메뉴 건너뛰기




Volumn 29, Issue 11, 2013, Pages 1416-1423

OKVAR-Boost: A novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; BIOLOGICAL MODEL; COMPUTER SIMULATION; GENE REGULATORY NETWORK; IMMUNOLOGY; NONLINEAR SYSTEM; T LYMPHOCYTE;

EID: 84878285220     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btt167     Document Type: Article
Times cited : (26)

References (39)
  • 1
    • 70449375094 scopus 로고    scopus 로고
    • Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics
    • Äijö, T. and Lähdesmä ki, H. (2009) Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics. Bioinformatics, 25, 2937-2944.
    • (2009) Bioinformatics , vol.25 , pp. 2937-2944
    • Äijö, T.1    Lähdesmä, I.H.2
  • 2
    • 70449368364 scopus 로고    scopus 로고
    • A boosting approach to structure learning of graphs with and without prior knowledge
    • Anjum, S. et al. (2009) A boosting approach to structure learning of graphs with and without prior knowledge. Bioinformatics, 25, 2929-2936.
    • (2009) Bioinformatics , vol.25 , pp. 2929-2936
    • Anjum, S.1
  • 3
    • 33847055114 scopus 로고    scopus 로고
    • How to infer gene networks from expression profiles
    • Bansal, M. et al. (2007) How to infer gene networks from expression profiles. Mol. Syst. Biol., 3, 78.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 78
    • Bansal, M.1
  • 4
    • 80053456365 scopus 로고    scopus 로고
    • Semi-supervised penalized output kernel regression for link prediction
    • Brouard, C. et al. (2011) Semi-supervised Penalized Output Kernel Regression for Link Prediction. ICML-11, 593-600.
    • (2011) ICML , vol.11 , pp. 593-600
    • Brouard, C.1
  • 5
    • 0043245810 scopus 로고    scopus 로고
    • Boosting with the L2 loss
    • Bühlmann, P. and Yu, B. (2003) Boosting with the L2 loss. J. Am. Stat. Assoc., 98, 324-339.
    • (2003) J. Am. Stat. Assoc. , vol.98 , pp. 324-339
    • Bühlmann, P.1    Yu, B.2
  • 6
    • 8644281106 scopus 로고    scopus 로고
    • A common set of gene regulatory networks links metabolism and growth inhibition
    • Cam, H. et al. (2004) A common set of gene regulatory networks links metabolism and growth inhibition. Mol. Cell, 16, 399-411.
    • (2004) Mol. Cell , vol.16 , pp. 399-411
    • Cam, H.1
  • 7
    • 63049128934 scopus 로고    scopus 로고
    • A yeast synthetic network for in vivo assessment of reverseengineering and modeling approaches
    • Cantone, I. et al. (2009) A yeast synthetic network for in vivo assessment of reverseengineering and modeling approaches. Cell, 137, 172-181.
    • (2009) Cell , vol.137 , pp. 172-181
    • Cantone, I.1
  • 8
    • 48849098893 scopus 로고    scopus 로고
    • Universal multitask kernels
    • Caponnetto, A. et al. (2008) Universal multitask kernels. J. Mach. Learn. Res., 9, 1615-1646.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1615-1646
    • Caponnetto, A.1
  • 9
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Springer London UK
    • Dietterich, T.G. (2000) Ensemble methods in machine learning. In: Multiple Classifier Systems. Springer, London, UK, pp. 1-15.
    • (2000) Multiple Classifier Systems , pp. 1-15
    • Dietterich, T.G.1
  • 11
    • 35748964479 scopus 로고    scopus 로고
    • Modeling gene expression regulatory networks with the sparse vector autoregressive model
    • Fujita, A. et al. (2007)Modeling gene expression regulatory networks with the sparse vector autoregressive model. BMC Syst. Biol., 1, 39.
    • (2007) BMC Syst. Biol. , vol.1 , pp. 39
    • Fujita, A.1
  • 12
    • 34547970262 scopus 로고    scopus 로고
    • Gradient boosting for kernelized output spaces
    • Geurts, P. et al. (2007) Gradient boosting for kernelized output spaces. ICML, 289-296.
    • (2007) ICML , pp. 289-296
    • Geurts, P.1
  • 13
    • 33745040304 scopus 로고    scopus 로고
    • Siva-1 negatively regulates NF-kappaB activity: Effect on T-cell receptor-mediated activation-induced cell death (AICD)
    • Gudi, R. et al. (2006) Siva-1 negatively regulates NF-kappaB activity: effect on T-cell receptor-mediated activation-induced cell death (AICD). Oncogene, 25, 3458-3462.
