processing of KU-dependent intermediates, for nonhomologous end joining
    • Guirouilh-Barbat, J., S. Huck & B.S. Lopez. 2008. S-phase progression stimulates both the mutagenic KU-independent pathway and mutagenic processing of KU-dependent intermediates, for nonhomologous end joining. Oncogene. 27: 1726-1736.
    • (2008) Oncogene. , vol.27 , pp. 1726-1736
    • Guirouilh-Barbat, J.1    Huck, S.2    Lopez, B.S.3
  • 73
    • 79959814259 scopus 로고    scopus 로고
    • DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation
    • Simsek, D. et al. 2011. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS. Genet. 7: e1002080.
    • (2011) PLoS. Genet. , vol.7
    • Simsek, D.1
  • 74
    • 78650995499 scopus 로고    scopus 로고
    • An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway
    • Zhang, Y. & M. Jasin. 2011. An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat. Struct. Mol. Biol. 18: 80-84.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 80-84
    • Zhang, Y.1    Jasin, M.2
  • 75
    • 78650988959 scopus 로고    scopus 로고
    • CtIP promotes microhomology-mediated alternative end joining during class-switch recombination
    • Lee-Theilen, M. et al. 2011. CtIP promotes microhomology-mediated alternative end joining during class-switch recombination. Nat. Struct. Mol. Biol. 18: 75-79.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 75-79
    • Lee-Theilen, M.1
  • 76
    • 79959363092 scopus 로고    scopus 로고
    • SIRT6 promotes DNA repair under stress by activating PARP1
    • Mao, Z. et al. 2011. SIRT6 promotes DNA repair under stress by activating PARP1. Science 332: 1443-1446.
    • (2011) Science , vol.332 , pp. 1443-1446
    • Mao, Z.1
  • 77
    • 84862758175 scopus 로고    scopus 로고
    • New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs
    • Gibson, B.A. & W.L. Kraus. 2012. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell. Biol. 13: 411-424.
    • (2012) Nat. Rev. Mol. Cell. Biol. , vol.13 , pp. 411-424
    • Gibson, B.A.1    Kraus, W.L.2
  • 78
    • 11244280890 scopus 로고    scopus 로고
    • Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining
    • Audebert, M., B. Salles & P. Calsou. 2004. Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J. Biol. Chem. 279: 55117-55126.
    • (2004) J. Biol. Chem. , vol.279 , pp. 55117-55126
    • Audebert, M.1    Salles, B.2    Calsou, P.3
  • 79
    • 78049446968 scopus 로고    scopus 로고
    • The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies
    • Mansour, W.Y., T. Rhein & J. Dahm-Daphi. 2010. The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies. Nucleic. Acids. Res. 38: 6065-6077.
    • (2010) Nucleic. Acids. Res. , vol.38 , pp. 6065-6077
    • Mansour, W.Y.1    Rhein, T.2    Dahm-Daphi, J.3
  • 80
    • 77956819782 scopus 로고    scopus 로고
    • ATM regulates Mre11-dependent DNA end-degradation and microhomology-mediated end joining
    • Rahal, E.A. et al. 2010. ATM regulates Mre11-dependent DNA end-degradation and microhomology-mediated end joining. Cell. Cycle. 9: 2866-2877.
    • (2010) Cell. Cycle. , vol.9 , pp. 2866-2877
    • Rahal, E.A.1
  • 81
    • 80053212145 scopus 로고    scopus 로고
    • Human Mre11/human Rad50/Nbs1 and DNA ligase IIIalpha/XRCC1 protein complexes act together in an alternative nonhomologous end joining pathway
    • Della-Maria, J. et al. 2011. Human Mre11/human Rad50/Nbs1 and DNA ligase IIIalpha/XRCC1 protein complexes act together in an alternative nonhomologous end joining pathway. J. Biol. Chem. 286: 33845-33853.
    • (2011) J. Biol. Chem. , vol.286 , pp. 33845-33853
    • Della-Maria, J.1
  • 82
    • 77956399970 scopus 로고    scopus 로고
    • Small-molecule PARP modulators: current status and future therapeutic potential
    • Penning, T.D. 2010. Small-molecule PARP modulators: current status and future therapeutic potential. Curr. Opin. Drug. Discov. Devel. 13: 577-586.
    • (2010) Curr. Opin. Drug. Discov. Devel. , vol.13 , pp. 577-586
    • Penning, T.D.1
  • 83
    • 84880415836 scopus 로고    scopus 로고
    • PARP1 is required for chromosomal translocations
    • Wray, J. et al. 2013. PARP1 is required for chromosomal translocations. Blood 121: 4359-4365.
    • (2013) Blood , vol.121 , pp. 4359-4365
    • Wray, J.1
  • 84
    • 62849083222 scopus 로고    scopus 로고
    • The emerging role of nuclear architecture in DNA repair and genome maintenance
    • Misteli, T. & E. Soutoglou. 2009. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat. Rev. Mol. Cell. Biol. 10: 243-254.
    • (2009) Nat. Rev. Mol. Cell. Biol. , vol.10 , pp. 243-254
    • Misteli, T.1    Soutoglou, E.2
  • 85
    • 17144366223 scopus 로고    scopus 로고
    • Increasing incidence of late second malignancies after conditioning with cyclophosphamide and total-body irradiation and autologous bone marrow transplantation for non-Hodgkin's lymphoma
    • Brown, J.R. et al. 2005. Increasing incidence of late second malignancies after conditioning with cyclophosphamide and total-body irradiation and autologous bone marrow transplantation for non-Hodgkin's lymphoma. J. Clin. Oncol. 23: 2208-2214.
    • (2005) J. Clin. Oncol. , vol.23 , pp. 2208-2214
    • Brown, J.R.1
  • 86
    • 0029051495 scopus 로고
    • Late effects of total body irradiation
    • Leiper, A.D. 1995. Late effects of total body irradiation. Arch. Dis. Child. 72: 382-385.
    • (1995) Arch. Dis. Child. , vol.72 , pp. 382-385
    • Leiper, A.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.