-
1
-
-
35148823629
-
Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes
-
DOI 10.1016/j.jprocont.2007.02.005, PII S0959152407000388
-
Zhao C., Wang F., Lu N., and Jia M. Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes Journal of Process Control 17 9 2007 728 741 (Pubitemid 47539886)
-
(2007)
Journal of Process Control
, vol.17
, Issue.9
, pp. 728-741
-
-
Zhao, C.1
Wang, F.2
Lu, N.3
Jia, M.4
-
2
-
-
36749052831
-
Monitoring a complex refining process using multivariate statistics
-
DOI 10.1016/j.conengprac.2007.04.014, PII S0967066107001049
-
AlGhazzawi A., and Lennox B. Monitoring a complex refining process using multivariate statistics Control Engineering Practice 16 3 2008 294 307 (Pubitemid 350215488)
-
(2008)
Control Engineering Practice
, vol.16
, Issue.3
, pp. 294-307
-
-
AlGhazzawi, A.1
Lennox, B.2
-
3
-
-
33646178973
-
Performance monitoring of processes with multiple operating modes through multiple PLS models
-
Zhang J., Zhao S.J., and Xu Y.M. Performance monitoring of processes with multiple operating modes through multiple PLS models Journal of Process Control 16 7 2006 763 772
-
(2006)
Journal of Process Control
, vol.16
, Issue.7
, pp. 763-772
-
-
Zhang, J.1
Zhao, S.J.2
Xu, Y.M.3
-
4
-
-
33749473097
-
Fault detection and diagnosis based on modified independent component analysis
-
DOI 10.1002/aic.10978
-
Lee J.M., Qin S.J., and Lee I.B. Fault detection and diagnosis based on modified independent component analysis AIChE Journal 52 10 2006 3501 3514 (Pubitemid 44519578)
-
(2006)
AIChE Journal
, vol.52
, Issue.10
, pp. 3501-3514
-
-
Lee, J.-M.1
Qin, S.J.2
Lee, I.-B.3
-
5
-
-
52649119206
-
Statistical-based monitoring of multivariate non-Gaussian systems
-
Liu X., Xie L., Kruger U., Littler T., and Wang S. Statistical-based monitoring of multivariate non-Gaussian systems AIChE Journal 54 9 2008 2379 2391
-
(2008)
AIChE Journal
, vol.54
, Issue.9
, pp. 2379-2391
-
-
Liu, X.1
Xie, L.2
Kruger, U.3
Littler, T.4
Wang, S.5
-
6
-
-
0033903077
-
Determining the number of principal components for best reconstruction
-
DOI 10.1016/S0959-1524(99)00043-8
-
Qin S.J., and Dunia R. Determining the number of principal components for best reconstruction Journal of Process Control 10 2 2000 245 250 (Pubitemid 30556723)
-
(2000)
Journal of Process Control
, vol.10
, Issue.2
, pp. 245-250
-
-
Qin, S.J.1
Dunia, R.2
-
8
-
-
0043015539
-
Nonlinear principal component analysis-based on principal curves and neural networks
-
Dong D., and McAvoy T.J. Nonlinear principal component analysis-based on principal curves and neural networks Computers and Chemical Engineering 20 1 1996 65 78
-
(1996)
Computers and Chemical Engineering
, vol.20
, Issue.1
, pp. 65-78
-
-
Dong, D.1
McAvoy, T.J.2
-
9
-
-
0026113980
-
Nonlinear principal component analysis using autoassociative neural networks
-
Kramer M.A. Nonlinear principal component analysis using autoassociative neural networks AIChE Journal 37 3 1991 233 243
-
(1991)
AIChE Journal
, vol.37
, Issue.3
, pp. 233-243
-
-
Kramer, M.A.1
-
10
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Scholkopf B., Smola A.J., and Muller K.R. Nonlinear component analysis as a kernel eigenvalue problem Neural Computation 10 1998 1299 1399
-
(1998)
Neural Computation
, vol.10
, pp. 1299-1399
-
-
Scholkopf, B.1
Smola, A.J.2
Muller, K.R.3
-
11
-
-
64249101035
-
