메뉴 건너뛰기




Volumn 21, Issue 9, 2011, Pages 1306-1317

Improved nonlinear PCA for process monitoring using support vector data description

Author keywords

Fast Recursive Algorithm; Nonlinear principal component analysis; Principal curves; Radial basis function network; Support vector datadescription

Indexed keywords

FAST RECURSIVE ALGORITHMS; NONLINEAR PRINCIPAL COMPONENT ANALYSIS; PRINCIPAL CURVE; RADIAL BASIS FUNCTIONS; SUPPORT VECTOR DATADESCRIPTION;

EID: 80052565753     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2011.07.003     Document Type: Article
Times cited : (48)

References (44)
  • 1
    • 35148823629 scopus 로고    scopus 로고
    • Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes
    • DOI 10.1016/j.jprocont.2007.02.005, PII S0959152407000388
    • Zhao C., Wang F., Lu N., and Jia M. Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes Journal of Process Control 17 9 2007 728 741 (Pubitemid 47539886)
    • (2007) Journal of Process Control , vol.17 , Issue.9 , pp. 728-741
    • Zhao, C.1    Wang, F.2    Lu, N.3    Jia, M.4
  • 2
    • 36749052831 scopus 로고    scopus 로고
    • Monitoring a complex refining process using multivariate statistics
    • DOI 10.1016/j.conengprac.2007.04.014, PII S0967066107001049
    • AlGhazzawi A., and Lennox B. Monitoring a complex refining process using multivariate statistics Control Engineering Practice 16 3 2008 294 307 (Pubitemid 350215488)
    • (2008) Control Engineering Practice , vol.16 , Issue.3 , pp. 294-307
    • AlGhazzawi, A.1    Lennox, B.2
  • 3
    • 33646178973 scopus 로고    scopus 로고
    • Performance monitoring of processes with multiple operating modes through multiple PLS models
    • Zhang J., Zhao S.J., and Xu Y.M. Performance monitoring of processes with multiple operating modes through multiple PLS models Journal of Process Control 16 7 2006 763 772
    • (2006) Journal of Process Control , vol.16 , Issue.7 , pp. 763-772
    • Zhang, J.1    Zhao, S.J.2    Xu, Y.M.3
  • 4
    • 33749473097 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on modified independent component analysis
    • DOI 10.1002/aic.10978
    • Lee J.M., Qin S.J., and Lee I.B. Fault detection and diagnosis based on modified independent component analysis AIChE Journal 52 10 2006 3501 3514 (Pubitemid 44519578)
    • (2006) AIChE Journal , vol.52 , Issue.10 , pp. 3501-3514
    • Lee, J.-M.1    Qin, S.J.2    Lee, I.-B.3
  • 5
    • 52649119206 scopus 로고    scopus 로고
    • Statistical-based monitoring of multivariate non-Gaussian systems
    • Liu X., Xie L., Kruger U., Littler T., and Wang S. Statistical-based monitoring of multivariate non-Gaussian systems AIChE Journal 54 9 2008 2379 2391
    • (2008) AIChE Journal , vol.54 , Issue.9 , pp. 2379-2391
    • Liu, X.1    Xie, L.2    Kruger, U.3    Littler, T.4    Wang, S.5
  • 6
    • 0033903077 scopus 로고    scopus 로고
    • Determining the number of principal components for best reconstruction
    • DOI 10.1016/S0959-1524(99)00043-8
    • Qin S.J., and Dunia R. Determining the number of principal components for best reconstruction Journal of Process Control 10 2 2000 245 250 (Pubitemid 30556723)
    • (2000) Journal of Process Control , vol.10 , Issue.2 , pp. 245-250
    • Qin, S.J.1    Dunia, R.2
  • 8
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis-based on principal curves and neural networks
    • Dong D., and McAvoy T.J. Nonlinear principal component analysis-based on principal curves and neural networks Computers and Chemical Engineering 20 1 1996 65 78
    • (1996) Computers and Chemical Engineering , vol.20 , Issue.1 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 9
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • Kramer M.A. Nonlinear principal component analysis using autoassociative neural networks AIChE Journal 37 3 1991 233 243
    • (1991) AIChE Journal , vol.37 , Issue.3 , pp. 233-243
    • Kramer, M.A.1
  • 10
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scholkopf B., Smola A.J., and Muller K.R. Nonlinear component analysis as a kernel eigenvalue problem Neural Computation 10 1998 1299 1399
    • (1998) Neural Computation , vol.10 , pp. 1299-1399
    • Scholkopf, B.1    Smola, A.J.2    Muller, K.R.3
  • 12
    • 10244247743 scopus 로고    scopus 로고
    • Nonlinear principal component analysis to preserve the order of principal components
    • DOI 10.1016/j.neucom.2004.03.004, PII S0925231204002279
    • Saegusa R., Sakano H., and Hashimoto S. Nonlinear principal component analysis to preserve the order of principal components Neurocomputing 61 2004 57 70 (Pubitemid 39618371)
