메뉴 건너뛰기




Volumn 117, Issue 4, 2014, Pages 383-393

Mitochondrial metabolism and stress response of yeast: Applications in fermentation technologies

Author keywords

Baker's yeast; Bread making; Mitochondrial metabolism; Nitric oxide; Organic acids; Oxidative stress; Proline arginine metabolism; Sake brewing; Sake yeast; Stress tolerance

Indexed keywords

ARGININE; BREWING; ELASTICITY; FERMENTATION; METABOLISM; NITRIC OXIDE; ORGANIC ACIDS; OXIDATIVE STRESS; PHYSIOLOGY; YEAST;

EID: 84895860143     PISSN: 13891723     EISSN: 13474421     Source Type: Journal    
DOI: 10.1016/j.jbiosc.2013.09.011     Document Type: Review
Times cited : (37)

References (85)
  • 1
    • 28044459882 scopus 로고    scopus 로고
    • Teaching microbial physiology using glucose repression phenomenon in baker's yeast as an example
    • Raghevendran V., Nielsen J., Olsson L. Teaching microbial physiology using glucose repression phenomenon in baker's yeast as an example. Biochem. Mol. Biol. Educ. 2005, 33:404-410.
    • (2005) Biochem. Mol. Biol. Educ. , vol.33 , pp. 404-410
    • Raghevendran, V.1    Nielsen, J.2    Olsson, L.3
  • 3
    • 35648957173 scopus 로고    scopus 로고
    • Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor
    • Hickman M.J., Winston F. Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor. Mol. Cell. Biol. 2007, 27:7414-7424.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 7414-7424
    • Hickman, M.J.1    Winston, F.2
  • 4
    • 0026559542 scopus 로고
    • Regulation of gene expression by oxygen in Saccharomyces cerevisiae
    • Zitomer R.S., Lowry C.V. Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol. Rev. 1992, 56:1-11.
    • (1992) Microbiol. Rev. , vol.56 , pp. 1-11
    • Zitomer, R.S.1    Lowry, C.V.2
  • 5
    • 0036135461 scopus 로고    scopus 로고
    • Genomic analyses of anaerobically induced genes in Saccharomyces cerevisiae: functional roles of Rox1 and other factors in mediating the anoxic response
    • Kwast K.E., Lai L.C., Menda N., James D.T., Aref S., Burke P.V. Genomic analyses of anaerobically induced genes in Saccharomyces cerevisiae: functional roles of Rox1 and other factors in mediating the anoxic response. J. Bacteriol. 2002, 184:250-265.
    • (2002) J. Bacteriol. , vol.184 , pp. 250-265
    • Kwast, K.E.1    Lai, L.C.2    Menda, N.3    James, D.T.4    Aref, S.5    Burke, P.V.6
  • 6
    • 58849107168 scopus 로고    scopus 로고
    • Response to hypoxia, reduction of electron acceptors, and subsequent survival by filamentous fungi
    • Takaya N. Response to hypoxia, reduction of electron acceptors, and subsequent survival by filamentous fungi. Biosci. Biotechnol. Biochem. 2009, 73:1-8.
    • (2009) Biosci. Biotechnol. Biochem. , vol.73 , pp. 1-8
    • Takaya, N.1
  • 8
    • 46149098907 scopus 로고    scopus 로고
    • Oxygen-regulated isoforms of cytochrome c oxidase have differential effects on its nitric oxide production and on hypoxic signaling
    • Castello P.R., Woo D.K., Ball K., Wojcik J., Liu L., Poyton R.O. Oxygen-regulated isoforms of cytochrome c oxidase have differential effects on its nitric oxide production and on hypoxic signaling. Proc. Nat. Acad. Sci. 2008, 105:8203-8208.
    • (2008) Proc. Nat. Acad. Sci. , vol.105 , pp. 8203-8208
    • Castello, P.R.1    Woo, D.K.2    Ball, K.3    Wojcik, J.4    Liu, L.5    Poyton, R.O.6
  • 9
    • 23944462967 scopus 로고    scopus 로고
    • Effects of a transition from normoxia to anoxia on yeast cytochrome c oxidase and the mitochondrial respiratory chain: implications for hypoxic gene induction
    • David P.S., Poyton R.O. Effects of a transition from normoxia to anoxia on yeast cytochrome c oxidase and the mitochondrial respiratory chain: implications for hypoxic gene induction. Biochim. Biophys. Acta 2005, 1709:169-180.