Moving window kernel PCA for adaptive monitoring of nonlinear processes
-
Liu X., Kruger U., Littler T., Xie L., and Wang S. Moving window kernel PCA for adaptive monitoring of nonlinear processes Chemometrics and Intelligent Laboratory Systems 96 2 2009 132 143
-
(2009)
Chemometrics and Intelligent Laboratory Systems
, vol.96
, Issue.2
, pp. 132-143
-
-
Liu, X.1
Kruger, U.2
Littler, T.3
Xie, L.4
Wang, S.5
-
12
-
-
10244247743
-
Nonlinear principal component analysis to preserve the order of principal components
-
DOI 10.1016/j.neucom.2004.03.004, PII S0925231204002279
-
Saegusa R., Sakano H., and Hashimoto S. Nonlinear principal component analysis to preserve the order of principal components Neurocomputing 61 2004 57 70 (Pubitemid 39618371)
-
(2004)
Neurocomputing
, vol.61
, Issue.1-4
, pp. 57-70
-
-
Saegusa, R.1
Sakano, H.2
Hashimoto, S.3
-
13
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
DOI 10.1126/science.1127647
-
Hinton G.E., and Salakhutdinov R.R. Reducing the dimensionality of data with neural networks Science 313 5786 2006 504 507 (Pubitemid 44148451)
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
14
-
-
78649586262
-
Improved nonlinear PCA based on RBF networks and principal curves
-
Springer-Verlag Berlin, Heidelberg
-
Liu X., Li K., McAfee M., and Deng J. Improved nonlinear PCA based on RBF networks and principal curves Proceedings of the 2010 International Conference on Life System Modeling and Intelligent Computing, and 2010 International conference on Intelligent Computing for Sustainable Energy and Environment: Part I, LSMS/ICSEE'10 2010 Springer-Verlag Berlin, Heidelberg 7 15
-
(2010)
Proceedings of the 2010 International Conference on Life System Modeling and Intelligent Computing, and 2010 International Conference on Intelligent Computing for Sustainable Energy and Environment: Part I, LSMS/ICSEE'10
, pp. 7-15
-
-
Liu, X.1
Li, K.2
McAfee, M.3
Deng, J.4
-
15
-
-
0034334827
-
Non-linear principal components analysis with application to process fault detection
-
DOI 10.1080/00207720050197848
-
Jia F., Martin E.B., and Morris A.J. Nonlinear principal components analysis with application to process fault detection International Journal of Systems Science 31 11 2000 1473 1487 (Pubitemid 35394884)
-
(2000)
International Journal of Systems Science
, vol.31
, Issue.11
, pp. 1473-1487
-
-
Jia, F.1
Martin, E.B.2
Morris, A.J.3
-
16
-
-
0029322882
-
Reducing data dimensionality through optimizing neural network inputs
-
Tan S., and Mavrovouniotis M.L. Reducing data dimensionality through optimizing neural network inputs AIChE Journal 41 6 1995 1471 1480
-
(1995)
AIChE Journal
, vol.41
, Issue.6
, pp. 1471-1480
-
-
Tan, S.1
Mavrovouniotis, M.L.2
-
17
-
-
0033611749
-
Non-linear principal components analysis using genetic programming
-
DOI 10.1016/S0098-1354(98)00284-1, PII S0098135498002841
-
Hiden H., Willis M., Tham M., and Montague G. Nonlinear principal components analysis using genetic programming Computers and Chemical Engineering 23 3 1999 413 425 (Pubitemid 29179698)
-
(1999)
Computers and Chemical Engineering
, vol.23
, Issue.3
, pp. 413-425
-
-
Hiden, H.G.1
Willis, M.J.2
Tham, M.T.3
Montague, G.A.4
-
18
-
-
37749003880
-
Nonlinear PCA with the local approach for diesel engine fault detection and diagnosis
-