    • (2006) Oncogene , vol.25 , pp. 3458-3462
    • Gudi, R.1
  • 14
    • 79953871120 scopus 로고    scopus 로고
    • A computational framework for gene regulatory network inference that combines multiple methods and datasets
    • Gupta, R. et al. (2011) A computational framework for gene regulatory network inference that combines multiple methods and datasets. BMC Syst. Biol., 5, 52.
    • (2011) BMC Syst. Biol. , vol.5 , pp. 52
    • Gupta, R.1
  • 15
    • 77958570788 scopus 로고    scopus 로고
    • Inferring regulatory networks from expression data using tree-based methods
    • Huynh-Thu, V.A. et al. (2010) Inferring regulatory networks from expression data using tree-based methods. PLoS One, 5, e12776.
    • (2010) PLoS One , vol.5
    • Huynh-Thü, V.A.1
  • 16
    • 77957745068 scopus 로고    scopus 로고
    • Gene regulatory network reveals oxidative stress as the underlying molecular mechanism of type 2 diabetes and hypertension
    • Jesmin, J. et al. (2010) Gene regulatory network reveals oxidative stress as the underlying molecular mechanism of type 2 diabetes and hypertension. BMC Med. Genomics, 3, 45.
    • (2010) BMC Med. Genomics , vol.3 , pp. 45
    • Jesmin, J.1
  • 17
    • 80053442119 scopus 로고    scopus 로고
    • Nonlinear functional regression: A functional RKHS approach
    • Kadri, H. et al. (2010) Nonlinear functional regression: a functional RKHS approach. J. Mach. Learn. Res., 9, 374-380.
    • (2010) J. Mach. Learn. Res. , vol.9 , pp. 374-380
    • Kadri, H.1
  • 18
    • 85083869606 scopus 로고    scopus 로고
    • Network discovery using nonlinear nonparametric modeling with operator-valued kernels
    • Online proceedings of Object, functional and structured data: towards next generation kernel-based methods June 30 2012, Edinburgh, UK
    • Lim, N. et al. (2012) Network discovery using nonlinear nonparametric modeling with operator-valued kernels. Online proceedings of Object, functional and structured data: towards next generation kernel-based methods. In ICML 2012 Workshop, June 30, 2012, Edinburgh, UK.
    • (2012) ICML 2012 Workshop
    • Lim, N.1
  • 19
    • 44849115170 scopus 로고    scopus 로고
    • A novel mutation in NFKBIA/IKBA results in a degradation-resistant N-truncated protein and is associated with ectodermal dysplasia with immunodeficiency
    • Lopez-Granados, E. et al. (2008) A novel mutation in NFKBIA/IKBA results in a degradation-resistant N-truncated protein and is associated with ectodermal dysplasia with immunodeficiency. Hum. Mutat., 29, 861-868.
    • (2008) Hum. Mutat. , vol.29 , pp. 861-868
    • Lopez-Granados, E.1
  • 20
    • 59649110273 scopus 로고    scopus 로고
    • Generating realistic in silico gene networks for performance assessment of reverse engineering
    • Marbach, D. et al. (2009) Generating realistic in silico gene networks for performance assessment of reverse engineering. J. Comput. Biol., 16, 229-239.
    • (2009) J. Comput. Biol. , vol.16 , pp. 229-239
    • Marbach, D.1
  • 21
    • 77950910419 scopus 로고    scopus 로고
    • Revealing strengths and weaknesses of methods for gene network inference
    • Marbach, D. et al. (2010) Revealing strengths and weaknesses of methods for gene network inference. Proc. Natl Acad. Sci. USA, 107, 6286-6291.
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 6286-6291
    • Marbach, D.1
  • 22
    • 38449088751 scopus 로고    scopus 로고
    • Inferring cellular networks - A review
    • Markowetz, F. and Spang, R. (2007) Inferring cellular networks - a review. BMC Bioinformatics, 8 (Suppl. 6), S5.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 6
    • Markowetz, F.1    Spang, R.2
  • 24
    • 14544299611 scopus 로고    scopus 로고
    • On learning vector-valued functions
    • Micchelli, C.A. and Pontil, M. (2005) On learning vector-valued functions. Neural Comput., 17, 177-204.
    • (2005) Neural Comput. , vol.17 , pp. 177-204
    • Micchelli, C.A.1    Pontil, M.2
  • 25
    • 77956537377 scopus 로고    scopus 로고
    • On reverse engineering of gene interaction networks using time course data with repeated measurements
    • Morrissey, E.R. et al. (2010) On reverse engineering of gene interaction networks using time course data with repeated measurements. Bioinformatics, 26, 2305-2312.
