-
1
-
-
70449375094
-
Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics
-
Äijö, T. and Lähdesmä ki, H. (2009) Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics. Bioinformatics, 25, 2937-2944.
-
(2009)
Bioinformatics
, vol.25
, pp. 2937-2944
-
-
Äijö, T.1
Lähdesmä, I.H.2
-
2
-
-
70449368364
-
A boosting approach to structure learning of graphs with and without prior knowledge
-
Anjum, S. et al. (2009) A boosting approach to structure learning of graphs with and without prior knowledge. Bioinformatics, 25, 2929-2936.
-
(2009)
Bioinformatics
, vol.25
, pp. 2929-2936
-
-
Anjum, S.1
-
3
-
-
33847055114
-
How to infer gene networks from expression profiles
-
Bansal, M. et al. (2007) How to infer gene networks from expression profiles. Mol. Syst. Biol., 3, 78.
-
(2007)
Mol. Syst. Biol.
, vol.3
, pp. 78
-
-
Bansal, M.1
-
4
-
-
80053456365
-
Semi-supervised penalized output kernel regression for link prediction
-
Brouard, C. et al. (2011) Semi-supervised Penalized Output Kernel Regression for Link Prediction. ICML-11, 593-600.
-
(2011)
ICML
, vol.11
, pp. 593-600
-
-
Brouard, C.1
-
5
-
-
0043245810
-
Boosting with the L2 loss
-
Bühlmann, P. and Yu, B. (2003) Boosting with the L2 loss. J. Am. Stat. Assoc., 98, 324-339.
-
(2003)
J. Am. Stat. Assoc.
, vol.98
, pp. 324-339
-
-
Bühlmann, P.1
Yu, B.2
-
6
-
-
8644281106
-
A common set of gene regulatory networks links metabolism and growth inhibition
-
Cam, H. et al. (2004) A common set of gene regulatory networks links metabolism and growth inhibition. Mol. Cell, 16, 399-411.
-
(2004)
Mol. Cell
, vol.16
, pp. 399-411
-
-
Cam, H.1
-
7
-
-
63049128934
-
A yeast synthetic network for in vivo assessment of reverseengineering and modeling approaches
-
Cantone, I. et al. (2009) A yeast synthetic network for in vivo assessment of reverseengineering and modeling approaches. Cell, 137, 172-181.
-
(2009)
Cell
, vol.137
, pp. 172-181
-
-
Cantone, I.1
-
8
-
-
48849098893
-
Universal multitask kernels
-
Caponnetto, A. et al. (2008) Universal multitask kernels. J. Mach. Learn. Res., 9, 1615-1646.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 1615-1646
-
-
Caponnetto, A.1
-
9
-
-
80053403826
-
Ensemble methods in machine learning
-
Springer London UK
-
Dietterich, T.G. (2000) Ensemble methods in machine learning. In: Multiple Classifier Systems. Springer, London, UK, pp. 1-15.
-
(2000)
Multiple Classifier Systems
, pp. 1-15
-
-
Dietterich, T.G.1
-
11
-
-
35748964479
-
Modeling gene expression regulatory networks with the sparse vector autoregressive model
-
Fujita, A. et al. (2007)Modeling gene expression regulatory networks with the sparse vector autoregressive model. BMC Syst. Biol., 1, 39.
-
(2007)
BMC Syst. Biol.
, vol.1
, pp. 39
-
-
Fujita, A.1
-
12
-
-
34547970262
-
Gradient boosting for kernelized output spaces
-
Geurts, P. et al. (2007) Gradient boosting for kernelized output spaces. ICML, 289-296.
-
(2007)
ICML
, pp. 289-296
-
-
Geurts, P.1
-
13
-
-
33745040304
-
Siva-1 negatively regulates NF-kappaB activity: Effect on T-cell receptor-mediated activation-induced cell death (AICD)
-
Gudi, R. et al. (2006) Siva-1 negatively regulates NF-kappaB activity: effect on T-cell receptor-mediated activation-induced cell death (AICD). Oncogene, 25, 3458-3462.
-
(2006)
Oncogene
, vol.25
, pp. 3458-3462
-
-
Gudi, R.1
-
14
-
-
79953871120
-
A computational framework for gene regulatory network inference that combines multiple methods and datasets
-
Gupta, R. et al. (2011) A computational framework for gene regulatory network inference that combines multiple methods and datasets. BMC Syst. Biol., 5, 52.