    • (2005) Biochim. Biophys. Acta , vol.1709 , pp. 169-180
    • David, P.S.1    Poyton, R.O.2
  • 10
    • 58349092088 scopus 로고    scopus 로고
    • Responses to hypoxia in fungal pathogens
    • Ernst J.F., Tielker D. Responses to hypoxia in fungal pathogens. Cell. Microbiol. 2009, 11:183-190.
    • (2009) Cell. Microbiol. , vol.11 , pp. 183-190
    • Ernst, J.F.1    Tielker, D.2
  • 11
    • 0030862688 scopus 로고    scopus 로고
    • Identification and analysis of a static culture-specific cell wall protein, Tir1p/Srp1p in Saccharomyces cerevisiae
    • Kitagaki H., Shimoi H., Ito K. Identification and analysis of a static culture-specific cell wall protein, Tir1p/Srp1p in Saccharomyces cerevisiae. Eur. J. Biochem. 1997, 249:343-349.
    • (1997) Eur. J. Biochem. , vol.249 , pp. 343-349
    • Kitagaki, H.1    Shimoi, H.2    Ito, K.3
  • 12
    • 84871830890 scopus 로고    scopus 로고
    • Possible roles of the mitochondria in sulfur dioxide production by lager yeast
    • Samp E.J. Possible roles of the mitochondria in sulfur dioxide production by lager yeast. J. Am. Brew. Soc. Chem. 2012, 70:219-229.
    • (2012) J. Am. Brew. Soc. Chem. , vol.70 , pp. 219-229
    • Samp, E.J.1
  • 13
    • 0000796042 scopus 로고
    • The mechanism of thiamine action: predictions from model experiments
    • Breslow R. The mechanism of thiamine action: predictions from model experiments. Ann. N. Y. Acad. Sci. 1962, 98:445-452.
    • (1962) Ann. N. Y. Acad. Sci. , vol.98 , pp. 445-452
    • Breslow, R.1
  • 15
    • 79551490034 scopus 로고    scopus 로고
    • Cytosolic localization of acetohydroxyacid synthase Ilv2 and its impact on diacetyl formation during beer fermentation
    • Dasari S., Kölling R. Cytosolic localization of acetohydroxyacid synthase Ilv2 and its impact on diacetyl formation during beer fermentation. Appl. Environ. Microbiology 2011, 77:727-731.
    • (2011) Appl. Environ. Microbiology , vol.77 , pp. 727-731
    • Dasari, S.1    Kölling, R.2
  • 16
    • 84856238745 scopus 로고    scopus 로고
    • Conserved and specific responses to hypoxia in Aspergillus oryzae and Aspergillus nidulans determined by comparative transcriptomics
    • Terabayashi Y., Shimizu M., Kitazume T., Masuo S., Fujii T., Takaya N. Conserved and specific responses to hypoxia in Aspergillus oryzae and Aspergillus nidulans determined by comparative transcriptomics. Appl. Microbiol. Biotechnol. 2012, 93:305-317.
    • (2012) Appl. Microbiol. Biotechnol. , vol.93 , pp. 305-317
    • Terabayashi, Y.1    Shimizu, M.2    Kitazume, T.3    Masuo, S.4    Fujii, T.5    Takaya, N.6
  • 17
    • 15444370317 scopus 로고    scopus 로고
    • The GABA shunt: an attractive and potential therapeutic target in the treatment of epileptic disorders
    • Yogeeswari P., Sriram D., Vaigundaragavendran J. The GABA shunt: an attractive and potential therapeutic target in the treatment of epileptic disorders. Curr. Drug Metab. 2005, 6:127-139.
    • (2005) Curr. Drug Metab. , vol.6 , pp. 127-139
    • Yogeeswari, P.1    Sriram, D.2    Vaigundaragavendran, J.3
  • 18
    • 0020608080 scopus 로고
    • Control of the ornithine cycle in Neurospora crassa by the mitochondrial membrane
    • Davis R.H., Ristow J.L. Control of the ornithine cycle in Neurospora crassa by the mitochondrial membrane. J. Bacteriol. 1983, 154:1046-1053.