Wang X., Kruger U., Irwin G., McCullough G., and McDowell N. Nonlinear PCA with the local approach for diesel engine fault detection and diagnosis IEEE Transactions on Control Systems Technology 16 1 2008 122 129
-
(2008)
IEEE Transactions on Control Systems Technology
, vol.16
, Issue.1
, pp. 122-129
-
-
Wang, X.1
Kruger, U.2
Irwin, G.3
McCullough, G.4
McDowell, N.5
-
20
-
-
26244441991
-
A fast nonlinear model identification method
-
DOI 10.1109/TAC.2005.852557
-
Li K., Peng J., and Irwin G.W. A fast nonlinear model identification method IEEE Transactions on Automatic Control 50 8 2005 1211 1216 (Pubitemid 41410121)
-
(2005)
IEEE Transactions on Automatic Control
, vol.50
, Issue.8
, pp. 1211-1216
-
-
Li, K.1
Peng, J.-X.2
Irwin, G.W.3
-
22
-
-
35648957812
-
Model identification and error covariance matrix estimation from noisy data using PCA
-
DOI 10.1016/j.conengprac.2007.04.006, PII S0967066107000925
-
Narasimhan S., and Shah S.L. Model identification and error covariance matrix estimation from noisy data using PCA Control Engineering Practice 16 1 2008 146 155 (Pubitemid 350029028)
-
(2008)
Control Engineering Practice
, vol.16
, Issue.1
, pp. 146-155
-
-
Narasimhan, S.1
Shah, S.L.2
-
23
-
-
0003658046
-
-
Wiley Series in Probability and Mathematical Statistics John Wiley, New York
-
Jackson J.E. A Users Guide to Principal Components 1991 Wiley Series in Probability and Mathematical Statistics John Wiley, New York
-
(1991)
A Users Guide to Principal Components
-
-
Jackson, J.E.1
-
24
-
-
0033198809
-
Detection, identification, and reconstruction of faulty sensors with maximized sensitivity
-
Qin S.J., and Li W. Detection, identification, and reconstruction of faulty sensors with maximized sensitivity AIChE Journal 45 1999 1963
-
(1999)
AIChE Journal
, vol.45
, pp. 1963
-
-
Qin, S.J.1
Li, W.2
-
27
-
-
37249029174
-
A hybrid forward algorithm for RBF neural network construction
-
DOI 10.1109/TNN.2006.880860
-
Peng J.X., Li K., and Huang D.S. A hybrid forward algorithm for RBF neural network construction IEEE Transactions on Neural Networks 17 6 2006 1439 1451 (Pubitemid 44824258)
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, Issue.6
, pp. 1439-1451
-
-
Peng, J.-X.1
Li, K.2
Huang, D.-S.3
-
29
-
-
33646800222
-
A two-stage algorithm for identification of nonlinear dynamic systems
-
DOI 10.1016/j.automatica.2006.03.004, PII S0005109806001208
-
Li K., Peng J.X., and Bai E.W. A two-stage algorithm for identification of nonlinear dynamic systems Automatica 42 7 2006 1189 1197 (Pubitemid 43767490)
-
(2006)
Automatica
, vol.42
, Issue.7
, pp. 1189-1197
-
-
Li, K.1
Peng, J.-X.2
Bai, E.-W.3
-
30
-
-
0016355478
-
A new look at the statistical model identification
-
Akaike H. A new look at the statistical model identification IEEE Transactions on Automatic Control 19 6 1974 716 723
-
(1974)
IEEE Transactions on Automatic Control
, vol.19
, Issue.6
, pp. 716-723
-
-
Akaike, H.1
-
31
-
-
0033220728
-
Support vector domain description
-
DOI 10.1016/S0167-8655(99)00087-2
-
Tax D.M.J., and Duin R.P. Support vector domain description Pattern Recognition Letters 20 1999 1191 1199 (Pubitemid 32261897)
-
(1999)
Pattern Recognition Letters
, vol.20
, Issue.11-13
, pp. 1191-1199
-
-
Tax, D.M.J.1
Duin, R.P.W.2
-
32
-
-
0037753593
-
-
PhD thesis, Delft University of Technology
-
D.M.J. Tax, One-class classification, PhD thesis, Delft University of Technology, http://www.ph.tn.tudelft.nl/davidt/thesis.pdf, 2001.