-
(2011)
BMC Syst. Biol.
, vol.5
, pp. 52
-
-
Gupta, R.1
-
15
-
-
77958570788
-
Inferring regulatory networks from expression data using tree-based methods
-
Huynh-Thu, V.A. et al. (2010) Inferring regulatory networks from expression data using tree-based methods. PLoS One, 5, e12776.
-
(2010)
PLoS One
, vol.5
-
-
Huynh-Thü, V.A.1
-
16
-
-
77957745068
-
Gene regulatory network reveals oxidative stress as the underlying molecular mechanism of type 2 diabetes and hypertension
-
Jesmin, J. et al. (2010) Gene regulatory network reveals oxidative stress as the underlying molecular mechanism of type 2 diabetes and hypertension. BMC Med. Genomics, 3, 45.
-
(2010)
BMC Med. Genomics
, vol.3
, pp. 45
-
-
Jesmin, J.1
-
17
-
-
80053442119
-
Nonlinear functional regression: A functional RKHS approach
-
Kadri, H. et al. (2010) Nonlinear functional regression: a functional RKHS approach. J. Mach. Learn. Res., 9, 374-380.
-
(2010)
J. Mach. Learn. Res.
, vol.9
, pp. 374-380
-
-
Kadri, H.1
-
18
-
-
85083869606
-
Network discovery using nonlinear nonparametric modeling with operator-valued kernels
-
Online proceedings of Object, functional and structured data: towards next generation kernel-based methods June 30 2012, Edinburgh, UK
-
Lim, N. et al. (2012) Network discovery using nonlinear nonparametric modeling with operator-valued kernels. Online proceedings of Object, functional and structured data: towards next generation kernel-based methods. In ICML 2012 Workshop, June 30, 2012, Edinburgh, UK.
-
(2012)
ICML 2012 Workshop
-
-
Lim, N.1
-
19
-
-
44849115170
-
A novel mutation in NFKBIA/IKBA results in a degradation-resistant N-truncated protein and is associated with ectodermal dysplasia with immunodeficiency
-
Lopez-Granados, E. et al. (2008) A novel mutation in NFKBIA/IKBA results in a degradation-resistant N-truncated protein and is associated with ectodermal dysplasia with immunodeficiency. Hum. Mutat., 29, 861-868.
-
(2008)
Hum. Mutat.
, vol.29
, pp. 861-868
-
-
Lopez-Granados, E.1
-
20
-
-
59649110273
-
Generating realistic in silico gene networks for performance assessment of reverse engineering
-
Marbach, D. et al. (2009) Generating realistic in silico gene networks for performance assessment of reverse engineering. J. Comput. Biol., 16, 229-239.
-
(2009)
J. Comput. Biol.
, vol.16
, pp. 229-239
-
-
Marbach, D.1
-
21
-
-
77950910419
-
Revealing strengths and weaknesses of methods for gene network inference
-
Marbach, D. et al. (2010) Revealing strengths and weaknesses of methods for gene network inference. Proc. Natl Acad. Sci. USA, 107, 6286-6291.
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 6286-6291
-
-
Marbach, D.1
-
22
-
-
38449088751
-
Inferring cellular networks - A review
-
Markowetz, F. and Spang, R. (2007) Inferring cellular networks - a review. BMC Bioinformatics, 8 (Suppl. 6), S5.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.SUPPL. 6
-
-
Markowetz, F.1
Spang, R.2
-
24
-
-
14544299611
-
On learning vector-valued functions
-
Micchelli, C.A. and Pontil, M. (2005) On learning vector-valued functions. Neural Comput., 17, 177-204.
-
(2005)
Neural Comput.
, vol.17
, pp. 177-204
-
-
Micchelli, C.A.1
Pontil, M.2
-
25
-
-
77956537377
-
On reverse engineering of gene interaction networks using time course data with repeated measurements
-
Morrissey, E.R. et al. (2010) On reverse engineering of gene interaction networks using time course data with repeated measurements. Bioinformatics, 26, 2305-2312.
