-
1
-
-
84859894421
-
Mitochondrial Ca(2+) as a key regulator of mitochondrial activities
-
Calì T, Ottolini D, Brini M. Mitochondrial Ca(2+) as a key regulator of mitochondrial activities. Adv Exp Med Biol 2012; 942: 53-73.
-
(2012)
Adv Exp Med Biol
, vol.942
, pp. 53-73
-
-
Calì, T.1
Ottolini, D.2
Brini, M.3
-
2
-
-
34548451974
-
Reactive oxygen species in mitochondria-mediated cell death
-
Orrenius S. Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev 2007; 39: 443-55.
-
(2007)
Drug Metab Rev
, vol.39
, pp. 443-455
-
-
Orrenius, S.1
-
3
-
-
84858376953
-
Mitochondria: In sickness and in health
-
Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell 2012; 148: 1145-59.
-
(2012)
Cell
, vol.148
, pp. 1145-1159
-
-
Nunnari, J.1
Suomalainen, A.2
-
4
-
-
58249093939
-
How mitochondria produce reactive oxygen species
-
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009; 417: 1-13.
-
(2009)
Biochem J
, vol.417
, pp. 1-13
-
-
Murphy, M.P.1
-
6
-
-
79956196320
-
Reactive oxygen species (ROS)--induced genetic and epigenetic alterations in human carcinogenesis
-
Ziech D, Franco R, Pappa A, Panayiotidis MI. Reactive oxygen species (ROS)--induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res 2011; 711: 167-73.
-
(2011)
Mutat Res
, vol.711
, pp. 167-173
-
-
Ziech, D.1
Franco, R.2
Pappa, A.3
Panayiotidis, M.I.4
-
8
-
-
43249112094
-
ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis
-
Ishikawa K, Takenaga K, Akimoto M, et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 2008; 320: 661-4.
-
(2008)
Science
, vol.320
, pp. 661-664
-
-
Ishikawa, K.1
Takenaga, K.2
Akimoto, M.3
-
9
-
-
77956713136
-
Hypoxia-inducible factor-1 activation in nonhypoxic conditions: The essential role of mitochondrial-derived reactive oxygen species
-
Patten DA, Lafleur VN, Robitaille GA, Chan DA, Giaccia AJ, Richard DE. Hypoxia-inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrial-derived reactive oxygen species. Mol Biol Cell 2010; 21: 3247-57.
-
(2010)
Mol Biol Cell
, vol.21
, pp. 3247-3257
-
-
Patten, D.A.1
Lafleur, V.N.2
Robitaille, G.A.3
Chan, D.A.4
Giaccia, A.J.5
Richard, D.E.6
-
10
-
-
77950910067
-
Mechanisms associated with mitochondrial-generated reactive oxygen species in cancer
-
Verschoor ML, Wilson LA, Singh G. Mechanisms associated with mitochondrial-generated reactive oxygen species in cancer. Can J Physiol Pharmacol 2010; 88: 204-19.
-
(2010)
Can J Physiol Pharmacol
, vol.88
, pp. 204-219
-
-
Verschoor, M.L.1
Wilson, L.A.2
Singh, G.3
-
11
-
-
0036019932
-
Redox control of cell death
-
Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, Yodoi J. Redox control of cell death. Antioxid Redox Signal 2002; 4: 405-14.
-
(2002)
Antioxid Redox Signal
, vol.4
, pp. 405-414
-
-
Ueda, S.1
Masutani, H.2
Nakamura, H.3
Tanaka, T.4
Ueno, M.5
Yodoi, J.6
-
12
-
-
79960021791
-
Apoptosis signaling kinases: From stress response to health outcomes
-
Takeda K, Naguro I, Nishitoh H, Matsuzawa A, Ichijo H. Apoptosis signaling kinases: from stress response to health outcomes. Antioxid Redox Signal 2011; 15: 719-61.
-
(2011)
Antioxid Redox Signal
, vol.15
, pp. 719-761
-
-
Takeda, K.1
Naguro, I.2
Nishitoh, H.3
Matsuzawa, A.4
Ichijo, H.5
-
13
-
-
33644828424
-
Cardiolipin oxidation sets cytochrome c free
-
Orrenius S, Zhivotovsky B. Cardiolipin oxidation sets cytochrome c free. Nat Chem Biol 2005; 1: 188-9.
-
(2005)
Nat Chem Biol
, vol.1
, pp. 188-189
-
-
Orrenius, S.1
Zhivotovsky, B.2
-
14
-
-
80052627393
-
Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis
-
Rasola A, Bernardi P. Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. Cell Calcium 2011; 50: 222-33.
-
(2011)
Cell Calcium
, vol.50
, pp. 222-233
-
-
Rasola, A.1
Bernardi, P.2
-
15
-
-
67650673384
-
Mitochondria and reperfusion injury of the heart--a holey death but not beyond salvation
-
Halestrap AP. Mitochondria and reperfusion injury of the heart--a holey death but not beyond salvation. J Bioenerg Biomembr 2009; 41: 113-21.
-
(2009)
J Bioenerg Biomembr
, vol.41
, pp. 113-121
-
-
Halestrap, A.P.1
-
16
-
-
33646060099
-
Mitochondria and ischemia-reperfusion injury of the heart: Fixing a hole
-
Di Lisa F, Bernardi P. Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res 2006; 70: 191-9.
-
(2006)
Cardiovasc Res
, vol.70
, pp. 191-199
-
-
Di Lisa, F.1
Bernardi, P.2
-
19
-
-
46349110018
-
Targeting lipophilic cations to mitochondria
-
Murphy MP. Targeting lipophilic cations to mitochondria. Biochim Biophys Acta 2008; 1777: 1028-31.
-
(2008)
Biochim Biophys Acta
, vol.1777
, pp. 1028-1031
-
-
Murphy, M.P.1
-
20
-
-
0024148694
-
Mitochondrial membrane potential in living cells
-
Chen LB. Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 1988; 4: 155-81.
-
(1988)
Annu Rev Cell Biol
, vol.4
, pp. 155-181
-
-
Chen, L.B.1
-
21
-
-
33846002728
-
A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth
-
Bonnet S, Archer SL, Allalunis-Turner J, et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 2007; 11: 37-51.
-
(2007)
Cancer Cell
, vol.11
, pp. 37-51
-
-
Bonnet, S.1
Archer, S.L.2
Allalunis-Turner, J.3
-
22
-
-
0035797118
-
Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells
-
Modica-Napolitano JS, Aprille JR. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv Drug Deliv Rev 2001; 49: 63-70.
-
(2001)
Adv Drug Deliv Rev
, vol.49
, pp. 63-70
-
-
Modica-Napolitano, J.S.1
Aprille, J.R.2
-
23
-
-
27544480785
-
The intrinsic mitochondrial membrane potential of colonic carcinoma cells is linked to the probability of tumor progression
-
Heerdt BG, Houston MA, Augenlicht LH. The intrinsic mitochondrial membrane potential of colonic carcinoma cells is linked to the probability of tumor progression. Cancer Res 2005; 65: 9861-7.
-
(2005)
Cancer Res
, vol.65
, pp. 9861-9867
-
-
Heerdt, B.G.1
Houston, M.A.2
Augenlicht, L.H.3
-
24
-
-
59449097051
-
A mitochondriotropic derivative of quercetin: A strategy to increase the effectiveness of polyphenols
-
Mattarei A, Biasutto L, Marotta E, et al. A mitochondriotropic derivative of quercetin: a strategy to increase the effectiveness of polyphenols. Chembiochem 2008; 9: 2633-42.
-
(2008)
Chembiochem
, vol.9
, pp. 2633-2642
-
-
Mattarei, A.1
Biasutto, L.2
Marotta, E.3
-
25
-
-
53449086865
-
Development of mitochondria-targeted derivatives of resveratrol
-
Biasutto L, Mattarei A, Marotta E, et al. Development of mitochondria-targeted derivatives of resveratrol. Bioorg Med Chem Lett 2008; 18: 5594-7.
-
(2008)
Bioorg Med Chem Lett
, vol.18
, pp. 5594-5597
-
-
Biasutto, L.1
Mattarei, A.2
Marotta, E.3
-
26
-
-
84864307152
-
Resveratrol induces apoptosis associated with mitochondrial dysfunction in bladder carcinoma cells
-
Lin X, Wu G, Huo WQ, Zhang Y, Jin FS. Resveratrol induces apoptosis associated with mitochondrial dysfunction in bladder carcinoma cells. Int J Urol 2012; 19: 757-64.
-
(2012)
Int J Urol
, vol.19
, pp. 757-764
-
-
Lin, X.1
Wu, G.2
Huo, W.Q.3
Zhang, Y.4
Jin, F.S.5
-
27
-
-
79952801721
-
Resveratrol, a phytochemical inducer of multiple cell death pathways: Apoptosis, autophagy and mitotic catastrophe
-
Delmas D, Solary E, Latruffe N. Resveratrol, a phytochemical inducer of multiple cell death pathways: apoptosis, autophagy and mitotic catastrophe. Curr Med Chem 2011; 18: 1100-21.
-
(2011)
Curr Med Chem
, vol.18
, pp. 1100-1121
-
-
Delmas, D.1
Solary, E.2
Latruffe, N.3
-
28
-
-
85027938671
-
Resveratrol induces mitochondriamediated AIF and to a lesser extent caspase-9-dependent apoptosis in human lung adenocarcinoma ASTC-a-1 cells
-
Zhang W, Wang X, Chen T. Resveratrol induces mitochondriamediated AIF and to a lesser extent caspase-9-dependent apoptosis in human lung adenocarcinoma ASTC-a-1 cells. Mol Cell Biochem 2011; 354: 29-37.
-
(2011)
Mol Cell Biochem
, vol.354
, pp. 29-37
-
-
Zhang, W.1
Wang, X.2
Chen, T.3
-
29
-
-
77954922243
-
Bcl-2 modulates resveratrol-induced ROS production by regulating mitochondrial respiration in tumor cells
-
Low IC, Chen ZX, Pervaiz S. Bcl-2 modulates resveratrol-induced ROS production by regulating mitochondrial respiration in tumor cells. Antioxid Redox Signal 2010; 13: 807-19.
-
(2010)
Antioxid Redox Signal
, vol.13
, pp. 807-819
-
-
Low, I.C.1
Chen, Z.X.2
Pervaiz, S.3
-
30
-
-
79960006725
-
Mitochondrial protection by resveratrol
-
Ungvari Z, Sonntag WE, de Cabo R, Baur JA, Csiszar A. Mitochondrial protection by resveratrol. Exerc Sport Sci Rev 2011; 39: 128-32.
-
(2011)
Exerc Sport Sci Rev
, vol.39
, pp. 128-132
-
-
Ungvari, Z.1
Sonntag, W.E.2
de Cabo, R.3
Baur, J.A.4
Csiszar, A.5
-
31
-
-
79957908426
-
The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells
-
Wang XX, Li YB, Yao HJ, et al. The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials 2011; 32: 5673-87.
-
(2011)
Biomaterials
, vol.32
, pp. 5673-5687
-
-
Wang, X.X.1
Li, Y.B.2
Yao, H.J.3
-
32
-
-
84861211453
-
Cytotoxicity of a mitochondriotropic quercetin derivative: Mechanisms
-
Sassi N, Biasutto L, Mattarei A, et al. Cytotoxicity of a mitochondriotropic quercetin derivative: Mechanisms. Biochim Biophys Acta 2012; 1817: 1095-106.
-
(2012)
Biochim Biophys Acta
, vol.1817
, pp. 1095-1106
-
-
Sassi, N.1
Biasutto, L.2
Mattarei, A.3
-
33
-
-
80053198141
-
Redox properties and cytotoxicity of synthetic isomeric mitochondriotropic derivatives of the natural polyphenol quercetin
-
Mattarei A, Sassi N, Durante C, et al. Redox properties and cytotoxicity of synthetic isomeric mitochondriotropic derivatives of the natural polyphenol quercetin. Eu J Organic Chem 2011; 28: 5577-86.
-
(2011)
Eu J Organic Chem
, vol.28
, pp. 5577-5586
-
-
Mattarei, A.1
Sassi, N.2
Durante, C.3
-
34
-
-
0030939766
-
Esterase-like activity of human serum albumin toward prodrug esters of nicotinic acid
-
Salvi A, Carrupt PA, Mayer JM, Testa B. Esterase-like activity of human serum albumin toward prodrug esters of nicotinic acid. Drug Metab Dispos 1997; 25: 395-8.
-
(1997)
Drug Metab Dispos
, vol.25
, pp. 395-398
-
-
Salvi, A.1
Carrupt, P.A.2
Mayer, J.M.3
Testa, B.4
-
35
-
-
78851469101
-
Bioavailability of resveratrol
-
Walle T. Bioavailability of resveratrol. Ann N Y Acad Sci 2011; 1215: 9-15.
-
(2011)
Ann N Y Acad Sci
, vol.1215
, pp. 9-15
-
-
Walle, T.1
-
36
-
-
20344364428
-
Metabolism and bioavailability of transresveratrol
-
Wenzel E, Somoza V. Metabolism and bioavailability of transresveratrol. Mol Nutr Food Res 2005; 49: 472-81.
-
(2005)
Mol Nutr Food Res
, vol.49
, pp. 472-481
-
-
Wenzel, E.1
Somoza, V.2
-
37
-
-
35448968884
-
Mitochondrial redox cycling of mitoquinone leads to superoxide production and cellular apoptosis
-
Doughan AK, Dikalov SI. Mitochondrial redox cycling of mitoquinone leads to superoxide production and cellular apoptosis. Antioxid Redox Signal 2007; 9: 1825-36.
-
(2007)
Antioxid Redox Signal
, vol.9
, pp. 1825-1836
-
-
Doughan, A.K.1
Dikalov, S.I.2
-
38
-
-
58149498473
-
Mitochondriatargeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: Synthesis and in vitro studies
-
Antonenko YN, Avetisyan AV, Bakeeva LE, et al. Mitochondriatargeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry (Mosc) 2008; 73: 1273-87.
-
(2008)
Biochemistry (Mosc)
, vol.73
, pp. 1273-1287
-
-
Antonenko, Y.N.1
Avetisyan, A.V.2
Bakeeva, L.E.3
-
39
-
-
79952786984
-
Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II
-
Dong LF, Jameson VJ, Tilly D, et al. Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J Biol Chem 2011; 286: 3717-28.
-
(2011)
J Biol Chem
, vol.286
, pp. 3717-3728
-
-
Dong, L.F.1
Jameson, V.J.2
Tilly, D.3
-
40
-
-
84883814194
-
-
Mitochondrion in press. DOI: 10. 1016/j. mito. 2012. 07. 112
-
Neuzil J, Dong LF, Rohlena J, Truksa J, Ralph SJ. Classification of mitocans, anti-cancer drugs acting on mitochondria. Mitochondrion 2012; in press. DOI: 10. 1016/j. mito. 2012. 07. 112.
-
(2012)
Classification of mitocans, anti-cancer drugs acting on mitochondria
-
-
Neuzil, J.1
Dong, L.F.2
Rohlena, J.3
Truksa, J.4
Ralph, S.J.5
-
41
-
-
0033065221
-
Effects of resveratrol on the rat brain respiratory chain
-
Zini R, Morin C, Bertelli A, Bertelli AA, Tillement JP. Effects of resveratrol on the rat brain respiratory chain. Drugs Exp Clin Res 1999; 25: 87-97.
-
(1999)
Drugs Exp Clin Res
, vol.25
, pp. 87-97
-
-
Zini, R.1
Morin, C.2
Bertelli, A.3
Bertelli, A.A.4
Tillement, J.P.5
-
42
-
-
34648813720
-
ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis
-
D'Autréaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nature Rev Mol Cell Biol 2007; 8: 813-24.