    • (1983) J. Bacteriol. , vol.154 , pp. 1046-1053
    • Davis, R.H.1    Ristow, J.L.2
  • 20
    • 4344579413 scopus 로고    scopus 로고
    • Role of the yeast acetyltransferase Mpr1 in oxidative stress: regulation of oxygen reactive species caused by a toxic proline catabolism intermediate
    • Nomura M., Takagi H. Role of the yeast acetyltransferase Mpr1 in oxidative stress: regulation of oxygen reactive species caused by a toxic proline catabolism intermediate. Proc. Natl. Acad. Sci. USA 2004, 101:12616-12621.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 12616-12621
    • Nomura, M.1    Takagi, H.2
  • 21
    • 84864286774 scopus 로고    scopus 로고
    • 1-pyrroline-5-carboxylate directly inhibits the mitochondrial respiration in budding yeast
    • 1-pyrroline-5-carboxylate directly inhibits the mitochondrial respiration in budding yeast. FEBS Lett. 2012, 586:2411-2416.
    • (2012) FEBS Lett. , vol.586 , pp. 2411-2416
    • Nishimura, A.1    Nasuno, R.2    Takagi, H.3
  • 22
    • 28244475057 scopus 로고    scopus 로고
    • N-Acetyltransferase Mpr1 confers freeze tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species
    • Du X., Takagi H. N-Acetyltransferase Mpr1 confers freeze tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. J. Biochem. 2005, 138:391-397.
    • (2005) J. Biochem. , vol.138 , pp. 391-397
    • Du, X.1    Takagi, H.2
  • 23
    • 34250792218 scopus 로고    scopus 로고
    • N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species
    • Du X., Takagi H. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl. Microbiol. Biotechnol. 2007, 75:1343-1351.
    • (2007) Appl. Microbiol. Biotechnol. , vol.75 , pp. 1343-1351
    • Du, X.1    Takagi, H.2
  • 24
    • 76949095203 scopus 로고    scopus 로고
    • Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough
    • Sasano Y., Takahashi S., Shima J., Takagi H. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough. Int. J. Food Microbiol. 2010, 138:181-185.
    • (2010) Int. J. Food Microbiol. , vol.138 , pp. 181-185
    • Sasano, Y.1    Takahashi, S.2    Shima, J.3    Takagi, H.4
  • 25
    • 77955791570 scopus 로고    scopus 로고
    • An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role
    • Nishimura A., Kotani T., Sasano Y., Takagi H. An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role. FEMS Yeast Res. 2010, 10:687-698.
    • (2010) FEMS Yeast Res. , vol.10 , pp. 687-698
    • Nishimura, A.1    Kotani, T.2    Sasano, Y.3    Takagi, H.4
  • 26
    • 33746941255 scopus 로고    scopus 로고
    • Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates
    • Jobgen W.S., Fried S.K., Fu W.J., Meininger C.J., Wu G. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem. 2006, 17:571-588.
    • (2006) J. Nutr. Biochem. , vol.17 , pp. 571-588
    • Jobgen, W.S.1    Fried, S.K.2    Fu, W.J.3    Meininger, C.J.4    Wu, G.5
  • 27
    • 38949191975 scopus 로고    scopus 로고
    • Antioxidative defence alterations in skeletal muscle during prolonged acclimation to cold: role of l-arginine/NO-producing pathway
    • Petrovic V., Buzadzic B., Korac A., Vasilijevic A., Jankovic A., Micunovic K., Korac B. Antioxidative defence alterations in skeletal muscle during prolonged acclimation to cold: role of l-arginine/NO-producing pathway. J. Exp. Biol. 2008, 211:114-120.
    • (2008) J. Exp. Biol. , vol.211 , pp. 114-120
    • Petrovic, V.1    Buzadzic, B.2    Korac, A.3    Vasilijevic, A.4    Jankovic, A.5    Micunovic, K.6    Korac, B.7
  • 28
    • 58749093283 scopus 로고    scopus 로고
    • Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxin-deficient Arabidopsis plants
    • Martin M., Colman M.J., Gómez-Casati D.F., Lamattina L., Zabaleta E.J. Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxin-deficient Arabidopsis plants. FEBS Lett. 2009, 583:542-548.