-
(2001)
One-class Classification
-
-
Tax, D.M.J.1
-
33
-
-
0029252734
-
Multivariate SPC charts for monitoring batch processes
-
Nomikos P., and MacGregor J.F. Multivariate SPC charts for monitoring batch processes Technometrics 37 1 1995 41 59
-
(1995)
Technometrics
, vol.37
, Issue.1
, pp. 41-59
-
-
Nomikos, P.1
MacGregor, J.F.2
-
35
-
-
84951601886
-
Cross validatory estimation of the number of principal components in factor and principal component models
-
Wold S. Cross validatory estimation of the number of principal components in factor and principal component models Technometrics 20 4 1978 397 406
-
(1978)
Technometrics
, vol.20
, Issue.4
, pp. 397-406
-
-
Wold, S.1
-
36
-
-
84937549955
-
The Scree test for the number of factors
-
Cattell R.B. The Scree test for the number of factors Multivariate Behavioral Research 1 2 1966 245 276
-
(1966)
Multivariate Behavioral Research
, vol.1
, Issue.2
, pp. 245-276
-
-
Cattell, R.B.1
-
37
-
-
0033230994
-
Selection of the number of principal components: The variance of the reconstruction error criterion compared to other methods
-
Valle-Vervantes S., Li W., and Qin S.J. Selection of the number of principal components: the variance of the reconstruction error criterion compared to other methods Industrial & Engineering Chemistry Research 38 1999 4389 4401
-
(1999)
Industrial & Engineering Chemistry Research
, vol.38
, pp. 4389-4401
-
-
Valle-Vervantes, S.1
Li, W.2
Qin, S.J.3
-
38
-
-
78649622410
-
Fast forward RBF network construction based on particle swarm optimization
-
Springer-Verlag Berlin, Heidelberg
-
Deng J., Li K., Irwin G.W., and Fei M. Fast forward RBF network construction based on particle swarm optimization Proceedings of the 2010 International Conference on Life System Modeling and Simulation and Intelligent Computing, and 2010 International Conference on Intelligent Computing for Sustainable Energy and Environment: Part II, LSMS/ICSEE'10 2010 Springer-Verlag Berlin, Heidelberg 40 48
-
(2010)
Proceedings of the 2010 International Conference on Life System Modeling and Simulation and Intelligent Computing, and 2010 International Conference on Intelligent Computing for Sustainable Energy and Environment: Part II, LSMS/ICSEE'10
, pp. 40-48
-
-
Deng, J.1
Li, K.2
Irwin, G.W.3
Fei, M.4
-
40
-
-
0346911568
-
Nonlinear process monitoring using kernel principal component analysis
-
DOI 10.1016/j.ces.2003.09.012
-
Lee J.M., Yoo C., Choi S.W., Vanrolleghem P.A., and Lee I.B. Nonlinear process monitoring using kernel principal component analysis Chemical Engineering Science 59 1 2004 223 234 (Pubitemid 38034007)
-
(2004)
Chemical Engineering Science
, vol.59
, Issue.1
, pp. 223-234
-
-
Lee, J.-M.1
Yoo, C.K.2
Choi, S.W.3
Vanrolleghem, P.A.4
Lee, I.-B.5
-
41
-
-
10244238854
-
Fault identification for process monitoring using kernel principal component analysis
-
DOI 10.1016/j.ces.2004.08.007, PII S0009250904006013
-
Choi J.-H., Lee J.-M., Choi S.W., Lee D., and Lee I.-B. Fault identification for process monitoring using kernel principal component analysis Chemical Engineering Science 60 1 2005 279 288 (Pubitemid 39622624)
-
(2005)
Chemical Engineering Science
, vol.60
, Issue.1
, pp. 279-288
-
-
Cho, J.-H.1
Lee, J.-M.2
Choi, S.W.3
Lee, D.4
Lee, I.-B.5
-
42
-
-
0026116468
-
Orthogonal least squares learning algorithm for radial basis function networks
-
Chen S., Cowan C.F.N., and Grant P.M. Orthogonal least squares learning algorithm for radial basis function networks IEEE Transactions on Neural Networks 2 2 1991 302 309
-
(1991)
IEEE Transactions on Neural Networks
, vol.2
, Issue.2
, pp. 302-309
-
-
Chen, S.1
Cowan, C.F.N.2
Grant, P.M.3
-
43
-
-
0034130478
-
The application of principal component analysis and kernel density estimation to enhance process monitoring
-
DOI 10.1016/S0967-0661(99)00191-4, PII S0967066199001914
-
Chen Q., Wyne R., Goulding P.R., and Sandoz D.J. The application of principal component analysis and kernel density estimation to enhance process monitoring Control Engineering Practice 8 5 2000 531 543 (Pubitemid 30354904)
-
(2000)
Control Engineering Practice
, vol.8
, Issue.5
, pp. 531-543
-
-
Chen, Q.1
Wynne, R.J.2
Goulding, P.3
Sandoz, D.4
-
44
-
-
27844491086
-
Introduction of a nonlinearity measure for principal component models
-
DOI 10.1016/j.compchemeng.2005.05.013, PII S0098135405001377
-
Kruger U., Antory D., Hahn J., Irwin G.W., and McCullough G. Introduction of a nonlinearity measure for principal component models Computers & Chemical Engineering 29 11-12 2005 2355 2362 (Pubitemid 41660483)
-
(2005)
Computers and Chemical Engineering
, vol.29
, Issue.11-12 SPEC. ISS.
, pp. 2355-2362
-
-
Kruger, U.1
Antory, D.2
Hahn, J.3
Irwin, G.W.4
McCullough, G.5
|