메뉴 건너뛰기




Volumn , Issue , 2003, Pages 104-113

Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks

Author keywords

[No Author keywords available]

Indexed keywords

BIOASSAY; BIOINFORMATICS; ECONOMIC AND SOCIAL EFFECTS; ESTIMATION; GENE EXPRESSION; GENES; INTELLIGENT SYSTEMS; MICROARRAYS; MONTE CARLO METHODS; PROTEINS; YEAST;

EID: 84960432692     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CSB.2003.1227309     Document Type: Conference Paper
Times cited : (88)

References (48)
  • 1
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • T. Akutsu, S. Miyano and S. Kuhara. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pacific Symposium on Biocomputing, 4, 17-28, 1999.
    • (1999) Pacific Symposium on Biocomputing , vol.4 , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 2
    • 0033737840 scopus 로고    scopus 로고
    • Inferring qualitative relations in genetic networks and metabolic pathways
    • T. Akutsu, S. Miyano and S. Kuhara. Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics, 16, 727-734, 2000
    • (2000) Bioinformatics , vol.16 , pp. 727-734
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 4
    • 0642313001 scopus 로고    scopus 로고
    • A string pattern regression algorithm and its application to pattern discovery in long introns
    • H. Bannai, S. Inenaga, A. Shinohara, M. Takeda and S. Miyano. A string pattern regression algorithm and its application to pattern discovery in long introns. Genome Informatics, 13, 3-11, 2002.
    • (2002) Genome Informatics , vol.13 , pp. 3-11
    • Bannai, H.1    Inenaga, S.2    Shinohara, A.3    Takeda, M.4    Miyano, S.5
  • 5
    • 85026993300 scopus 로고    scopus 로고
    • BIND http://www.blueprint.org/
    • BIND
  • 6
    • 0035135420 scopus 로고    scopus 로고
    • Regulatory element detection using correlation with expression
    • H.J. Bussemaker,H. Li and E.D. Siggia. Regulatory element detection using correlation with expression. Nature Genetics, 27, 167-171, 2001.
    • (2001) Nature Genetics , vol.27 , pp. 167-171
    • Bussemaker, H.J.1    Li, H.2    Siggia, E.D.3
  • 8
    • 0002211373 scopus 로고
    • Approximate predictive likelihood
    • A.C. Davison. Approximate predictive likelihood. Biometrika, 73, 323-332, 1986.
    • (1986) Biometrika , vol.73 , pp. 323-332
    • Davison, A.C.1
  • 10
    • 84949748343 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from time-ordered gene expression data using differential equations
    • Proc. 5th International Conference on Discovery Science, Springer-Verlag
    • M.J.L. de Hoon, S. Imoto and S. Miyano. Inferring gene regulatory networks from time-ordered gene expression data using differential equations. Proc. 5th International Conference on Discovery Science, Lecture Note in Artificial Intelligence, 2534, Springer-Verlag, 267-274, 2002.
    • (2002) Lecture Note in Artificial Intelligence , vol.2534 , pp. 267-274
    • De Hoon, M.J.L.1    Imoto, S.2    Miyano, S.3
  • 11
    • 0043130707 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtilis using differential equations
    • M.J.L. de Hoon, S. Imoto, K. Kobayashi, N. Ogasawara and S. Miyano. Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtilis using differential equations. Pacific Symposium on Biocomputing, 8, 17-28, 2003.
    • (2003) Pacific Symposium on Biocomputing , vol.8 , pp. 17-28
    • De Hoon, M.J.L.1    Imoto, S.2    Kobayashi, K.3    Ogasawara, N.4    Miyano, S.5
  • 12
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties (with discussion)
    • P.H.C. Eilers and B. Marx. Flexible smoothing with B-splines and penalties (with discussion). Statistical Science, 11, 89-121, 1996.
    • (1996) Statistical Science , vol.11 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.2
  • 14
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian network to analyze expression data
    • N. Friedman, M. Linial, I. Nachman and D. Pe'er. Using Bayesian network to analyze expression data. J. Comp. Biol., 7, 601-620, 2000.
    • (2000) J. Comp. Biol. , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 16
    • 85026984291 scopus 로고    scopus 로고
    • GRID http://biodata.mshri.on.ca/grid/servlet/Index
    • GRID
  • 17
    • 0035221560 scopus 로고    scopus 로고
    • Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
    • A.J. Hartemink, D.K. Gifford, T.S. Jaakkola and R.A. Young. Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pacific Symposium on Biocomputing, 6, 422-433, 2001.
    • (2001) Pacific Symposium on Biocomputing , vol.6 , pp. 422-433
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 18
    • 0036366689 scopus 로고    scopus 로고
    • Combining location and expression data for principled discovery of genetic regulatory networkmodels
    • A.J. Hartemink, D.K. Gifford, T.S. Jaakkola and R.A. Young. Combining location and expression data for principled discovery of genetic regulatory networkmodels. Pacific Symposium on Biocomputing, 7, 437-449, 2002.
    • (2002) Pacific Symposium on Biocomputing , vol.7 , pp. 437-449
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 21
    • 0000801240 scopus 로고    scopus 로고
    • Discovering regulatory and signalling circuits in molecular interaction networks
    • ISMB 2002
    • T. Ideker, O. Ozier, B. Schwikowski and A.F. Siegel. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics, 18 (ISMB 2002), S233-S240, 2002.
    • (2002) Bioinformatics , vol.18 , pp. S233-S240
    • Ideker, T.1    Ozier, O.2    Schwikowski, B.3    Siegel, A.F.4
  • 22
    • 0036372453 scopus 로고    scopus 로고
    • Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression
    • S. Imoto, T. Goto and S. Miyano. Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. Pacific Symposium on Biocomputing, 7, 175-186, 2002.
    • (2002) Pacific Symposium on Biocomputing , vol.7 , pp. 175-186
    • Imoto, S.1    Goto, T.2    Miyano, S.3
  • 25
    • 84960366283 scopus 로고    scopus 로고
    • Selection of smoothing parameters in B-spline nonparametric regressionmodels using information criteria
    • in press
    • S. Imoto and S. Konishi. Selection of smoothing parameters in B-spline nonparametric regressionmodels using information criteria. Ann. Inst. Statist. Math., in press.
    • Ann. Inst. Statist. Math.
    • Imoto, S.1    Konishi, S.2
  • 28
    • 0035042776 scopus 로고    scopus 로고
    • A literature network of human genes for high-throughput analysis of gene expression
    • T.-K. Jenssen, A. L greid. J. Komorowski and E. Hovig. A literature network of human genes for high-throughput analysis of gene expression. Nature Genetics, 28, 21-28.
    • Nature Genetics , vol.28 , pp. 21-28
    • Jenssen, T.-K.1    Greid, A.L.2    Komorowski, J.3    Hovig, E.4
  • 29
    • 85026989023 scopus 로고    scopus 로고
    • KEGG http://www.genome.ad.jp/kegg/kegg2.html
    • KEGG
  • 30
    • 84958595689 scopus 로고    scopus 로고
    • Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
    • Proc. 1st International Workshop on Computational Methods in Systems Biology, Springer-Verlag
    • S. Kim, S. Imoto and S. Miyano. Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Proc. 1st International Workshop on Computational Methods in Systems Biology, Lecture Note in Computer Science, 2602, Springer-Verlag, 104-113, 2003.
    • (2003) Lecture Note in Computer Science , vol.2602 , pp. 104-113
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 34
    • 0035031110 scopus 로고    scopus 로고
    • Linking microarray data to the literature
    • D.R. Masys. Linking microarray data to the literature. Nature Genetics, 28, 9-10, 2001.
    • (2001) Nature Genetics , vol.28 , pp. 9-10
    • Masys, D.R.1
  • 37
    • 0344844807 scopus 로고    scopus 로고
    • Modelling regulatory pathways in E. coli from time series expression profiles
    • ISMB2002
    • I.M. Ong, J.D. Glasner and D. Page. Modelling regulatory pathways in E. coli from time series expression profiles. Bioinformatics, 18 (ISMB2002), S241-S248, 2002.
    • (2002) Bioinformatics , vol.18 , pp. S241-S248
    • Ong, I.M.1    Glasner, J.D.2    Page, D.3
  • 38
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • ISMB 2001
    • D. Pe'er, A. Regev, G. Elidan and N. Friedman. Inferring subnetworks from perturbed expression profiles. Bioinformatics, 17 (ISMB 2001), S215-S224, 2001.
    • (2001) Bioinformatics , vol.17 , pp. S215-S224
    • Pe'er, D.1    Regev, A.2    Elidan, G.3    Friedman, N.4
  • 39
    • 0034785443 scopus 로고    scopus 로고
    • Identifying regulatory networks by combinatorial analysis of promoter elements
    • Y. Pilpel, P. Sudarsanam and G.M. Church. Identifying regulatory networks by combinatorial analysis of promoter elements. Nature Genetics, 29, 153-9, 2001.
    • (2001) Nature Genetics , vol.29 , pp. 153-159
    • Pilpel, Y.1    Sudarsanam, P.2    Church, G.M.3
  • 40
    • 0036898577 scopus 로고    scopus 로고
    • Microarray data normalization and transformation
    • J. Quackenbush. Microarray data normalization and transformation. Nature Genetics, 32, 496-501, 2002.
    • (2002) Nature Genetics , vol.32 , pp. 496-501
    • Quackenbush, J.1
  • 41
    • 85026990090 scopus 로고    scopus 로고
    • SCPD http://cgsigma.cshl.org/jian/
    • SCPD
  • 43
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
    • I. Shmulevich, E.R. Dougherty, S. Kim andW. Zhang. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18, 261-274, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 44
    • 0000042837 scopus 로고    scopus 로고
    • Evaluating functional network inference using simulations of complex biological systems
    • ISMB 2002
    • V.A. Smith, E.D. Jarvis and A.J. Hartemink. Evaluating functional network inference using simulations of complex biological systems. Bioinformatics, 18 (ISMB 2002), S216-S224, 2002.
    • (2002) Bioinformatics , vol.18 , pp. S216-S224
    • Smith, V.A.1    Jarvis, E.D.2    Hartemink, A.J.3
  • 45
    • 3242891560 scopus 로고    scopus 로고
    • Estimating gene networks from gene expression data by combining Bayesian networkmodel with promoter element detection
    • (ECCB 2003), in press
    • Y. Tamada, S. Kim, H. Bannai, S. Imoto K. Tashiro, S. Kuhara and S.Miyano. Estimating gene networks from gene expression data by combining Bayesian networkmodel with promoter element detection. Bioinformatics, (ECCB 2003), in press.
    • Bioinformatics
    • Tamada, Y.1    Kim, S.2    Bannai, H.3    Imoto, S.4    Tashiro, K.5    Kuhara, S.6    Miyano, S.7
  • 46
    • 84950871099 scopus 로고
    • Accurate approximations for posterior moments and marginal densities
    • L. Tinerey and J.B. Kadane. Accurate approximations for posterior moments and marginal densities. J. Amer. Statist. Assoc., 81, 82-86, 1986.
    • (1986) J. Amer. Statist. Assoc. , vol.81 , pp. 82-86
    • Tinerey, L.1    Kadane, J.B.2
  • 47
    • 85026994830 scopus 로고    scopus 로고
    • YPD http://www.incyte.com/sequence/proteome/databases/YPD.shtml
    • YPD
  • 48
    • 85026993388 scopus 로고    scopus 로고
    • YTF http://biochemie.web.med.uni-muenchen.de/YTFD/
    • YTF


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.