메뉴 건너뛰기




Volumn 12, Issue 4, 2011, Pages 682-694

Inferring the time-invariant topology of a nonlinear sparse gene regulatory network using fully Bayesian spline autoregression

Author keywords

Circadian clock; Gibbs variable selection; Markov process prior; Nonlinear gene regulatory networks; P Splines regression; Time course gene expression data

Indexed keywords

ALGORITHM; ARABIDOPSIS; ARTICLE; BAYES THEOREM; BIOLOGICAL MODEL; BIOSTATISTICS; CIRCADIAN RHYTHM; DNA MICROARRAY; GENE REGULATORY NETWORK; GENETICS; NONLINEAR SYSTEM; PLANT GENOME; PROBABILITY; STATISTICAL MODEL; STATISTICS;

EID: 80052699490     PISSN: 14654644     EISSN: 14684357     Source Type: Journal    
DOI: 10.1093/biostatistics/kxr009     Document Type: Article
Times cited : (31)

References (20)
  • 2
    • 0002463166 scopus 로고
    • Nonparametric spline regression with prior information
    • ANSLEY, C. F., KOHN, R. AND WONG, C. M. (1993). Nonparametric spline regression with prior information. Biometrika 80, 75-88.
    • (1993) Biometrika , vol.80 , pp. 75-88
    • Ansley, C.F.1    Kohn, R.2    Wong, C.M.3
  • 5
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties
    • EILERS, P. H. C. AND MARX, B. D. (1996). Flexible smoothing using B-splines and penalised likelihood (with discussion). Statistical Science 11, 89-121. (Pubitemid 126706128)
    • (1996) Statistical Science , vol.11 , Issue.2 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 7
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines (with discussion)
    • FRIEDMAN, J. H. (1991). Multivariate adaptive regression splines (with discussion). The Annals of Statistics 19, 1-141.
    • (1991) The Annals of Statistics , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 9
    • 27644508196 scopus 로고    scopus 로고
    • Constructing and analyzing a large-scale gene-to-gene regulatory network-lasso-constrained inference and biological validation
    • DOI 10.1109/TCBB.2005.35
    • GUSTAFSSON, M., ḦORQUIST, M. AND LOMBARDI, A. (2005). Constructing and analysing a large-scale geneto-gene regulatory network-Lasso-constrained inference and biological validation. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2, 254-261. (Pubitemid 41560417)
    • (2005) IEEE/ACM Transactions on Computational Biology and Bioinformatics , vol.2 , Issue.3 , pp. 254-261
    • Gustafsson, M.1    Hornquist, M.2    Lombardi, A.3
  • 10
    • 33751018838 scopus 로고    scopus 로고
    • Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models
    • DOI 10.1016/j.csda.2006.09.027, PII S0167947306003549
    • JULLION, A. AND LAMBERT, P. (2007). Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models. Computational Statistics & Data Analysis 51, 2542-2558. (Pubitemid 44751263)
    • (2007) Computational Statistics and Data Analysis , vol.51 , Issue.5 , pp. 2542-2558
    • Jullion, A.1    Lambert, P.2
  • 11
    • 3042738945 scopus 로고    scopus 로고
    • Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
    • DOI 10.1016/j.biosystems.2004.03.004, PII S0303264704000383
    • KIM, S. Y., IMOTO, S. AND MIYANO, S. (2004). Dynamic Bayesian network and nonparametric regression for nonlinear modelling of gene networks from time series gene expression data. Biosystems 75, 57-65. (Pubitemid 38887551)
    • (2004) BioSystems , vol.75 , Issue.1-3 , pp. 57-65
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 15
    • 0036921633 scopus 로고    scopus 로고
    • Selecting the number of knots for penalized splines
    • DOI 10.1198/106186002321018768
    • RUPPERT, D. (2002). Selecting the number of knots for penalised splines. Journal of Computational and Graphical Statistics 11, 735-757. (Pubitemid 36047103)
    • (2002) Journal of Computational and Graphical Statistics , vol.11 , Issue.4 , pp. 735-757
    • Ruppert, D.1
  • 16
    • 67650727380 scopus 로고    scopus 로고
    • Hub genes with positive feedbacks function as master switches in developmental gene regulatory networks
    • SEO, C. H., KIM, J. R., KIM, M. S. AND CHO, K. H. (2009). Hub genes with positive feedbacks function as master switches in developmental gene regulatory networks. Bioinformatics 25, 1898-1904.
    • (2009) Bioinformatics , vol.25 , pp. 1898-1904
    • Seo, C.H.1    Kim, J.R.2    Kim, M.S.3    Cho, K.H.4
  • 17
    • 0000824232 scopus 로고    scopus 로고
    • Nonparametric regression using Bayesian variable selection
    • DOI 10.1016/0304-4076(95)01763-1
    • SMITH, M. AND KOHN, R. (1996). Nonparametric regression using Bayesian variable selection. Journal of Econometrics 75, 317-343. (Pubitemid 126372818)
    • (1996) Journal of Econometrics , vol.75 , Issue.2 , pp. 317-343
    • Smith, M.1    Kohn, R.2
  • 18
    • 49149090681 scopus 로고    scopus 로고
    • Bayesian hierarchical linear mixed models for additive smoothing splines
    • SUN, D. AND SPECKMAN, P. (2008). Bayesian hierarchical linear mixed models for additive smoothing splines. Annals of the Institute of Statistical Mathematics 60, 499-517.
    • (2008) Annals of the Institute of Statistical Mathematics , vol.60 , pp. 499-517
    • Sun, D.1    Speckman, P.2
  • 20
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • ZOU, M. AND CONZEN, S. D. (2005). A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21, 71-79.
    • (2005) Bioinformatics , vol.21 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.