-
2
-
-
70549083891
-
Inference of gene regulatory networks using timeseries data: A survey
-
Chao S, Hua J, Jung S: Inference of gene regulatory networks using timeseries data: A survey. A Survey. Current Genomics 2009, 10:416-429.
-
(2009)
A Survey. Current Genomics
, vol.10
, pp. 416-429
-
-
Chao, S.1
Hua, J.2
Jung, S.3
-
3
-
-
65749102238
-
Machine learning and genetic regulatory networks: A review and a roadmap
-
Stoneham: Butterworth-Heinemann, Springer Verlag;Hassanien AE, Abraham A, Vasilakos A, Pedrycz W 2009:
-
Fogelberg C, Palade V: Machine learning and genetic regulatory networks: A review and a roadmap. In Foundations of Computational Intelligence. Stoneham: Butterworth-Heinemann, Springer Verlag;Hassanien AE, Abraham A, Vasilakos A, Pedrycz W 2009:.
-
Foundations of Computational Intelligence
-
-
Fogelberg, C.1
Palade, V.2
-
4
-
-
0842309206
-
Inferring gene networks from time series microarray data using dynamic Bayesian networks
-
Kim S, Imoto S, Miyano S: Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings in Bioinformatics 2003, 4(3):228-235.
-
(2003)
Briefings in Bioinformatics
, vol.4
, Issue.3
, pp. 228-235
-
-
Kim, S.1
Imoto, S.2
Miyano, S.3
-
5
-
-
38549107133
-
Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks
-
Li P, Zhang C, Perkins E, Gong P, Deng Y: Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks. BMC Bioinformatics 2007, 8(Suppl 7): S13.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.SUPPL. 7
-
-
Li, P.1
Zhang, C.2
Perkins, E.3
Gong, P.4
Deng, Y.5
-
6
-
-
35748964479
-
Modeling gene expression regulatory networks with the sparse vector autoregressive model
-
Fujita A, Sato J, Garay-Malpartida H, Yamaguchi R, Miyano S, Sogayar M, Ferreira C: Modeling gene expression regulatory networks with the sparse vector autoregressive model. BMC Systems Biology 2007, 1:39.
-
(2007)
BMC Systems Biology
, vol.1
, pp. 39
-
-
Fujita, A.1
Sato, J.2
Garay-Malpartida, H.3
Yamaguchi, R.4
Miyano, S.5
Sogayar, M.6
Ferreira, C.7
-
7
-
-
66749164082
-
Recursive regularization for inferring gene networks from time-course gene expression profiles
-
Shimamura T, Imoto S, Yamaguchi R, Fujita A, Nagasaki M, Miyano S: Recursive regularization for inferring gene networks from time-course gene expression profiles. BMC Systems Biology 2009, 3:41.
-
(2009)
BMC Systems Biology
, vol.3
, pp. 41
-
-
Shimamura, T.1
Imoto, S.2
Yamaguchi, R.3
Fujita, A.4
Nagasaki, M.5
Miyano, S.6
-
8
-
-
0036207347
-
Modeling and simulation of genetic regulatory systems: A literature review
-
DOI 10.1089/10665270252833208
-
de Jong H: Modeling and simulation of genetic regulatory systems : A literature review. Journal of Computational Biology 2002, 9:67-103. (Pubitemid 34264287)
-
(2002)
Journal of Computational Biology
, vol.9
, Issue.1
, pp. 67-103
-
-
De Jong, H.1
-
9
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
Friedman N, Linia M, Nachman I, Peér D: Using Bayesian networks to analyze expression data. Journal of Computational Biology 2000, 7(3-4):601-620.
-
(2000)
Journal of Computational Biology
, vol.7
, Issue.3-4
, pp. 601-620
-
-
Friedman, N.1
Linia, M.2
Nachman, I.3
Peér, D.4
-
10
-
-
34547788797
-
Bayesian approaches to reverse engineer cellular systems: A simulation study on nonlinear Gaussian networks
-
Ferrazzi F, Sebastiani P, Ramoni M, Bellazzi R: Bayesian approaches to reverse engineer cellular systems: A simulation study on nonlinear Gaussian networks. BMC Bioinformatics 2007, 8(Suppl 5):S2.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.SUPPL. 5
-
-
Ferrazzi, F.1
Sebastiani, P.2
Ramoni, M.3
Bellazzi, R.4
-
11
-
-
0004158155
-
Modelling gene expression data using dynamic bayesian networks
-
Murphy K, Mian S: Modelling gene expression data using dynamic bayesian networks. Tech. rep 1999.
-
(1999)
Tech. rep
-
-
Murphy, K.1
Mian, S.2
-
13
-
-
33748654580
-
Inferring gene regulatory networks from time series data using the minimum description length principle
-
DOI 10.1093/bioinformatics/btl364
-
Zhao W, Serpedin E, Dougherty E: Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 2006, 22(17):2129-2135. (Pubitemid 44390904)
-
(2006)
Bioinformatics
, vol.22
, Issue.17
, pp. 2129-2135
-
-
Zhao, W.1
Serpedin, E.2
Dougherty, E.R.3
-
14
-
-
78650901444
-
Gene regulatory networks from multifactorial perturbations using Graphical Lasso: Application to the DREAM4 Challenge
-
Menéndez P, Kourmpetis Y, ter Braak C, van Eeuwijk F: Gene regulatory networks from multifactorial perturbations using Graphical Lasso: Application to the DREAM4 Challenge. PLOS One 2010, 5(12):e14147.