    • (2004) Neurocomputing , vol.61 , Issue.1-4 , pp. 57-70
    • Saegusa, R.1    Sakano, H.2    Hashimoto, S.3
  • 13
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • DOI 10.1126/science.1127647
    • Hinton G.E., and Salakhutdinov R.R. Reducing the dimensionality of data with neural networks Science 313 5786 2006 504 507 (Pubitemid 44148451)
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 15
    • 0034334827 scopus 로고    scopus 로고
    • Non-linear principal components analysis with application to process fault detection
    • DOI 10.1080/00207720050197848
    • Jia F., Martin E.B., and Morris A.J. Nonlinear principal components analysis with application to process fault detection International Journal of Systems Science 31 11 2000 1473 1487 (Pubitemid 35394884)
    • (2000) International Journal of Systems Science , vol.31 , Issue.11 , pp. 1473-1487
    • Jia, F.1    Martin, E.B.2    Morris, A.J.3
  • 16
    • 0029322882 scopus 로고
    • Reducing data dimensionality through optimizing neural network inputs
    • Tan S., and Mavrovouniotis M.L. Reducing data dimensionality through optimizing neural network inputs AIChE Journal 41 6 1995 1471 1480
    • (1995) AIChE Journal , vol.41 , Issue.6 , pp. 1471-1480
    • Tan, S.1    Mavrovouniotis, M.L.2
  • 17
    • 0033611749 scopus 로고    scopus 로고
    • Non-linear principal components analysis using genetic programming
    • DOI 10.1016/S0098-1354(98)00284-1, PII S0098135498002841
    • Hiden H., Willis M., Tham M., and Montague G. Nonlinear principal components analysis using genetic programming Computers and Chemical Engineering 23 3 1999 413 425 (Pubitemid 29179698)
    • (1999) Computers and Chemical Engineering , vol.23 , Issue.3 , pp. 413-425
    • Hiden, H.G.1    Willis, M.J.2    Tham, M.T.3    Montague, G.A.4
  • 20
    • 26244441991 scopus 로고    scopus 로고
    • A fast nonlinear model identification method
    • DOI 10.1109/TAC.2005.852557
    • Li K., Peng J., and Irwin G.W. A fast nonlinear model identification method IEEE Transactions on Automatic Control 50 8 2005 1211 1216 (Pubitemid 41410121)
    • (2005) IEEE Transactions on Automatic Control , vol.50 , Issue.8 , pp. 1211-1216
    • Li, K.1    Peng, J.-X.2    Irwin, G.W.3
  • 22
    • 35648957812 scopus 로고    scopus 로고
    • Model identification and error covariance matrix estimation from noisy data using PCA
    • DOI 10.1016/j.conengprac.2007.04.006, PII S0967066107000925
    • Narasimhan S., and Shah S.L. Model identification and error covariance matrix estimation from noisy data using PCA Control Engineering Practice 16 1 2008 146 155 (Pubitemid 350029028)
    • (2008) Control Engineering Practice , vol.16 , Issue.1 , pp. 146-155
    • Narasimhan, S.1    Shah, S.L.2
  • 23
    • 0003658046 scopus 로고
    • Wiley Series in Probability and Mathematical Statistics John Wiley, New York
    • Jackson J.E. A Users Guide to Principal Components 1991 Wiley Series in Probability and Mathematical Statistics John Wiley, New York
    • (1991) A Users Guide to Principal Components
    • Jackson, J.E.1
  • 24
    • 0033198809 scopus 로고    scopus 로고
    • Detection, identification, and reconstruction of faulty sensors with maximized sensitivity
    • Qin S.J., and Li W. Detection, identification, and reconstruction of faulty sensors with maximized sensitivity AIChE Journal 45 1999 1963
    • (1999) AIChE Journal , vol.45 , pp. 1963
    • Qin, S.J.1    Li, W.2
  • 27
    • 37249029174 scopus 로고    scopus 로고
    • A hybrid forward algorithm for RBF neural network construction
    • DOI 10.1109/TNN.2006.880860
    • Peng J.X., Li K., and Huang D.S. A hybrid forward algorithm for RBF neural network construction IEEE Transactions on Neural Networks 17 6 2006 1439 1451 (Pubitemid 44824258)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.6 , pp. 1439-1451
    • Peng, J.-X.1    Li, K.2    Huang, D.-S.3
  • 29
    • 33646800222 scopus 로고    scopus 로고
    • A two-stage algorithm for identification of nonlinear dynamic systems
    • DOI 10.1016/j.automatica.2006.03.004, PII S0005109806001208
    • Li K., Peng J.X., and Bai E.W. A two-stage algorithm for identification of nonlinear dynamic systems Automatica 42 7 2006 1189 1197 (Pubitemid 43767490)
    • (2006) Automatica , vol.42 , Issue.7 , pp. 1189-1197
    • Li, K.1    Peng, J.-X.2    Bai, E.-W.3
  • 30
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification IEEE Transactions on Automatic Control 19 6 1974 716 723
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 31
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • DOI 10.1016/S0167-8655(99)00087-2