    • (2009) FEBS Lett. , vol.583 , pp. 542-548
    • Martin, M.1    Colman, M.J.2    Gómez-Casati, D.F.3    Lamattina, L.4    Zabaleta, E.J.5
  • 29
  • 30
    • 0034646456 scopus 로고    scopus 로고
    • The interaction of nitric oxide (NO) with the yeast transcription factor Ace1: a model system for NO-protein thiol interactions with implications to metal metabolism
    • Shinyashiki M., Chiang K.T., Switzer C.H., Gralla E.B., Valentine J.S., Thiele D.J., Fukuto J.M. The interaction of nitric oxide (NO) with the yeast transcription factor Ace1: a model system for NO-protein thiol interactions with implications to metal metabolism. Proc. Natl. Acad. Sci. USA 2000, 97:2491-2496.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 2491-2496
    • Shinyashiki, M.1    Chiang, K.T.2    Switzer, C.H.3    Gralla, E.B.4    Valentine, J.S.5    Thiele, D.J.6    Fukuto, J.M.7
  • 33
    • 84872399319 scopus 로고    scopus 로고
    • The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells
    • Nishimura A., Kawahara N., Takagi H. The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. Biochem. Biophys. Res. Commun. 2013, 430:137-143.
    • (2013) Biochem. Biophys. Res. Commun. , vol.430 , pp. 137-143
    • Nishimura, A.1    Kawahara, N.2    Takagi, H.3
  • 34
    • 63449135424 scopus 로고    scopus 로고
    • Phosphatidylserine decarboxylases, key enzymes of lipid metabolism
    • Schuiki I., Daum G. Phosphatidylserine decarboxylases, key enzymes of lipid metabolism. IUBMB Life 2009, 61:151-162.
    • (2009) IUBMB Life , vol.61 , pp. 151-162
    • Schuiki, I.1    Daum, G.2
  • 35
    • 67749120148 scopus 로고    scopus 로고
    • A novel mitochondrial sphingomyelinase in zebrafish cells
    • Yabu T., Shimuzu A., Yamashita M. A novel mitochondrial sphingomyelinase in zebrafish cells. J. Biol. Chem. 2009, 284:20349-20363.
    • (2009) J. Biol. Chem. , vol.284 , pp. 20349-20363
    • Yabu, T.1    Shimuzu, A.2    Yamashita, M.3
  • 36
    • 4544261024 scopus 로고    scopus 로고
    • Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria?
    • Bionda C., Portoukalian J., Schmitt D., Rodriguez-Lafrasse C., Ardail D. Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria?. Biochem. J. 2004, 382:527-533.
    • (2004) Biochem. J. , vol.382 , pp. 527-533
    • Bionda, C.1    Portoukalian, J.2    Schmitt, D.3    Rodriguez-Lafrasse, C.4    Ardail, D.5
  • 38
    • 0017406503 scopus 로고
    • Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria
    • Cadenas E., Boveris A., Ragan C.I., Stoppani A.O. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch. Biochem. Biophys. 1977, 180:248-257.
    • (1977) Arch. Biochem. Biophys. , vol.180 , pp. 248-257
    • Cadenas, E.1    Boveris, A.2    Ragan, C.I.3    Stoppani, A.O.4
  • 39
    • 0015363173 scopus 로고
    • The cellular production of hydrogen peroxide
    • Boveris A., Oshino N., Chance B. The cellular production of hydrogen peroxide. Biochem. J. 1972, 128:617-630.
    • (1972) Biochem. J. , vol.128 , pp. 617-630
    • Boveris, A.1    Oshino, N.2    Chance, B.3
  • 40
    • 84868007565 scopus 로고    scopus 로고
    • Physiological roles of mitochondrial reactive oxygen species
    • Sena L.A., Chandel N.S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 2012, 48:158-167.
    • (2012) Mol. Cell , vol.48 , pp. 158-167
    • Sena, L.A.1    Chandel, N.S.2
  • 42
    • 34250198994 scopus 로고    scopus 로고
    • Ethanol-induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway
    • Kitagaki H., Araki Y., Funato K., Shimoi H. Ethanol-induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway. FEBS Lett. 2007, 581:2935-2942.
    • (2007) FEBS Lett. , vol.581 , pp. 2935-2942
    • Kitagaki, H.1    Araki, Y.2    Funato, K.3    Shimoi, H.4
  • 44
    • 0026512705 scopus 로고
    • Glucose repression in the yeast Saccharomyces cerevisiae
    • Trumbly R.J. Glucose repression in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 1992, 6:15-21.
    • (1992) Mol. Microbiol. , vol.6 , pp. 15-21
    • Trumbly, R.J.1
  • 45
    • 0036317761 scopus 로고    scopus 로고
    • A microarray-assisted screen for potential Hap1 and Rox1 target genes in Saccharomyces cerevisiae
    • Ter Linde J.J.M., Steensma H.Y. A microarray-assisted screen for potential Hap1 and Rox1 target genes in Saccharomyces cerevisiae. Yeast 2002, 19:825-840.
    • (2002) Yeast , vol.19 , pp. 825-840
    • Ter Linde, J.J.M.1    Steensma, H.Y.2
  • 46
    • 67449084913 scopus 로고    scopus 로고
    • ISC1-dependent metabolic adaptation reveals an indispensable role for mitochondria in induction of nuclear genes during the diauxic shift in Saccharomyces cerevisiae
    • Kitagaki H., Cowart L.A., Matmati N., Montefusco D., Gandy J., de Avalos S.V., Novgorodov S.A., Zheng J., Obeid L.M., Hannun Y.A. ISC1-dependent metabolic adaptation reveals an indispensable role for mitochondria in induction of nuclear genes during the diauxic shift in Saccharomyces cerevisiae. J. Biol. Chem. 2009, 284:10818-10830.
    • (2009) J. Biol. Chem. , vol.284 , pp. 10818-10830
    • Kitagaki, H.1    Cowart, L.A.2    Matmati, N.3    Montefusco, D.4    Gandy, J.5    de Avalos, S.V.6    Novgorodov, S.A.7    Zheng, J.8    Obeid, L.M.9    Hannun, Y.A.10
  • 47
    • 0002476948 scopus 로고    scopus 로고
    • Mitochondrial relevance to yeast fermentative performance
    • O'Connor-Cox E.S.C., Lodolo E.J., Axcell B.C. Mitochondrial relevance to yeast fermentative performance. J. Inst. Brew 1996, 102:19-25.
    • (1996) J. Inst. Brew , vol.102 , pp. 19-25
    • O'Connor-Cox, E.S.C.1    Lodolo, E.J.2    Axcell, B.C.3
  • 48
    • 0041708567 scopus 로고    scopus 로고
    • Flow cytometric monitoring of rhodamine 123 and a cyanine dye uptake by yeast during cider fermentation
    • Lloyd D., Moran C.A., Suller M.T.E., Dinsdale M.G. Flow cytometric monitoring of rhodamine 123 and a cyanine dye uptake by yeast during cider fermentation. J. Inst. Brew 1996, 102:251-259.
    • (1996) J. Inst. Brew , vol.102 , pp. 251-259
    • Lloyd, D.1    Moran, C.A.2    Suller, M.T.E.3    Dinsdale, M.G.4
  • 49
    • 0028837223 scopus 로고
    • The relative importance of mitochondrial protein synthesis to brewing yeast performance
    • Lodolo E.J., O'Connor-Cox E.S.C., Axcell B.C. The relative importance of mitochondrial protein synthesis to brewing yeast performance. J. Am. Soc. Brew. Chem. 1995, 53:128-135.
    • (1995) J. Am. Soc. Brew. Chem. , vol.53 , pp. 128-135
    • Lodolo, E.J.1    O'Connor-Cox, E.S.C.2    Axcell, B.C.3
  • 50
    • 0002187680 scopus 로고
    • Role of oxygen in high-gravity fermentations in the absence of unsaturated lipid biosynthesis
    • O'Connor-Cox E.S.C., Lodolo E.J., Axcell B.C. Role of oxygen in high-gravity fermentations in the absence of unsaturated lipid biosynthesis. J. Am. Soc. Brew. Chem. 1993, 51:97-107.
    • (1993) J. Am. Soc. Brew. Chem. , vol.51 , pp. 97-107
    • O'Connor-Cox, E.S.C.1    Lodolo, E.J.2    Axcell, B.C.3
  • 51
    • 0033249065 scopus 로고    scopus 로고
    • Evidence of antimycin-insensitive respiration in a commercial brewing yeast
    • Lodolo E.J., O'Connor-Cox E.S.C., Axcell B.C. Evidence of antimycin-insensitive respiration in a commercial brewing yeast. J. Inst. Brew 1999, 105:35-43.
    • (1999) J. Inst. Brew , vol.105 , pp. 35-43
    • Lodolo, E.J.1    O'Connor-Cox, E.S.C.2    Axcell, B.C.3
  • 52
    • 59649089151 scopus 로고    scopus 로고
    • Strategy for adapting wine yeasts for bioethanol production
    • Ooi B.G., Lankford K.R. Strategy for adapting wine yeasts for bioethanol production. Int. J. Mol. Sci. 2009, 10:385-394.
    • (2009) Int. J. Mol. Sci. , vol.10 , pp. 385-394
    • Ooi, B.G.1    Lankford, K.R.2
  • 53
    • 67651037266 scopus 로고    scopus 로고
    • Stress-tolerance of baker's yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance
    • Shima J., Takagi H. Stress-tolerance of baker's yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance. Biotechnol. Appl. Biochem. 2009, 53:155-164.
    • (2009) Biotechnol. Appl. Biochem. , vol.53 , pp. 155-164
    • Shima, J.1    Takagi, H.2
  • 54
    • 55649090079 scopus 로고    scopus 로고
    • Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications
    • Takagi H. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl. Microbiol. Biotechnol. 2008, 81:211-223.
    • (2008) Appl. Microbiol. Biotechnol. , vol.81 , pp. 211-223
    • Takagi, H.1
  • 55
  • 56
    • 84857127683 scopus 로고    scopus 로고
    • Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough
    • Sasano Y., Haitani Y., Ohtsu I., Shima J., Takagi H. Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough. Int. J. Food Microbiol. 2012, 152:40-43.
    • (2012) Int. J. Food Microbiol. , vol.152 , pp. 40-43
    • Sasano, Y.1    Haitani, Y.2    Ohtsu, I.3    Shima, J.4    Takagi, H.5
  • 57
    • 65549093143 scopus 로고    scopus 로고
    • Engineering of the yeast antioxidant enzyme Mpr1 for enhanced activity and stability
    • Iinoya K., Kotani T., Sasano Y., Takagi H. Engineering of the yeast antioxidant enzyme Mpr1 for enhanced activity and stability. Biotechnol. Bioeng. 2009, 103:341-352.
    • (2009) Biotechnol. Bioeng. , vol.103 , pp. 341-352
    • Iinoya, K.1    Kotani, T.2    Sasano, Y.3    Takagi, H.4
  • 58
    • 84859053464 scopus 로고    scopus 로고
    • Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast
    • Sasano Y., Haitani Y., Hashida K., Ohtsu I., Shima J., Takagi H. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast. Microb. Cell Fact. 2012, 11:40.
    • (2012) Microb. Cell Fact. , vol.11 , pp. 40
    • Sasano, Y.1    Haitani, Y.2    Hashida, K.3    Ohtsu, I.4    Shima, J.5    Takagi, H.6
  • 59
    • 0014621851 scopus 로고
    • Absence of diacetyl in fermenting wort
    • Inoue T., Yamamoto Y. Absence of diacetyl in fermenting wort. Arch. Biochem. Biophys. 1969, 135:454-457.
    • (1969) Arch. Biochem. Biophys. , vol.135 , pp. 454-457
    • Inoue, T.1    Yamamoto, Y.2
  • 60
    • 13344288520 scopus 로고
    • Studies in valine biosynthesis. II. α-Acetolactate formation in microörganisms
    • Lewis K.F., Weinhouse S. Studies in valine biosynthesis. II. α-Acetolactate formation in microörganisms. J. Am. Chem. Soc. 1958, 80:4913-4915.
    • (1958) J. Am. Chem. Soc. , vol.80 , pp. 4913-4915
    • Lewis, K.F.1    Weinhouse, S.2
  • 62
    • 0007718957 scopus 로고
    • Conversion of pyruvic acid to acetaldehyde during mashing-process after the alcoholic fortification in sake brewing
    • Dohi K., Miyauchi T., Kawamoto M. Conversion of pyruvic acid to acetaldehyde during mashing-process after the alcoholic fortification in sake brewing. Hakkokogaku 1974, 52:416-422.
    • (1974) Hakkokogaku , vol.52 , pp. 416-422
    • Dohi, K.1    Miyauchi, T.2    Kawamoto, M.3
  • 63
    • 77951562932 scopus 로고    scopus 로고
    • Effects of the gene disruption and the overexpression of acetate metabolic enzymes of yeast on acetate production during alcohol fermentation
    • Goto-Yamamoto N., Dang H. Effects of the gene disruption and the overexpression of acetate metabolic enzymes of yeast on acetate production during alcohol fermentation. Nippon Jozo Kyokaishi 2006, 101:949-956.
    • (2006) Nippon Jozo Kyokaishi , vol.101 , pp. 949-956
    • Goto-Yamamoto, N.1    Dang, H.2
  • 65
    • 0041350365 scopus 로고    scopus 로고
    • Analysis of the pyruvate permease gene (JEN1) in glucose derepression yeast (Saccharomyces cerevisiae) isolated from a 2-deoxyglucose-tolerant mutant, and its application to sake making
    • Tsuboi H., Wakisaka Y., Hirotsune M., Akao T., Yamada O., Akita O. Analysis of the pyruvate permease gene (JEN1) in glucose derepression yeast (Saccharomyces cerevisiae) isolated from a 2-deoxyglucose-tolerant mutant, and its application to sake making. Biosci. Biotechnol. Biochem. 2003, 67:765-771.
