메뉴 건너뛰기




Volumn 66, Issue 20, 2011, Pages 4488-4498

Fault detection, identification and diagnosis using CUSUM based PCA

Author keywords

Fault detection and diagnosis; Parameter identification; PCA; Process control; Safety; Systems engineering

Indexed keywords

CONTRIBUTION PLOTS; CUMULATIVE SUMS; FAULT DETECTION AND DIAGNOSIS; FAULT ISOLATION; FAULT SIGNATURE; HISTORICAL DATA; PCA; PCA MODEL; Q STATISTICS; STATISTICAL MONITORING; TENNESSEE EASTMAN PROCESS;

EID: 80051697507     PISSN: 00092509     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ces.2011.05.028     Document Type: Article
Times cited : (99)

References (28)
  • 1
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process monitoring
    • Bakshi B.R. Multiscale PCA with application to multivariate statistical process monitoring. AIChE Journal 1998, 44:1596-1610.
    • (1998) AIChE Journal , vol.44 , pp. 1596-1610
    • Bakshi, B.R.1
  • 3
    • 47249154814 scopus 로고    scopus 로고
    • Self-organizing self-clustering network: a strategy for unsupervised pattern classification with its application to fault diagnosis
    • Bhushan B., Romagnoli J.A. Self-organizing self-clustering network: a strategy for unsupervised pattern classification with its application to fault diagnosis. Industrial and Engineering Chemistry Research 2008, 47:4209-4219.
    • (2008) Industrial and Engineering Chemistry Research , vol.47 , pp. 4209-4219
    • Bhushan, B.1    Romagnoli, J.A.2
  • 4
    • 80051686922 scopus 로고    scopus 로고
    • Fault detection using CUSUM based techniques with application to the Tennessee Eastman Process.
    • In: Proceeding of the 9th International Symposium on Dynamic and Control of Process systems (DYCOPS), Leuven, Belgium.
    • Bin Shams, M., Budman, H., Duever, T., 2010. Fault detection using CUSUM based techniques with application to the Tennessee Eastman Process. In: Proceeding of the 9th International Symposium on Dynamic and Control of Process systems (DYCOPS), Leuven, Belgium.
    • (2010)
    • Bin Shams, M.1    Budman, H.2    Duever, T.3
  • 5
    • 0001393743 scopus 로고
    • An approach to the probability distribution of CUSUM Run length
    • Brook D., Evans D.A. An approach to the probability distribution of CUSUM Run length. Biometrika 1972, 59:539-549.
    • (1972) Biometrika , vol.59 , pp. 539-549
    • Brook, D.1    Evans, D.A.2
  • 6
    • 77749340024 scopus 로고    scopus 로고
    • Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes
    • Cheng C.Y., Hsu C.C., Chen M.C. Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes. Industrial and Engineering Chemistry Research 2010, 49:2254-2262.
    • (2010) Industrial and Engineering Chemistry Research , vol.49 , pp. 2254-2262
    • Cheng, C.Y.1    Hsu, C.C.2    Chen, M.C.3
  • 8
    • 0037470096 scopus 로고    scopus 로고
    • Process monitoring using causal map and multivariate statistics: fault detection and identification
    • Chiang L.H., Braatz R. Process monitoring using causal map and multivariate statistics: fault detection and identification. Chemometrics and Intelligent laboratory Systems 2003, 65:159-178.
    • (2003) Chemometrics and Intelligent laboratory Systems , vol.65 , pp. 159-178
    • Chiang, L.H.1    Braatz, R.2
  • 10
    • 72149132838 scopus 로고    scopus 로고
    • