-
2
-
-
0035839136
-
Translating the histone code
-
Jenuwein T, Allis CD. 2001. Translating the histone code. Science 293: 1074-80.
-
(2001)
Science
, vol.293
, pp. 1074-1080
-
-
Jenuwein, T.1
Allis, C.D.2
-
3
-
-
80053270332
-
Neuronal activity modifies the DNA methylation landscape in the adult brain
-
Guo JU, Ma DK, Mo H, Ball MP, et al. 2011. Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci 14: 1345-51.
-
(2011)
Nat Neurosci
, vol.14
, pp. 1345-1351
-
-
Guo, J.U.1
Ma, D.K.2
Mo, H.3
Ball, M.P.4
-
4
-
-
79955538247
-
Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain
-
Guo JU, Su Y, Zhong C, Ming GL, et al. 2011. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145: 423-34.
-
(2011)
Cell
, vol.145
, pp. 423-434
-
-
Guo, J.U.1
Su, Y.2
Zhong, C.3
Ming, G.L.4
-
5
-
-
84879663784
-
Global epigenomic reconfiguration during mammalian brain development
-
Lister R, Mukamel EA, Nery JR, Urich M, et al. 2013. Global epigenomic reconfiguration during mammalian brain development. Science 341: 1237905.
-
(2013)
Science
, vol.341
, pp. 1237905
-
-
Lister, R.1
Mukamel, E.A.2
Nery, J.R.3
Urich, M.4
-
6
-
-
60749094831
-
Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis
-
Ma DK, Jang MH, Guo JU, Kitabatake Y, et al. 2009. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323: 1074-7.
-
(2009)
Science
, vol.323
, pp. 1074-1077
-
-
Ma, D.K.1
Jang, M.H.2
Guo, J.U.3
Kitabatake, Y.4
-
7
-
-
82255192294
-
5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging
-
Szulwach KE, Li X, Li Y, Song CX, et al. 2011. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci 14: 1607-16.
-
(2011)
Nat Neurosci
, vol.14
, pp. 1607-1616
-
-
Szulwach, K.E.1
Li, X.2
Li, Y.3
Song, C.X.4
-
8
-
-
0016439429
-
DNA modification mechanisms and gene activity during development
-
Holliday R, Pugh JE. 1975. DNA modification mechanisms and gene activity during development. Science 187: 226-32.
-
(1975)
Science
, vol.187
, pp. 226-232
-
-
Holliday, R.1
Pugh, J.E.2
-
9
-
-
0016692220
-
X inactivation, differentiation, and DNA methylation
-
Riggs AD. 1975. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14: 9-25.
-
(1975)
Cytogenet Cell Genet
, vol.14
, pp. 9-25
-
-
Riggs, A.D.1
-
10
-
-
0019506454
-
The somatic replication of DNA methylation
-
Wigler M, Levy D, Perucho M. 1981. The somatic replication of DNA methylation. Cell 24: 33-40.
-
(1981)
Cell
, vol.24
, pp. 33-40
-
-
Wigler, M.1
Levy, D.2
Perucho, M.3
-
11
-
-
0022625210
-
Primary DNA sequence determines sites of maintenance and de novo methylation by mammalian DNA methyltransferases
-
Bolden AH, Nalin CM, Ward CA, Poonian MS, et al. 1986. Primary DNA sequence determines sites of maintenance and de novo methylation by mammalian DNA methyltransferases. Mol Cell Biol 6: 1135-40.
-
(1986)
Mol Cell Biol
, vol.6
, pp. 1135-1140
-
-
Bolden, A.H.1
Nalin, C.M.2
Ward, C.A.3
Poonian, M.S.4
-
12
-
-
0020486108
-
Substrate and sequence specificity of a eukaryotic DNA methylase
-
Gruenbaum Y, Cedar H, Razin A. 1982. Substrate and sequence specificity of a eukaryotic DNA methylase. Nature 295: 620-2.
-
(1982)
Nature
, vol.295
, pp. 620-622
-
-
Gruenbaum, Y.1
Cedar, H.2
Razin, A.3
-
13
-
-
34648833002
-
UHRF1 plays a role in maintaining DNA methylation in mammalian cells
-
Bostick M, Kim JK, Esteve PO, Clark A, et al. 2007. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317: 1760-4.
-
(2007)
Science
, vol.317
, pp. 1760-1764
-
-
Bostick, M.1
Kim, J.K.2
Esteve, P.O.3
Clark, A.4
-
14
-
-
36849072573
-
The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA
-
Sharif J, Muto M, Takebayashi S, Suetake I, et al. 2007. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450: 908-12.