    • (2003) Biosci. Biotechnol. Biochem. , vol.67 , pp. 765-771
    • Tsuboi, H.1    Wakisaka, Y.2    Hirotsune, M.3    Akao, T.4    Yamada, O.5    Akita, O.6
  • 66
    • 0034184770 scopus 로고    scopus 로고
    • Transport of pyruvate in Saccharomyces cerevisiae and cloning of the gene encoded pyruvate permease
    • Akita O., Nishimori C., Shimamoto T., Fujii T., Iefuji H. Transport of pyruvate in Saccharomyces cerevisiae and cloning of the gene encoded pyruvate permease. Biosci. Biotechnol. Biochem. 2000, 64:980-984.
    • (2000) Biosci. Biotechnol. Biochem. , vol.64 , pp. 980-984
    • Akita, O.1    Nishimori, C.2    Shimamoto, T.3    Fujii, T.4    Iefuji, H.5
  • 68
    • 0023722050 scopus 로고
    • Effect of hyperthyroidism on the transport of pyruvate in rat-heart mitochondria
    • Paradies G., Ruggiero F.M. Effect of hyperthyroidism on the transport of pyruvate in rat-heart mitochondria. Biochim. Biophys. Acta 1988, 935:79-86.
    • (1988) Biochim. Biophys. Acta , vol.935 , pp. 79-86
    • Paradies, G.1    Ruggiero, F.M.2
  • 69
    • 77951560051 scopus 로고    scopus 로고
    • Breeding of a low pyruvate-producing sake yeast by isolation of a mutant resistant to ethyl α-transcyanocinnamate, an inhibitor of mitochondrial pyruvate transport
    • Horie K., Oba T., Motomura S., Isogai A., Yoshimura T., Tsuge K., Koganemaru K., Kobayashi G., Kitagaki H. Breeding of a low pyruvate-producing sake yeast by isolation of a mutant resistant to ethyl α-transcyanocinnamate, an inhibitor of mitochondrial pyruvate transport. Biosci. Biotechnol. Biochem. 2010, 74:843-847.
    • (2010) Biosci. Biotechnol. Biochem. , vol.74 , pp. 843-847
    • Horie, K.1    Oba, T.2    Motomura, S.3    Isogai, A.4    Yoshimura, T.5    Tsuge, K.6    Koganemaru, K.7    Kobayashi, G.8    Kitagaki, H.9
  • 72
    • 27544466847 scopus 로고    scopus 로고
    • Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes
    • Okamoto K., Shaw J.M. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu. Rev. Genet. 2005, 39:503-536.
    • (2005) Annu. Rev. Genet. , vol.39 , pp. 503-536
    • Okamoto, K.1    Shaw, J.M.2
  • 73
    • 35448997779 scopus 로고    scopus 로고
    • Mitochondrial dynamics of yeast during sake brewing
    • Kitagaki H., Shimoi H. Mitochondrial dynamics of yeast during sake brewing. J. Biosci. Bioeng. 2007, 104:227-230.
    • (2007) J. Biosci. Bioeng. , vol.104 , pp. 227-230
    • Kitagaki, H.1    Shimoi, H.2
  • 75
    • 0034161330 scopus 로고    scopus 로고
    • The dynamin family of mechanoenzymes: pinching in new places
    • McNiven M.A., Cao H., Pitts K.R., Yoon Y. The dynamin family of mechanoenzymes: pinching in new places. Trends Biochem. Sci. 2000, 25:115-120.
    • (2000) Trends Biochem. Sci. , vol.25 , pp. 115-120
    • McNiven, M.A.1    Cao, H.2    Pitts, K.R.3    Yoon, Y.4
  • 76
    • 0034676096 scopus 로고    scopus 로고
    • Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p
    • Mozdy A.D., McCaffery J.M., Shaw J.M. Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J. Cell Biol. 2000, 151:367-380.
    • (2000) J. Cell Biol. , vol.151 , pp. 367-380
    • Mozdy, A.D.1    McCaffery, J.M.2    Shaw, J.M.3
  • 77
    • 47149093759 scopus 로고    scopus 로고
    • Inhibition of mitochondrial fragmentation during sake brewing causes high malate production in sake yeast
    • Kitagaki H., Kato T., Isogai A., Mikami S., Shimoi H. Inhibition of mitochondrial fragmentation during sake brewing causes high malate production in sake yeast. J. Biosci. Bioeng. 2008, 105:675-678.
