-
1
-
-
0032118892
-
Multiscale PCA with application to multivariate statistical process monitoring
-
Bakshi B.R. Multiscale PCA with application to multivariate statistical process monitoring. AIChE Journal 1998, 44:1596-1610.
-
(1998)
AIChE Journal
, vol.44
, pp. 1596-1610
-
-
Bakshi, B.R.1
-
2
-
-
38149070830
-
Enhancing data based fault isolation through nonlinear control
-
Benjamin J.O., De La Pena D.M., Davis J.F., Christofides P.D. Enhancing data based fault isolation through nonlinear control. AIChE Journal 2008, 54:223-241.
-
(2008)
AIChE Journal
, vol.54
, pp. 223-241
-
-
Benjamin, J.O.1
De La Pena, D.M.2
Davis, J.F.3
Christofides, P.D.4
-
3
-
-
47249154814
-
Self-organizing self-clustering network: a strategy for unsupervised pattern classification with its application to fault diagnosis
-
Bhushan B., Romagnoli J.A. Self-organizing self-clustering network: a strategy for unsupervised pattern classification with its application to fault diagnosis. Industrial and Engineering Chemistry Research 2008, 47:4209-4219.
-
(2008)
Industrial and Engineering Chemistry Research
, vol.47
, pp. 4209-4219
-
-
Bhushan, B.1
Romagnoli, J.A.2
-
4
-
-
80051686922
-
Fault detection using CUSUM based techniques with application to the Tennessee Eastman Process.
-
In: Proceeding of the 9th International Symposium on Dynamic and Control of Process systems (DYCOPS), Leuven, Belgium.
-
Bin Shams, M., Budman, H., Duever, T., 2010. Fault detection using CUSUM based techniques with application to the Tennessee Eastman Process. In: Proceeding of the 9th International Symposium on Dynamic and Control of Process systems (DYCOPS), Leuven, Belgium.
-
(2010)
-
-
Bin Shams, M.1
Budman, H.2
Duever, T.3
-
5
-
-
0001393743
-
An approach to the probability distribution of CUSUM Run length
-
Brook D., Evans D.A. An approach to the probability distribution of CUSUM Run length. Biometrika 1972, 59:539-549.
-
(1972)
Biometrika
, vol.59
, pp. 539-549
-
-
Brook, D.1
Evans, D.A.2
-
6
-
-
77749340024
-
Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes
-
Cheng C.Y., Hsu C.C., Chen M.C. Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes. Industrial and Engineering Chemistry Research 2010, 49:2254-2262.
-
(2010)
Industrial and Engineering Chemistry Research
, vol.49
, pp. 2254-2262
-
-
Cheng, C.Y.1
Hsu, C.C.2
Chen, M.C.3
-
8
-
-
0037470096
-
Process monitoring using causal map and multivariate statistics: fault detection and identification
-
Chiang L.H., Braatz R. Process monitoring using causal map and multivariate statistics: fault detection and identification. Chemometrics and Intelligent laboratory Systems 2003, 65:159-178.
-
(2003)
Chemometrics and Intelligent laboratory Systems
, vol.65
, pp. 159-178
-
-
Chiang, L.H.1
Braatz, R.2
-
10
-
-
72149132838
-
Subspace method aided-driven design of fault detection and isolation system
-
Ding S.X., Zhang P., Naik A., Ding E.L., Huang B. Subspace method aided-driven design of fault detection and isolation system. Journal of Process Control 2009, 19:1496-1510.
-
(2009)
Journal of Process Control
, vol.19
, pp. 1496-1510
-
-
Ding, S.X.1
Zhang, P.2
Naik, A.3
Ding, E.L.4
Huang, B.5
-
11
-
-
0032049479
-
Joint diagnosis of process and sensor faults using principal component analysis
-
Dunia R., Qin J. Joint diagnosis of process and sensor faults using principal component analysis. Control Engineering Practice 1998, 6:457-469.
-
(1998)
Control Engineering Practice
, vol.6
, pp. 457-469
-
-
Dunia, R.1
Qin, J.2
-
14
-
-
0026113980
-
Nonlinear principal component analysis using autoassociative neural networks
-
Kramer M.A. Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal 1991, 37:233-343.