-
(2007)
Nature
, vol.450
, pp. 908-912
-
-
Sharif, J.1
Muto, M.2
Takebayashi, S.3
Suetake, I.4
-
15
-
-
34547725157
-
DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA
-
Ooi SK, Qiu C, Bernstein E, Li K, et al. 2007. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448: 714-7.
-
(2007)
Nature
, vol.448
, pp. 714-717
-
-
Ooi, S.K.1
Qiu, C.2
Bernstein, E.3
Li, K.4
-
16
-
-
0027535235
-
Effects of DNA methylation on DNA-binding proteins and gene expression
-
Tate PH, Bird AP. 1993. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev 3: 226-31.
-
(1993)
Curr Opin Genet Dev
, vol.3
, pp. 226-231
-
-
Tate, P.H.1
Bird, A.P.2
-
17
-
-
77954842322
-
Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes
-
Wu H, Coskun V, Tao J, Xie W, et al. 2010. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329: 444-8.
-
(2010)
Science
, vol.329
, pp. 444-448
-
-
Wu, H.1
Coskun, V.2
Tao, J.3
Xie, W.4
-
18
-
-
84879611157
-
DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape
-
Xie M, Hong C, Zhang B, Lowdon RF, et al. 2013. DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nat Genet 45: 836-41.
-
(2013)
Nat Genet
, vol.45
, pp. 836-841
-
-
Xie, M.1
Hong, C.2
Zhang, B.3
Lowdon, R.F.4
-
19
-
-
0023216891
-
CpG islands in vertebrate genomes
-
Gardiner-Garden M, Frommer M. 1987. CpG islands in vertebrate genomes. J Mol Biol 196: 261-82.
-
(1987)
J Mol Biol
, vol.196
, pp. 261-282
-
-
Gardiner-Garden, M.1
Frommer, M.2
-
20
-
-
78149430876
-
Molecular coupling of DNA methylation and histone methylation
-
Hashimoto H, Vertino PM, Cheng X. 2010. Molecular coupling of DNA methylation and histone methylation. Epigenomics 2: 657-69.
-
(2010)
Epigenomics
, vol.2
, pp. 657-669
-
-
Hashimoto, H.1
Vertino, P.M.2
Cheng, X.3
-
21
-
-
70450217879
-
Human DNA methylomes at base resolution show widespread epigenomic differences
-
Lister R, Pelizzola M, Dowen RH, Hawkins RD, et al. 2009. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462: 315-22.
-
(2009)
Nature
, vol.462
, pp. 315-322
-
-
Lister, R.1
Pelizzola, M.2
Dowen, R.H.3
Hawkins, R.D.4
-
22
-
-
79952264847
-
Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells
-
Lister R, Pelizzola M, Kida YS, Hawkins RD, et al. 2011. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471: 68-73.
-
(2011)
Nature
, vol.471
, pp. 68-73
-
-
Lister, R.1
Pelizzola, M.2
Kida, Y.S.3
Hawkins, R.D.4
-
23
-
-
84876820776
-
Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases
-
Shirane K, Toh H, Kobayashi H, Miura F, et al. 2013. Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet 9: e1003439.
-
(2013)
PLoS Genet
, vol.9
-
-
Shirane, K.1
Toh, H.2
Kobayashi, H.3
Miura, F.4
-
24
-
-
84874624739
-
Dynamic DNA methylation across diverse human cell lines and tissues
-
Varley KE, Gertz J, Bowling KM, Parker SL, et al. 2013. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res 23: 555-67.
-
(2013)
Genome Res
, vol.23
, pp. 555-567
-
-
Varley, K.E.1
Gertz, J.2
Bowling, K.M.3
Parker, S.L.4
-
25
-
-
84857331867
-
Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome
-
Xie W, Barr CL, Kim A, Yue F, et al. 2012. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell 148: 816-31.
-
(2012)
Cell
, vol.148
, pp. 816-831
-
-
Xie, W.1
Barr, C.L.2
Kim, A.3
Yue, F.4
-
26
-
-
84859087611
-
R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters
-
Ginno PA, Lott PL, Christensen HC, Korf I, et al. 2012. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 45: 814-25.
-
(2012)
Mol Cell
, vol.45
, pp. 814-825
-
-
Ginno, P.A.1
Lott, P.L.2
Christensen, H.C.3
Korf, I.4
-
27
-
-
79959209733
-
5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells
-
Stroud H, Feng S, Morey Kinney S, Pradhan S, et al. 2011. 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol 12: R54.
-
(2011)
Genome Biol
, vol.12
-
-
Stroud, H.1
Feng, S.2
Morey Kinney, S.3
Pradhan, S.4
-
28
-
-
84861990517
-
Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome
-
Yu M, Hon GC, Szulwach KE, Song CX, et al. 2012. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149: 1368-80.