    • (2008) J. Biosci. Bioeng. , vol.105 , pp. 675-678
    • Kitagaki, H.1    Kato, T.2    Isogai, A.3    Mikami, S.4    Shimoi, H.5
  • 78
    • 67651056127 scopus 로고    scopus 로고
    • Mitochondrial-morphology-targeted breeding of industrial yeast strains for alcohol fermentation
    • Kitagaki H. Mitochondrial-morphology-targeted breeding of industrial yeast strains for alcohol fermentation. Biotechnol. Appl. Biochem. 2009, 53:145-153.
    • (2009) Biotechnol. Appl. Biochem. , vol.53 , pp. 145-153
    • Kitagaki, H.1
  • 79
    • 84874903118 scopus 로고    scopus 로고
    • Breeding researches of sake yeasts in Japan: history, recent technological advances, and future perspectives
    • Kitagaki H., Kitamoto K. Breeding researches of sake yeasts in Japan: history, recent technological advances, and future perspectives. Annu. Rev. Food Sci. Technol. 2013, 4:215-235.
    • (2013) Annu. Rev. Food Sci. Technol. , vol.4 , pp. 215-235
    • Kitagaki, H.1    Kitamoto, K.2
  • 80
    • 84868612532 scopus 로고    scopus 로고
    • Mitochondrial activity of sake brewery yeast affects malic acid production during alcoholic fermentation
    • Motomura S., Horie K., Kitagaki H. Mitochondrial activity of sake brewery yeast affects malic acid production during alcoholic fermentation. J. Inst. Brew. 2012, 118:22-26.
    • (2012) J. Inst. Brew. , vol.118 , pp. 22-26
    • Motomura, S.1    Horie, K.2    Kitagaki, H.3
  • 81
    • 0035146891 scopus 로고    scopus 로고
    • Mitochondrial filaments and clusters as intracellular power-transmitting cables
    • Skulachev V.P. Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem. Sci. 2001, 26:23-29.
    • (2001) Trends Biochem. Sci. , vol.26 , pp. 23-29
    • Skulachev, V.P.1
  • 82
    • 79551491773 scopus 로고    scopus 로고
    • Anaplerotic role for cytosolic malic enzyme in engineered Saccharomyces cerevisiae strains
    • Zelle R.M., Harrison J.C., Pronk J.T., van Maris A.J. Anaplerotic role for cytosolic malic enzyme in engineered Saccharomyces cerevisiae strains. Appl. Environ. Microbiol. 2011, 77:732-738.
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 732-738
    • Zelle, R.M.1    Harrison, J.C.2    Pronk, J.T.3    van Maris, A.J.4
  • 83
    • 84864621452 scopus 로고    scopus 로고
    • Characteristics of the high malic acid production mechanism in Saccharomyces cerevisiae sake yeast strain no. 28
    • Nakayama S., Tabata K., Oba T., Kusumoto K., Mitsuiki S., Kadokura T., Nakazato A. Characteristics of the high malic acid production mechanism in Saccharomyces cerevisiae sake yeast strain no. 28. J. Biosci. Bioeng. 2012, 114:281-285.
    • (2012) J. Biosci. Bioeng. , vol.114 , pp. 281-285
    • Nakayama, S.1    Tabata, K.2    Oba, T.3    Kusumoto, K.4    Mitsuiki, S.5    Kadokura, T.6    Nakazato, A.7
  • 85
    • 84890119237 scopus 로고    scopus 로고
    • Isolation of a high malic and low acetic acid-producing sake yeast Saccharomyces cerevisiae strain screened from respiratory inhibitor 2,4-dinitrophenol (DNP)-resistant strains
    • Kosugi S., Kiyoshi K., Oba T., Kusumoto K., Kadokura T. Isolation of a high malic and low acetic acid-producing sake yeast Saccharomyces cerevisiae strain screened from respiratory inhibitor 2,4-dinitrophenol (DNP)-resistant strains. J. Biosci. Bioeng. 2014, 117:39-44.
    • (2014) J. Biosci. Bioeng. , vol.117 , pp. 39-44
    • Kosugi, S.1    Kiyoshi, K.2    Oba, T.3    Kusumoto, K.4    Kadokura, T.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.