-
(2010)
PLOS One
, vol.5
, Issue.12
-
-
Menéndez, P.1
Kourmpetis, Y.2
Ter Braak, C.3
Van Eeuwijk, F.4
-
15
-
-
79951965650
-
Improvements in the reconstruction of timevarying gene regulatory networks: Dynamic programming and regularization by information sharing among genes
-
Grzegorczyk M, Husmeier D: Improvements in the reconstruction of timevarying gene regulatory networks: Dynamic programming and regularization by information sharing among genes. Bioinformatics 2011, 27(5):693-699.
-
(2011)
Bioinformatics
, vol.27
, Issue.5
, pp. 693-699
-
-
Grzegorczyk, M.1
Husmeier, D.2
-
16
-
-
34547852213
-
Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method
-
DOI 10.1093/bioinformatics/btm151
-
Fujita A, Sato J, Garay-Malpartida H, Morettin P, Sogayar M, Ferreira C: Timevarying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method. Bioinformatics 2007, 23(13):1623-1630. (Pubitemid 47244452)
-
(2007)
Bioinformatics
, vol.23
, Issue.13
, pp. 1623-1630
-
-
Fujita, A.1
Sato, J.R.2
Garay-Malpartida, H.M.3
Morettin, P.A.4
Sogayar, M.C.5
Ferreira, C.E.6
-
17
-
-
34548538013
-
Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge
-
Geier F, Timmer J, Fleck C: Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge. BMC Systems Biology 2007, 1:11.
-
(2007)
BMC Systems Biology
, vol.1
, pp. 11
-
-
Geier, F.1
Timmer, J.2
Fleck, C.3
-
18
-
-
0035985177
-
Identification of genes periodically expressed in the human cell cycle and their expression in tumors
-
DOI 10.1091/mbc.02-02-0030.
-
Whitfield M, Sherlock G, Saldanha A, Murray J, Ball C, Alexander K, Matese J, Perou C, Hurt M, Brown P, Botstein D: Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Molecular Biology of the Cell 2002, 13(6):1977-2000. (Pubitemid 34651487)
-
(2002)
Molecular Biology of the Cell
, vol.13
, Issue.6
, pp. 1977-2000
-
-
Whitfield, M.L.1
Sherlock, G.2
Saldanha, A.J.3
Murray, J.I.4
Ball, C.A.5
Alexander, K.E.6
Matese, J.C.7
Perou, C.M.8
Hurt, M.M.9
Brown, P.O.10
Botstein, D.11
-
20
-
-
0038483826
-
Emergence of scaling in random networks
-
Barabasi A, Albert R: Emergence of scaling in random networks. Science 1999, 286:509-512.
-
(1999)
Science
, vol.286
, pp. 509-512
-
-
Barabasi, A.1
Albert, R.2
-
23
-
-
0001677717
-
Controlling the false discovery rate: A practical and powerful approach to multiple testing
-
Benjamini Y, Hochberg Y: Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of Royal Statistical Society: Series B 1995, 57:289-300.
-
(1995)
Journal of Royal Statistical Society: Series B
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
26
-
-
79951843773
-
Noxa mediates p18INK4c cell-cycle control of homeostasis in B cells and plasma cell precursors
-
Bretz J, Garcia J, Huang X, Kang L, Zhang Y, Toellner KM, Chen-Kiang S: Noxa mediates p18INK4c cell-cycle control of homeostasis in B cells and plasma cell precursors. Blood 2011, 117(7):2179-2188.
-
(2011)
Blood
, vol.117
, Issue.7
, pp. 2179-2188
-
-
Bretz, J.1
Garcia, J.2
Huang, X.3
Kang, L.4
Zhang, Y.5
Toellner, K.M.6
Chen-Kiang, S.7
-
27
-
-
0033001902
-
Cell cycle regulation and induction of apoptosis by IL-6 variants on the multiple myeloma cell line XG-1
-
DOI 10.1007/s002770050465
-
Petrucci M, Ricciardi M, Ariola C, Gregorj C, Ribersani M, Savino R, Ciliberto G, Tafuri A: Cell cycle regulation and induction of apoptosis by IL-6 variants on the multiple myeloma cell line XG-1. Annals of Hematology 1999, 78:13-18. (Pubitemid 29132427)
-
(1999)
Annals of Hematology
, vol.78
, Issue.1
, pp. 13-18
-
-
Petrucci, M.T.1
Ricciardi, M.R.2
Ariola, C.3
Gregorj, C.4
Ribersani, M.5
Savino, R.6
Ciliberto, G.7
Tafuri, A.8
-
28
-
-
0036362236
-
Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth
-
Lawler J: Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J. cellular and molecular medicine 2002, 6:1-12. (Pubitemid 44133979)
-
(2002)
Journal of Cellular and Molecular Medicine
, vol.6
, Issue.1
, pp. 1-12
-
-
Lawler, J.1
-
29
-
-
0033621107
-
Role for yeast inhibitor of apoptosis (IAP)-like proteins in cell division
-
DOI 10.1073/pnas.96.18.10170
-
Uren A, Beilharz T, O'connell M, Bugg S, Driel RV, Vaux D, Lithgow T: Role for yeast inhibitor of apoptosis (IAP)-like proteins in cell division. Proceedings of National Academy of Science 1999, 96:10170-10175. (Pubitemid 29422531)
-
(1999)
Proceedings of the National Academy of Sciences of the United States of America
, vol.96
, Issue.18
, pp. 10170-10175
-
-
Uren, A.G.1
Beilharz, T.2
O'Connell, M.J.3
Bugg, S.J.4
Van Driel, R.5
Vaux, D.L.6
Lithgow, T.7
|