-
(2012)
Cell
, vol.149
, pp. 1368-1380
-
-
Yu, M.1
Hon, G.C.2
Szulwach, K.E.3
Song, C.X.4
-
29
-
-
66149123748
-
The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain
-
Kriaucionis S, Heintz N. 2009. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324: 929-30.
-
(2009)
Science
, vol.324
, pp. 929-930
-
-
Kriaucionis, S.1
Heintz, N.2
-
30
-
-
66149146320
-
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
-
Tahiliani M, Koh KP, Shen Y, Pastor WA, et al. 2009. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324: 930-5.
-
(2009)
Science
, vol.324
, pp. 930-935
-
-
Tahiliani, M.1
Koh, K.P.2
Shen, Y.3
Pastor, W.A.4
-
31
-
-
77956189495
-
Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification
-
Ito S, D'Alessio AC, Taranova OV, Hong K, et al. 2010. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466: 1129-33.
-
(2010)
Nature
, vol.466
, pp. 1129-1133
-
-
Ito, S.1
D'Alessio, A.C.2
Taranova, O.V.3
Hong, K.4
-
32
-
-
66749152204
-
Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids
-
Iyer LM, Tahiliani M, Rao A, Aravind L. 2009. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8: 1698-710.
-
(2009)
Cell Cycle
, vol.8
, pp. 1698-1710
-
-
Iyer, L.M.1
Tahiliani, M.2
Rao, A.3
Aravind, L.4
-
33
-
-
0037350661
-
TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23)
-
Lorsbach RB, Moore J, Mathew S, Raimondi SC, et al. 2003. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17: 637-41.
-
(2003)
Leukemia
, vol.17
, pp. 637-641
-
-
Lorsbach, R.B.1
Moore, J.2
Mathew, S.3
Raimondi, S.C.4
-
34
-
-
0037099537
-
LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23)
-
Ono R, Taki T, Taketani T, Taniwaki M, et al. 2002. LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res 62: 4075-80.
-
(2002)
Cancer Res
, vol.62
, pp. 4075-4080
-
-
Ono, R.1
Taki, T.2
Taketani, T.3
Taniwaki, M.4
-
35
-
-
80052495940
-
Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
-
He YF, Li BZ, Li Z, Liu P, et al. 2011. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333: 1303-7.
-
(2011)
Science
, vol.333
, pp. 1303-1307
-
-
He, Y.F.1
Li, B.Z.2
Li, Z.3
Liu, P.4
-
36
-
-
80052461558
-
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
-
Ito S, Shen L, Dai Q, Wu SC, et al. 2011. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333: 1300-3.
-
(2011)
Science
, vol.333
, pp. 1300-1303
-
-
Ito, S.1
Shen, L.2
Dai, Q.3
Wu, S.C.4
-
37
-
-
80053917872
-
Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites
-
Maiti A, Drohat AC. 2011. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 286: 35334-8.
-
(2011)
J Biol Chem
, vol.286
, pp. 35334-35338
-
-
Maiti, A.1
Drohat, A.C.2
-
38
-
-
84862776719
-
Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA
-
Zhang L, Lu X, Lu J, Liang H, et al. 2012. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat Chem Biol 8: 328-30.
-
(2012)
Nat Chem Biol
, vol.8
, pp. 328-330
-
-
Zhang, L.1
Lu, X.2
Lu, J.3
Liang, H.4
-
39
-
-
79959937861
-
Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair
-
Cortellino S, Xu J, Sannai M, Moore R, et al. 2011. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146: 67-79.
-
(2011)
Cell
, vol.146
, pp. 67-79
-
-
Cortellino, S.1
Xu, J.2
Sannai, M.3
Moore, R.4
-
40
-
-
84865329141
-
AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation
-
Nabel CS, Jia H, Ye Y, Shen L, et al. 2012. AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation. Nat Chem Biol 8: 751-8.
-
(2012)
Nat Chem Biol
, vol.8
, pp. 751-758
-
-
Nabel, C.S.1
Jia, H.2
Ye, Y.3
Shen, L.4
-
41
-
-
84869023648
-
Ten eleven translocation enzymes and 5-hydroxymethylation in mammalian development and cancer
-
Kinney SR, Pradhan S. 2013. Ten eleven translocation enzymes and 5-hydroxymethylation in mammalian development and cancer. Adv Exp Med Biol 754: 57-79.
-
(2013)
Adv Exp Med Biol
, vol.754
, pp. 57-79
-
-
Kinney, S.R.1
Pradhan, S.2
-
42
-
-
84877930005
-
DNA methylation and methylcytosine oxidation in cell fate decisions
-
Koh KP, Rao A. 2013. DNA methylation and methylcytosine oxidation in cell fate decisions. Curr Opin Cell Biol 25: 152-61.