    • Tax D.M.J., and Duin R.P. Support vector domain description Pattern Recognition Letters 20 1999 1191 1199 (Pubitemid 32261897)
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1191-1199
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 32
    • 0037753593 scopus 로고    scopus 로고
    • PhD thesis, Delft University of Technology
    • D.M.J. Tax, One-class classification, PhD thesis, Delft University of Technology, http://www.ph.tn.tudelft.nl/davidt/thesis.pdf, 2001.
    • (2001) One-class Classification
    • Tax, D.M.J.1
  • 33
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Nomikos P., and MacGregor J.F. Multivariate SPC charts for monitoring batch processes Technometrics 37 1 1995 41 59
    • (1995) Technometrics , vol.37 , Issue.1 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 35
    • 84951601886 scopus 로고
    • Cross validatory estimation of the number of principal components in factor and principal component models
    • Wold S. Cross validatory estimation of the number of principal components in factor and principal component models Technometrics 20 4 1978 397 406
    • (1978) Technometrics , vol.20 , Issue.4 , pp. 397-406
    • Wold, S.1
  • 36
    • 84937549955 scopus 로고
    • The Scree test for the number of factors
    • Cattell R.B. The Scree test for the number of factors Multivariate Behavioral Research 1 2 1966 245 276
    • (1966) Multivariate Behavioral Research , vol.1 , Issue.2 , pp. 245-276
    • Cattell, R.B.1
  • 37
    • 0033230994 scopus 로고    scopus 로고
    • Selection of the number of principal components: The variance of the reconstruction error criterion compared to other methods
    • Valle-Vervantes S., Li W., and Qin S.J. Selection of the number of principal components: the variance of the reconstruction error criterion compared to other methods Industrial & Engineering Chemistry Research 38 1999 4389 4401
    • (1999) Industrial & Engineering Chemistry Research , vol.38 , pp. 4389-4401
    • Valle-Vervantes, S.1    Li, W.2    Qin, S.J.3
  • 40
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • DOI 10.1016/j.ces.2003.09.012
    • Lee J.M., Yoo C., Choi S.W., Vanrolleghem P.A., and Lee I.B. Nonlinear process monitoring using kernel principal component analysis Chemical Engineering Science 59 1 2004 223 234 (Pubitemid 38034007)
    • (2004) Chemical Engineering Science , vol.59 , Issue.1 , pp. 223-234
    • Lee, J.-M.1    Yoo, C.K.2    Choi, S.W.3    Vanrolleghem, P.A.4    Lee, I.-B.5
  • 41
    • 10244238854 scopus 로고    scopus 로고
    • Fault identification for process monitoring using kernel principal component analysis
    • DOI 10.1016/j.ces.2004.08.007, PII S0009250904006013
    • Choi J.-H., Lee J.-M., Choi S.W., Lee D., and Lee I.-B. Fault identification for process monitoring using kernel principal component analysis Chemical Engineering Science 60 1 2005 279 288 (Pubitemid 39622624)
    • (2005) Chemical Engineering Science , vol.60 , Issue.1 , pp. 279-288
    • Cho, J.-H.1    Lee, J.-M.2    Choi, S.W.3    Lee, D.4    Lee, I.-B.5
  • 42
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen S., Cowan C.F.N., and Grant P.M. Orthogonal least squares learning algorithm for radial basis function networks IEEE Transactions on Neural Networks 2 2 1991 302 309
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 43
    • 0034130478 scopus 로고    scopus 로고
    • The application of principal component analysis and kernel density estimation to enhance process monitoring
    • DOI 10.1016/S0967-0661(99)00191-4, PII S0967066199001914
    • Chen Q., Wyne R., Goulding P.R., and Sandoz D.J. The application of principal component analysis and kernel density estimation to enhance process monitoring Control Engineering Practice 8 5 2000 531 543 (Pubitemid 30354904)
    • (2000) Control Engineering Practice , vol.8 , Issue.5 , pp. 531-543
    • Chen, Q.1    Wynne, R.J.2    Goulding, P.3    Sandoz, D.4
  • 44
    • 27844491086 scopus 로고    scopus 로고
    • Introduction of a nonlinearity measure for principal component models
    • DOI 10.1016/j.compchemeng.2005.05.013, PII S0098135405001377
    • Kruger U., Antory D., Hahn J., Irwin G.W., and McCullough G. Introduction of a nonlinearity measure for principal component models Computers & Chemical Engineering 29 11-12 2005 2355 2362 (Pubitemid 41660483)
    • (2005) Computers and Chemical Engineering , vol.29 , Issue.11-12 SPEC. ISS. , pp. 2355-2362
    • Kruger, U.1    Antory, D.2    Hahn, J.3    Irwin, G.W.4    McCullough, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.