-
(2007)
Nature Rev Mol Cell Biol
, vol.8
, pp. 813-824
-
-
D'Autréaux, B.1
Toledano, M.B.2
-
43
-
-
80055008140
-
Hydrogen peroxide: A Jekyll and Hyde signalling molecule
-
Gough DR, Cotter TG. Hydrogen peroxide: a Jekyll and Hyde signalling molecule. Cell Death Dis 2011; 2: e213.
-
(2011)
Cell Death Dis
, vol.2
-
-
Gough, D.R.1
Cotter, T.G.2
-
44
-
-
78650869592
-
Mitochondrial ROS generation and its regulation: Mechanisms involved in H(2)O(2) signaling
-
Rigoulet M, Yoboue ED, Devin A. Mitochondrial ROS generation and its regulation: mechanisms involved in H(2)O(2) signaling. Antioxid Redox Signal 2011; 14: 459-68.
-
(2011)
Antioxid Redox Signal
, vol.14
, pp. 459-468
-
-
Rigoulet, M.1
Yoboue, E.D.2
Devin, A.3
-
45
-
-
73449129394
-
Hydrogen peroxide as a cellsurvival signaling molecule
-
Groeger G, Quiney C, Cotter TG. Hydrogen peroxide as a cellsurvival signaling molecule. Antioxid Redox Signal 2009; 11: 2655-71.
-
(2009)
Antioxid Redox Signal
, vol.11
, pp. 2655-2671
-
-
Groeger, G.1
Quiney, C.2
Cotter, T.G.3
-
46
-
-
33746802358
-
Redox signaling in cancer biology
-
Gius D, Spitz DR. Redox signaling in cancer biology. Antioxid Redox Signal 2006; 8: 1249-52.
-
(2006)
Antioxid Redox Signal
, vol.8
, pp. 1249-1252
-
-
Gius, D.1
Spitz, D.R.2
-
47
-
-
67650071137
-
Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach?
-
Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 2009; 8: 579-91.
-
(2009)
Nat Rev Drug Discov
, vol.8
, pp. 579-591
-
-
Trachootham, D.1
Alexandre, J.2
Huang, P.3
-
48
-
-
77951432631
-
The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation-why mitochondria are targets for cancer therapy
-
Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Saavedra E, Moreno-Sánchez R. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation-why mitochondria are targets for cancer therapy. Mol Aspects Med 2010; 31: 145-70.
-
(2010)
Mol Aspects Med
, vol.31
, pp. 145-170
-
-
Ralph, S.J.1
Rodríguez-Enríquez, S.2
Neuzil, J.3
Saavedra, E.4
Moreno-Sánchez, R.5
-
49
-
-
77649183649
-
Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger
-
Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Moreno-Sánchez R. Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger. Mol Aspects Med 2010; 31: 29-59.
-
(2010)
Mol Aspects Med
, vol.31
, pp. 29-59
-
-
Ralph, S.J.1
Rodríguez-Enríquez, S.2
Neuzil, J.3
Moreno-Sánchez, R.4
-
51
-
-
76049083966
-
Reactive oxygen species, cellular redox systems, and apoptosis
-
Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 2010; 48: 749-62.
-
(2010)
Free Radic Biol Med
, vol.48
, pp. 749-762
-
-
Circu, M.L.1
Aw, T.Y.2
-
52
-
-
33749178260
-
Necrosis, a wellorchestrated form of cell demise: Signalling cascades, important mediators and concomitant immune response
-
Festjens N, Vanden Berghe T, Vandenabeele P. Necrosis, a wellorchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 2006; 1757: 1371-87.
-
(2006)
Biochim Biophys Acta
, vol.1757
, pp. 1371-1387
-
-
Festjens, N.1
Vanden Berghe, T.2
Vandenabeele, P.3
-
53
-
-
45549098685
-
Molecular mechanisms and pathophysiology of necrotic cell death
-
Vanlangenakker N, Vanden Berghe T, Krysko DV, Festjens N, Vandenabeele P. Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med 2008; 8: 207-20.