-
(2013)
Curr Opin Cell Biol
, vol.25
, pp. 152-161
-
-
Koh, K.P.1
Rao, A.2
-
43
-
-
84878260646
-
TETonic shift: biological roles of TET proteins in DNA demethylation and transcription
-
Pastor WA, Aravind L, Rao A. 2013. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 14: 341-56.
-
(2013)
Nat Rev Mol Cell Biol
, vol.14
, pp. 341-356
-
-
Pastor, W.A.1
Aravind, L.2
Rao, A.3
-
44
-
-
84860749868
-
Tet family proteins and 5-hydroxymethylcytosine in development and disease
-
Tan L, Shi YG. 2012. Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 139: 1895-902.
-
(2012)
Development
, vol.139
, pp. 1895-1902
-
-
Tan, L.1
Shi, Y.G.2
-
45
-
-
83855163995
-
Uncovering the role of 5-hydroxymethylcytosine in the epigenome
-
Branco MR, Ficz G, Reik W. 2011. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13: 7-13.
-
(2011)
Nat Rev Genet
, vol.13
, pp. 7-13
-
-
Branco, M.R.1
Ficz, G.2
Reik, W.3
-
46
-
-
80051712275
-
Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond
-
Guo JU, Su Y, Zhong C, Ming GL, et al. 2011. Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond. Cell Cycle 10: 2662-8.
-
(2011)
Cell Cycle
, vol.10
, pp. 2662-2668
-
-
Guo, J.U.1
Su, Y.2
Zhong, C.3
Ming, G.L.4
-
47
-
-
84555189745
-
DNA methylation: TET proteins-guardians of CpG islands
-
Williams K, Christensen J, Helin K. 2011. DNA methylation: TET proteins-guardians of CpG islands? EMBO Rep 13: 28-35.
-
(2011)
EMBO Rep
, vol.13
, pp. 28-35
-
-
Williams, K.1
Christensen, J.2
Helin, K.3
-
48
-
-
82955207588
-
Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation
-
Wu H, Zhang Y. 2011. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev 25: 2436-52.
-
(2011)
Genes Dev
, vol.25
, pp. 2436-2452
-
-
Wu, H.1
Zhang, Y.2
-
49
-
-
84878260439
-
Deep C diving: mapping the low-abundance modifications of the DNA demethylation pathway
-
Thomson JP, Hunter JM, Meehan RR. 2013. Deep C diving: mapping the low-abundance modifications of the DNA demethylation pathway. Genome Biol 14: 118.
-
(2013)
Genome Biol
, vol.14
, pp. 118
-
-
Thomson, J.P.1
Hunter, J.M.2
Meehan, R.R.3
-
50
-
-
84874771985
-
Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives
-
Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, et al. 2013. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152: 1146-59.
-
(2013)
Cell
, vol.152
, pp. 1146-1159
-
-
Spruijt, C.G.1
Gnerlich, F.2
Smits, A.H.3
Pfaffeneder, T.4
-
51
-
-
84871563384
-
MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system
-
Mellen M, Ayata P, Dewell S, Kriaucionis S, et al. 2012. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151: 1417-30.
-
(2012)
Cell
, vol.151
, pp. 1417-1430
-
-
Mellen, M.1
Ayata, P.2
Dewell, S.3
Kriaucionis, S.4
-
52
-
-
84860221291
-
Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation
-
Hashimoto H, Liu Y, Upadhyay AK, Chang Y, et al. 2012. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res 40: 4841-9.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 4841-4849
-
-
Hashimoto, H.1
Liu, Y.2
Upadhyay, A.K.3
Chang, Y.4
-
53
-
-
84878292277
-
Transcriptional and epigenetic dynamics during specification of human embryonic stem cells
-
Gifford CA, Ziller MJ, Gu H, Trapnell C, et al. 2013. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 153: 1149-63.
-
(2013)
Cell
, vol.153
, pp. 1149-1163
-
-
Gifford, C.A.1
Ziller, M.J.2
Gu, H.3
Trapnell, C.4
-
54
-
-
84355163093
-
DNA-binding factors shape the mouse methylome at distal regulatory regions
-
Stadler MB, Murr R, Burger L, Ivanek R, et al. 2011. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480: 490-5.
-
(2011)
Nature
, vol.480
, pp. 490-495
-
-
Stadler, M.B.1
Murr, R.2
Burger, L.3
Ivanek, R.4
-
55
-
-
84878282421
-
Epigenomic analysis of multilineage differentiation of human embryonic stem cells
-
Xie W, Schultz MD, Lister R, Hou Z, et al. 2013. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153: 1134-48.