-
(1991)
AIChE Journal
, vol.37
, pp. 233-343
-
-
Kramer, M.A.1
-
16
-
-
3042632377
-
Statistical monitoring of dynamic processes based on dynamic independent component analysis
-
Lee J.M., Yoo C., Lee I. Statistical monitoring of dynamic processes based on dynamic independent component analysis. Chemical Engineering Science 2004, 59:2995-3006.
-
(2004)
Chemical Engineering Science
, vol.59
, pp. 2995-3006
-
-
Lee, J.M.1
Yoo, C.2
Lee, I.3
-
18
-
-
0029267381
-
Statistical process control of multivariate processes
-
MacGregor J.F., Kourti T. Statistical process control of multivariate processes. Control Engineering Practice 1995, 3:403-414.
-
(1995)
Control Engineering Practice
, vol.3
, pp. 403-414
-
-
MacGregor, J.F.1
Kourti, T.2
-
21
-
-
0242354134
-
Statistical process monitoring: basics and beyond
-
Qin S.J. Statistical process monitoring: basics and beyond. Journal of Chemometrics 2003, 54:480-502.
-
(2003)
Journal of Chemometrics
, vol.54
, pp. 480-502
-
-
Qin, S.J.1
-
22
-
-
0031062026
-
Diagnosis of process disturbances by statistical distance and angle measures
-
Raich A., Cinar A. Diagnosis of process disturbances by statistical distance and angle measures. Computer and Chemical Engineering 1997, 21:661-673.
-
(1997)
Computer and Chemical Engineering
, vol.21
, pp. 661-673
-
-
Raich, A.1
Cinar, A.2
-
23
-
-
0037443803
-
A review of process fault detection and diagnosis part III: process history based method
-
Venkatasubramanian V., Rengaswamy R., Kavuri N., Yin K. A review of process fault detection and diagnosis part III: process history based method. Computer and Chemical Engineering 2003, 27:327-346.
-
(2003)
Computer and Chemical Engineering
, vol.27
, pp. 327-346
-
-
Venkatasubramanian, V.1
Rengaswamy, R.2
Kavuri, N.3
Yin, K.4
-
24
-
-
22344456074
-
Robust multi-scale principal components analysis with applications to process monitoring
-
Wang D., Romagnoli J.A. Robust multi-scale principal components analysis with applications to process monitoring. Journal of Process Control 2005, 15:869-882.
-
(2005)
Journal of Process Control
, vol.15
, pp. 869-882
-
-
Wang, D.1
Romagnoli, J.A.2
-
25
-
-
0022111936
-
Multivariate CUSUM quality control procedures
-
Woodall W., Ncube M. Multivariate CUSUM quality control procedures. Technometrics 1985, 27:285-292.
-
(1985)
Technometrics
, vol.27
, pp. 285-292
-
-
Woodall, W.1
Ncube, M.2
-
26
-
-
0035427805
-
Fault diagnosis with multivariate statistical models part I: using steady state fault signatures
-
Yoon S., MacGregor J. Fault diagnosis with multivariate statistical models part I: using steady state fault signatures. Journal of Process Control 2001, 11:387-400.
-
(2001)
Journal of Process Control
, vol.11
, pp. 387-400
-
-
Yoon, S.1
MacGregor, J.2
-
27
-
-
58749115727
-
Enhanced statistical analysis of nonlinear process using KPCA, KICA and SVM
-
Zhang Y. Enhanced statistical analysis of nonlinear process using KPCA, KICA and SVM. Chemical Engineering Science 2009, 64:801-811.
-
(2009)
Chemical Engineering Science
, vol.64
, pp. 801-811
-
-
Zhang, Y.1
-
28
-
-
77954386508
-
Fault detection of non-Gaussian processes based on modified independent component analysis
-
Zhang Y., Zhang Y. Fault detection of non-Gaussian processes based on modified independent component analysis. Chemical Engineering Science 2010, 65:4630-4639.
-
(2010)
Chemical Engineering Science
, vol.65
, pp. 4630-4639
-
-
Zhang, Y.1
Zhang, Y.2
|