-
(2010)
Bioinformatics
, vol.26
, pp. 2305-2312
-
-
Morrissey, E.R.1
-
26
-
-
0034548863
-
MHC class II and c-kit expression allows rapid enrichment of T-cell progenitors from total bone marrow cells
-
Ody, C. et al. (2000) MHC class II and c-kit expression allows rapid enrichment of T-cell progenitors from total bone marrow cells. Blood, 96, 3988-3990.
-
(2000)
Blood
, vol.96
, pp. 3988-3990
-
-
Ody, C.1
-
27
-
-
4143058645
-
Gene networks inference using dynamic Bayesian networks
-
Perrin, B. et al. (2003) Gene networks inference using dynamic Bayesian networks. Bioinformatics, 19 (Suppl. 2), II138-II148.
-
(2003)
Bioinformatics
, vol.19
, Issue.SUPPL. 2
-
-
Perrin, B.1
-
28
-
-
0004188510
-
-
Springer-Verlag New York
-
Politis, D.N. et al. (1999) Subsampling. Springer-Verlag, New York.
-
(1999)
Subsampling
-
-
Politis, D.N.1
-
29
-
-
77949644952
-
Towards a rigorous assessment of systems biology models: The DREAM3 challenges
-
Prill, R.J. et al. (2010) Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PLoS One, 5, e9202.
-
(2010)
PLoS One
, vol.5
-
-
Prill, R.J.1
-
30
-
-
3142744689
-
Modeling T-cell activation using gene expression profiling and state-space models
-
Rangel, C. et al. (2004) Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics, 20, 1361-1372.
-
(2004)
Bioinformatics
, vol.20
, pp. 1361-1372
-
-
Rangel, C.1
-
33
-
-
77953107844
-
Penalized likelihood methods for estimation of sparse high dimensional directed acyclic graphs
-
Shojaie, A. and Michailidis, G. (2010a) Penalized likelihood methods for estimation of sparse high dimensional directed acyclic graphs. Biometrika, 97, 519-538.
-
(2010)
Biometrika
, vol.97
, pp. 519-538
-
-
Shojaie, A.1
Michailidis, G.2
-
34
-
-
77956514067
-
Discovering graphical granger causality using a truncating lasso penalty
-
Shojaie, A. andMichailidis, G. (2010b) Discovering graphical granger causality using a truncating lasso penalty. Bioinformatics, 26, i517-i523.
-
(2010)
Bioinformatics
, vol.26
-
-
Shojaie, A.1
Michailidis, G.2
-
35
-
-
77649176945
-
Comparison of evolutionary algorithms in gene regulatory network model inference
-
Sîrbu, A. et al. (2010) Comparison of evolutionary algorithms in gene regulatory network model inference. BMC Bioinformatics, 11, 59.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 59
-
-
Sîrbü, A.1
-
36
-
-
77957110013
-
Advantages and limitations of current network inference methods
-
Smet, R.D. and Marchal, K. (2010) Advantages and limitations of current network inference methods. Nat. Rev. Microbiol., 8, 717-729.
-
(2010)
Nat. Rev. Microbiol.
, vol.8
, pp. 717-729
-
-
Smet, R.D.1
Marchal, K.2
-
37
-
-
36249019789
-
Dialogue on reverse-engineering assessment and methods: The dream of high-throughput pathway inference
-
Stolovitzky, G. et al. (2007) Dialogue on reverse-engineering assessment and methods: the dream of high-throughput pathway inference. Ann. N Y Acad. Sci., 1115, 1-22.
-
(2007)
Ann. N y Acad. Sci.
, vol.1115
, pp. 1-22
-
-
Stolovitzky, G.1
-
38
-
-
77749264188
-
Improved reconstruction of in silico gene regulatory networks by integrating knockout and perturbation data
-
Yip, K.Y. et al. (2010) Improved reconstruction of in silico gene regulatory networks by integrating knockout and perturbation data. PLoS One, 5, e8121.
-
(2010)
PLoS One
, vol.5
-
-
Yip, K.Y.1
-
39
-
-
12344259602
-
Advances to Bayesian network inference for generating causal networks from observational biological data
-
Yu, J. et al. (2004) Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics, 20, 3594-3603.
-
(2004)
Bioinformatics
, vol.20
, pp. 3594-3603
-
-
Yu, J.1
|