    • (2010) Bioinformatics , vol.26 , pp. 2305-2312
    • Morrissey, E.R.1
  • 26
    • 0034548863 scopus 로고    scopus 로고
    • MHC class II and c-kit expression allows rapid enrichment of T-cell progenitors from total bone marrow cells
    • Ody, C. et al. (2000) MHC class II and c-kit expression allows rapid enrichment of T-cell progenitors from total bone marrow cells. Blood, 96, 3988-3990.
    • (2000) Blood , vol.96 , pp. 3988-3990
    • Ody, C.1
  • 27
    • 4143058645 scopus 로고    scopus 로고
    • Gene networks inference using dynamic Bayesian networks
    • Perrin, B. et al. (2003) Gene networks inference using dynamic Bayesian networks. Bioinformatics, 19 (Suppl. 2), II138-II148.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 2
    • Perrin, B.1
  • 28
    • 0004188510 scopus 로고    scopus 로고
    • Springer-Verlag New York
    • Politis, D.N. et al. (1999) Subsampling. Springer-Verlag, New York.
    • (1999) Subsampling
    • Politis, D.N.1
  • 29
    • 77949644952 scopus 로고    scopus 로고
    • Towards a rigorous assessment of systems biology models: The DREAM3 challenges
    • Prill, R.J. et al. (2010) Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PLoS One, 5, e9202.
    • (2010) PLoS One , vol.5
    • Prill, R.J.1
  • 30
    • 3142744689 scopus 로고    scopus 로고
    • Modeling T-cell activation using gene expression profiling and state-space models
    • Rangel, C. et al. (2004) Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics, 20, 1361-1372.
    • (2004) Bioinformatics , vol.20 , pp. 1361-1372
    • Rangel, C.1
  • 33
    • 77953107844 scopus 로고    scopus 로고
    • Penalized likelihood methods for estimation of sparse high dimensional directed acyclic graphs
    • Shojaie, A. and Michailidis, G. (2010a) Penalized likelihood methods for estimation of sparse high dimensional directed acyclic graphs. Biometrika, 97, 519-538.
    • (2010) Biometrika , vol.97 , pp. 519-538
    • Shojaie, A.1    Michailidis, G.2
  • 34
    • 77956514067 scopus 로고    scopus 로고
    • Discovering graphical granger causality using a truncating lasso penalty
    • Shojaie, A. andMichailidis, G. (2010b) Discovering graphical granger causality using a truncating lasso penalty. Bioinformatics, 26, i517-i523.
    • (2010) Bioinformatics , vol.26
    • Shojaie, A.1    Michailidis, G.2
  • 35
    • 77649176945 scopus 로고    scopus 로고
    • Comparison of evolutionary algorithms in gene regulatory network model inference
    • Sîrbu, A. et al. (2010) Comparison of evolutionary algorithms in gene regulatory network model inference. BMC Bioinformatics, 11, 59.
    • (2010) BMC Bioinformatics , vol.11 , pp. 59
    • Sîrbü, A.1
  • 36
    • 77957110013 scopus 로고    scopus 로고
    • Advantages and limitations of current network inference methods
    • Smet, R.D. and Marchal, K. (2010) Advantages and limitations of current network inference methods. Nat. Rev. Microbiol., 8, 717-729.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 717-729
    • Smet, R.D.1    Marchal, K.2
  • 37
    • 36249019789 scopus 로고    scopus 로고
    • Dialogue on reverse-engineering assessment and methods: The dream of high-throughput pathway inference
    • Stolovitzky, G. et al. (2007) Dialogue on reverse-engineering assessment and methods: the dream of high-throughput pathway inference. Ann. N Y Acad. Sci., 1115, 1-22.
    • (2007) Ann. N y Acad. Sci. , vol.1115 , pp. 1-22
    • Stolovitzky, G.1
  • 38
    • 77749264188 scopus 로고    scopus 로고
    • Improved reconstruction of in silico gene regulatory networks by integrating knockout and perturbation data
    • Yip, K.Y. et al. (2010) Improved reconstruction of in silico gene regulatory networks by integrating knockout and perturbation data. PLoS One, 5, e8121.
    • (2010) PLoS One , vol.5
    • Yip, K.Y.1
  • 39
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • Yu, J. et al. (2004) Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics, 20, 3594-3603.
    • (2004) Bioinformatics , vol.20 , pp. 3594-3603
    • Yu, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.