-
(2008)
Curr Mol Med
, vol.8
, pp. 207-220
-
-
Vanlangenakker, N.1
Vanden Berghe, T.2
Krysko, D.V.3
Festjens, N.4
Vandenabeele, P.5
-
54
-
-
84255210700
-
Molecular definitions of cell death subroutines: Recommendations of the Nomenclature Committee on Cell Death 2012
-
Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012; 19: 107-20.
-
(2012)
Cell Death Differ
, vol.19
, pp. 107-120
-
-
Galluzzi, L.1
Vitale, I.2
Abrams, J.M.3
-
55
-
-
70449107252
-
Redox-directed cancer therapeutics: Molecular mechanisms and opportunities
-
Wondrak GT. Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal 2009; 11: 3013-69.
-
(2009)
Antioxid Redox Signal
, vol.11
, pp. 3013-3069
-
-
Wondrak, G.T.1
-
56
-
-
73249137593
-
Impact of mitochondriotropic quercetin derivatives on mitochondria
-
Biasutto L, Sassi N, Mattarei A, et al. Impact of mitochondriotropic quercetin derivatives on mitochondria. Biochim Biophys Acta 2010; 1797: 189-96.
-
(2010)
Biochim Biophys Acta
, vol.1797
, pp. 189-196
-
-
Biasutto, L.1
Sassi, N.2
Mattarei, A.3
-
57
-
-
52649175432
-
Aggregation state and pKa values of (E)-resveratrol as determined by fluorescence spectroscopy and UV-visible absorption
-
López-Nicolás JM, García-Carmona F. Aggregation state and pKa values of (E)-resveratrol as determined by fluorescence spectroscopy and UV-visible absorption. J Agric Food Chem 2008; 56: 7600-5.
-
(2008)
J Agric Food Chem
, vol.56
, pp. 7600-7605
-
-
López-Nicolás, J.M.1
García-Carmona, F.2
-
58
-
-
11144300815
-
Mitochondrial permeability transitions: How many doors to the house?
-
Zoratti M, Szabò I, De Marchi U. Mitochondrial permeability transitions: how many doors to the house? Biochim Biophys Acta 2005; 1706: 40-52.
-
(2005)
Biochim Biophys Acta
, vol.1706
, pp. 40-52
-
-
Zoratti, M.1
Szabò, I.2
De Marchi, U.3
-
59
-
-
55549126837
-
Phosphate is essential for inhibition of the mitochondrial permeability transition pore by cyclosporin A and by cyclophilin D ablation
-
Basso E, Petronilli V, Forte MA, Bernardi P. Phosphate is essential for inhibition of the mitochondrial permeability transition pore by cyclosporin A and by cyclophilin D ablation. J Biol Chem 2008; 283: 26307-11.
-
(2008)
J Biol Chem
, vol.283
, pp. 26307-26311
-
-
Basso, E.1
Petronilli, V.2
Forte, M.A.3
Bernardi, P.4
-
60
-
-
0030766182
-
Two modes of activation of the permeability transition pore: The role of mitochondrial cyclophilin
-
Scorrano L, Nicolli A, Basso E, Petronilli V, Bernardi P. Two modes of activation of the permeability transition pore: the role of mitochondrial cyclophilin. Mol Cell Biochem 1997; 174: 181-4.
-
(1997)
Mol Cell Biochem
, vol.174
, pp. 181-184
-
-
Scorrano, L.1
Nicolli, A.2
Basso, E.3
Petronilli, V.4
Bernardi, P.5
-
61
-
-
84862247742
-
Inhibition of complex I regulates the mitochondrial permeability transition through a phosphate-sensitive inhibitory site masked by cyclophilin D
-
Li B, Chauvin C, De Paulis D, et al. Inhibition of complex I regulates the mitochondrial permeability transition through a phosphate-sensitive inhibitory site masked by cyclophilin D. Biochim Biophys Acta 2012; 1817: 1628-34.
-
(2012)
Biochim Biophys Acta
, vol.1817
, pp. 1628-1634
-
-
Li, B.1
Chauvin, C.2
De Paulis, D.3
|