-
(2013)
Cell
, vol.153
, pp. 1134-1148
-
-
Xie, W.1
Schultz, M.D.2
Lister, R.3
Hou, Z.4
-
56
-
-
84655162785
-
Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains
-
Berman BP, Weisenberger DJ, Aman JF, Hinoue T, et al. 2012. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet 44: 40-6.
-
(2012)
Nat Genet
, vol.44
, pp. 40-46
-
-
Berman, B.P.1
Weisenberger, D.J.2
Aman, J.F.3
Hinoue, T.4
-
57
-
-
79960927422
-
Increased methylation variation in epigenetic domains across cancer types
-
Hansen KD, Timp W, Bravo HC, Sabunciyan S, et al. 2011. Increased methylation variation in epigenetic domains across cancer types. Nat Genet 43: 768-75.
-
(2011)
Nat Genet
, vol.43
, pp. 768-775
-
-
Hansen, K.D.1
Timp, W.2
Bravo, H.C.3
Sabunciyan, S.4
-
58
-
-
84856528270
-
Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer
-
Hon GC, Hawkins RD, Caballero OL, Lo C, et al. 2012. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res 22: 246-58.
-
(2012)
Genome Res
, vol.22
, pp. 246-258
-
-
Hon, G.C.1
Hawkins, R.D.2
Caballero, O.L.3
Lo, C.4
-
59
-
-
84868198427
-
Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia
-
Kulis M, Heath S, Bibikova M, Queiros AC, et al. 2012. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet 44: 1236-42.
-
(2012)
Nat Genet
, vol.44
, pp. 1236-1242
-
-
Kulis, M.1
Heath, S.2
Bibikova, M.3
Queiros, A.C.4
-
60
-
-
78649969065
-
The DNA methylome of human peripheral blood mononuclear cells
-
Li Y, Zhu J, Tian G, Li N, et al. 2010. The DNA methylome of human peripheral blood mononuclear cells. PLoS Biol 8: e1000533.
-
(2010)
PLoS Biol
, vol.8
-
-
Li, Y.1
Zhu, J.2
Tian, G.3
Li, N.4
-
61
-
-
84882884517
-
Charting a dynamic DNA methylation landscape of the human genome
-
Ziller MJ, Gu H, Muller F, Donaghey J, et al. 2013. Charting a dynamic DNA methylation landscape of the human genome. Nature 500: 477-81.
-
(2013)
Nature
, vol.500
, pp. 477-481
-
-
Ziller, M.J.1
Gu, H.2
Muller, F.3
Donaghey, J.4
-
62
-
-
65549104157
-
Histone modifications at human enhancers reflect global cell-type-specific gene expression
-
Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, et al. 2009. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459: 108-12.
-
(2009)
Nature
, vol.459
, pp. 108-112
-
-
Heintzman, N.D.1
Hon, G.C.2
Hawkins, R.D.3
Kheradpour, P.4
-
63
-
-
77749277177
-
The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing
-
Huang Y, Pastor WA, Shen Y, Tahiliani M, et al. 2010. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One 5: e8888.
-
(2010)
PLoS One
, vol.5
-
-
Huang, Y.1
Pastor, W.A.2
Shen, Y.3
Tahiliani, M.4
-
64
-
-
77954362183
-
Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine
-
Jin SG, Kadam S, Pfeifer GP. 2010. Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res 38: e125.
-
(2010)
Nucleic Acids Res
, vol.38
-
-
Jin, S.G.1
Kadam, S.2
Pfeifer, G.P.3
-
65
-
-
84876907152
-
Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming
-
Song CX, Szulwach KE, Dai Q, Fu Y, et al. 2013. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153: 678-91.
-
(2013)
Cell
, vol.153
, pp. 678-691
-
-
Song, C.X.1
Szulwach, K.E.2
Dai, Q.3
Fu, Y.4
-
66
-
-
77957951913
-
Whole-genome DNA methylation profiling using MethylCap-seq
-
Brinkman AB, Simmer F, Ma K, Kaan A, et al. 2010. Whole-genome DNA methylation profiling using MethylCap-seq. Methods 52: 232-6.
-
(2010)
Methods
, vol.52
, pp. 232-236
-
-
Brinkman, A.B.1
Simmer, F.2
Ma, K.3
Kaan, A.4
-
67
-
-
79956323623
-
Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation
-
Ficz G, Branco MR, Seisenberger S, Santos F, et al. 2011. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473: 398-402.
-
(2011)
Nature
, vol.473
, pp. 398-402
-
-
Ficz, G.1
Branco, M.R.2
Seisenberger, S.3
Santos, F.4
-
68
-
-
84879547408
-
Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA
-
Lu X, Song CX, Szulwach K, Wang Z, et al. 2013. Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA. J Am Chem Soc 135: 9315-7.
-
(2013)
J Am Chem Soc
, vol.135
, pp. 9315-9317
-
-
Lu, X.1
Song, C.X.2
Szulwach, K.3
Wang, Z.4
-
69
-
-
79956308473
-
Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells
-
Pastor WA, Pape UJ, Huang Y, Henderson HR, et al. 2011. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473: 394-7.
-
(2011)
Nature
, vol.473
, pp. 394-397
-
-
Pastor, W.A.1
Pape, U.J.2
Huang, Y.3
Henderson, H.R.4
-
70
-
-
84865061978
-
Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase
-
Raiber EA, Beraldi D, Ficz G, Burgess HE, et al. 2012. Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase. Genome Biol 13: R69.
-
(2012)
Genome Biol
, vol.13
-
-
Raiber, E.A.1
Beraldi, D.2
Ficz, G.3
Burgess, H.E.4
-
71
-
-
84861752670
-
Pull-down of 5-hydroxymethylcytosine DNA using JBP1-coated magnetic beads
-
Robertson AB, Dahl JA, Ougland R, Klungland A. 2012. Pull-down of 5-hydroxymethylcytosine DNA using JBP1-coated magnetic beads. Nat Protoc 7: 340-50.
-
(2012)
Nat Protoc
, vol.7
, pp. 340-350
-
-
Robertson, A.B.1
Dahl, J.A.2
Ougland, R.3
Klungland, A.4
-
72
-
-
79955571248
-
A novel method for the efficient and selective identification of 5-hydroxymethylcytosine in genomic DNA
-
Robertson AB, Dahl JA, Vagbo CB, Tripathi P, et al. 2011. A novel method for the efficient and selective identification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res 39: e55.
-
(2011)
Nucleic Acids Res
, vol.39
-
-
Robertson, A.B.1
Dahl, J.A.2
Vagbo, C.B.3
Tripathi, P.4
-
73
-
-
84876946045
-
Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics
-
Shen L, Wu H, Diep D, Yamaguchi S, et al. 2013. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153: 692-706.
-
(2013)
Cell
, vol.153
, pp. 692-706
-
-
Shen, L.1
Wu, H.2
Diep, D.3
Yamaguchi, S.4
-
74
-
-
78651280460
-
Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine
-
Song CX, Szulwach KE, Fu Y, Dai Q, et al. 2011. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29: 68-72.
-
(2011)
Nat Biotechnol
, vol.29
, pp. 68-72
-
-
Song, C.X.1
Szulwach, K.E.2
Fu, Y.3
Dai, Q.4
-
75
-
-
23044514626
-
Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells
-
Weber M, Davies JJ, Wittig D, Oakeley EJ, et al. 2005. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37: 853-62.
-
(2005)
Nat Genet
, vol.37
, pp. 853-862
-
-
Weber, M.1
Davies, J.J.2
Wittig, D.3
Oakeley, E.J.4
-
76
-
-
79954457998
-
Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells
-
Wu H, D'Alessio AC, Ito S, Wang Z, et al. 2011. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev 25: 679-84.
-
(2011)
Genes Dev
, vol.25
, pp. 679-684
-
-
Wu, H.1
D'Alessio, A.C.2
Ito, S.3
Wang, Z.4
-
77
-
-
84874607005
-
Tet-mediated covalent labelling of 5-methylcytosine for its genome-wide detection and sequencing
-
Zhang L, Szulwach KE, Hon GC, Song CX, et al. 2013. Tet-mediated covalent labelling of 5-methylcytosine for its genome-wide detection and sequencing. Nat Commun 4: 1517.
-
(2013)
Nat Commun
, vol.4
, pp. 1517
-
-
Zhang, L.1
Szulwach, K.E.2
Hon, G.C.3
Song, C.X.4
-
78
-
-
77449127799
-
MBD-isolated genome sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome
-
Serre D, Lee BH, Ting AH. 2010. MBD-isolated genome sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res 38: 391-9.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 391-399
-
-
Serre, D.1
Lee, B.H.2
Ting, A.H.3
-
79
-
-
77952967431
-
Direct detection of DNA methylation during single-molecule, real-time sequencing
-
Flusberg BA, Webster DR, Lee JH, Travers KJ, et al. 2010. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7: 461-5.
-
(2010)
Nat Methods
, vol.7
, pp. 461-465
-
-
Flusberg, B.A.1
Webster, D.R.2
Lee, J.H.3
Travers, K.J.4
-
80
-
-
84856453032
-
Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine
-
Song CX, Clark TA, Lu XY, Kislyuk A, et al. 2012. Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nat Methods 9: 75-7.
-
(2012)
Nat Methods
, vol.9
, pp. 75-77
-
-
Song, C.X.1
Clark, T.A.2
Lu, X.Y.3
Kislyuk, A.4
-
81
-
-
79956302047
-
TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity
-
Williams K, Christensen J, Pedersen MT, Johansen JV, et al. 2011. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473: 343-8.
-
(2011)
Nature
, vol.473
, pp. 343-348
-
-
Williams, K.1
Christensen, J.2
Pedersen, M.T.3
Johansen, J.V.4
-
82
-
-
84861221693
-
Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution
-
Booth MJ, Branco MR, Ficz G, Oxley D, et al. 2012. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336: 934-7.
-
(2012)
Science
, vol.336
, pp. 934-937
-
-
Booth, M.J.1
Branco, M.R.2
Ficz, G.3
Oxley, D.4
-
83
-
-
0026546877
-
A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands
-
Frommer M, McDonald LE, Millar DS, Collis CM, et al. 1992. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89: 1827-31.
-
(1992)
Proc Natl Acad Sci USA
, vol.89
, pp. 1827-1831
-
-
Frommer, M.1
McDonald, L.E.2
Millar, D.S.3
Collis, C.M.4
-
84
-
-
79955073251
-
Mechanistic and functional links between histone methylation and DNA methylation
-
Chen T. 2011. Mechanistic and functional links between histone methylation and DNA methylation. Prog Mol Biol Transl Sci 101: 335-48.
-
(2011)
Prog Mol Biol Transl Sci
, vol.101
, pp. 335-348
-
-
Chen, T.1
-
85
-
-
67349190247
-
Linking DNA methylation and histone modification: patterns and paradigms
-
Cedar H, Bergman Y. 2009. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10: 295-304.
-
(2009)
Nat Rev Genet
, vol.10
, pp. 295-304
-
-
Cedar, H.1
Bergman, Y.2
-
86
-
-
0031837109
-
Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription
-
Jones PL, Veenstra GJ, Wade PA, Vermaak D, et al. 1998. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19: 187-91.
-
(1998)
Nat Genet
, vol.19
, pp. 187-191
-
-
Jones, P.L.1
Veenstra, G.J.2
Wade, P.A.3
Vermaak, D.4
-
87
-
-
0032574977
-
Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex
-
Nan X, Ng HH, Johnson CA, Laherty CD, et al. 1998. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393: 386-9.
-
(1998)
Nature
, vol.393
, pp. 386-389
-
-
Nan, X.1
Ng, H.H.2
Johnson, C.A.3
Laherty, C.D.4
-
88
-
-
8644278033
-
Binding to nonmethylated CpG DNA is essential for target recognition, transactivation, and myeloid transformation by an MLL oncoprotein
-
Ayton PM, Chen EH, Cleary ML. 2004. Binding to nonmethylated CpG DNA is essential for target recognition, transactivation, and myeloid transformation by an MLL oncoprotein. Mol Cell Biol 24: 10470-8.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 10470-10478
-
-
Ayton, P.M.1
Chen, E.H.2
Cleary, M.L.3
-
89
-
-
0037082439
-
The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation
-
Birke M, Schreiner S, Garcia-Cuellar MP, Mahr K, et al. 2002. The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation. Nucleic Acids Res 30: 958-65.
-
(2002)
Nucleic Acids Res
, vol.30
, pp. 958-965
-
-
Birke, M.1
Schreiner, S.2
Garcia-Cuellar, M.P.3
Mahr, K.4
-
90
-
-
18744373853
-
MLL targets SET domain methyltransferase activity to Hox gene promoters
-
Milne TA, Briggs SD, Brock HW, Martin ME, et al. 2002. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 10: 1107-17.
-
(2002)
Mol Cell
, vol.10
, pp. 1107-1117
-
-
Milne, T.A.1
Briggs, S.D.2
Brock, H.W.3
Martin, M.E.4
-
91
-
-
33646230318
-
Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll
-
Terranova R, Agherbi H, Boned A, Meresse S, et al. 2006. Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll. Proc Natl Acad Sci USA 103: 6629-34.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 6629-6634
-
-
Terranova, R.1
Agherbi, H.2
Boned, A.3
Meresse, S.4
-
92
-
-
77950882645
-
CpG islands recruit a histone H3 lysine 36 demethylase
-
Blackledge NP, Zhou JC, Tolstorukov MY, Farcas AM, et al. 2010. CpG islands recruit a histone H3 lysine 36 demethylase. Mol Cell 38: 179-90.
-
(2010)
Mol Cell
, vol.38
, pp. 179-190
-
-
Blackledge, N.P.1
Zhou, J.C.2
Tolstorukov, M.Y.3
Farcas, A.M.4
-
93
-
-
32844454603
-
Histone demethylation by a family of JmjC domain-containing proteins
-
Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, et al. 2006. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439: 811-6.
-
(2006)
Nature
, vol.439
, pp. 811-816
-
-
Tsukada, Y.1
Fang, J.2
Erdjument-Bromage, H.3
Warren, M.E.4
-
94
-
-
29244438472
-
CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex
-
Lee JH, Skalnik DG. 2005. CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J Biol Chem 280: 41725-31.
-
(2005)
J Biol Chem
, vol.280
, pp. 41725-41731
-
-
Lee, J.H.1
Skalnik, D.G.2
-
95
-
-
34250352746
-
Identification and characterization of the human Set1B histone H3-Lys4 methyltransferase complex
-
Lee JH, Tate CM, You JS, Skalnik DG. 2007. Identification and characterization of the human Set1B histone H3-Lys4 methyltransferase complex. J Biol Chem 282: 13419-28.
-
(2007)
J Biol Chem
, vol.282
, pp. 13419-13428
-
-
Lee, J.H.1
Tate, C.M.2
You, J.S.3
Skalnik, D.G.4
-
96
-
-
84872953223
-
TET2 promotes histone O-GlcNAcylation during gene transcription
-
Chen Q, Chen Y, Bian C, Fujiki R, et al. 2013. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 493: 561-4.
-
(2013)
Nature
, vol.493
, pp. 561-564
-
-
Chen, Q.1
Chen, Y.2
Bian, C.3
Fujiki, R.4
-
97
-
-
84875218124
-
TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS
-
Deplus R, Delatte B, Schwinn MK, Defrance M, et al. 2013. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J 32: 645-55.
-
(2013)
EMBO J
, vol.32
, pp. 645-655
-
-
Deplus, R.1
Delatte, B.2
Schwinn, M.K.3
Defrance, M.4
-
98
-
-
84874266225
-
Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells
-
Vella P, Scelfo A, Jammula S, Chiacchiera F, et al. 2013. Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells. Mol Cell 49: 645-56.
-
(2013)
Mol Cell
, vol.49
, pp. 645-656
-
-
Vella, P.1
Scelfo, A.2
Jammula, S.3
Chiacchiera, F.4
-
99
-
-
84880530231
-
Ten-eleven translocation 1 (tet1) is regulated by O-linked N-acetylglucosamine transferase (ogt) for target gene repression in mouse embryonic stem cells
-
Shi FT, Kim H, Lu W, He Q, et al. 2013. Ten-eleven translocation 1 (tet1) is regulated by O-linked N-acetylglucosamine transferase (ogt) for target gene repression in mouse embryonic stem cells. J Biol Chem 288: 20776-84.
-
(2013)
J Biol Chem
, vol.288
, pp. 20776-20784
-
-
Shi, F.T.1
Kim, H.2
Lu, W.3
He, Q.4
-
100
-
-
67650076327
-
Essential role of the glycosyltransferase sxc/Ogt in polycomb repression
-
Gambetta MC, Oktaba K, Muller J. 2009. Essential role of the glycosyltransferase sxc/Ogt in polycomb repression. Science 325: 93-6.
-
(2009)
Science
, vol.325
, pp. 93-96
-
-
Gambetta, M.C.1
Oktaba, K.2
Muller, J.3
-
101
-
-
0030959555
-
Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats
-
Kreppel LK, Blomberg MA, Hart GW. 1997. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem 272: 9308-15.
-
(1997)
J Biol Chem
, vol.272
, pp. 9308-9315
-
-
Kreppel, L.K.1
Blomberg, M.A.2
Hart, G.W.3
-
102
-
-
84869087517
-
Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation
-
Rothbart SB, Krajewski K, Nady N, Tempel W, et al. 2012. Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol 19: 1155-60.
-
(2012)
Nat Struct Mol Biol
, vol.19
, pp. 1155-1160
-
-
Rothbart, S.B.1
Krajewski, K.2
Nady, N.3
Tempel, W.4
-
103
-
-
33646008874
-
N6-methyl-adenine: an epigenetic signal for DNA-protein interactions
-
Wion D, Casadesus J. 2006. N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nat Rev Microbiol 4: 183-92.
-
(2006)
Nat Rev Microbiol
, vol.4
, pp. 183-192
-
-
Wion, D.1
Casadesus, J.2
-
104
-
-
53849113697
-
Base J: discovery, biosynthesis, and possible functions
-
Borst P, Sabatini R. 2008. Base J: discovery, biosynthesis, and possible functions. Annu Rev Microbiol 62: 235-51.
-
(2008)
Annu Rev Microbiol
, vol.62
, pp. 235-251
-
-
Borst, P.1
Sabatini, R.2
|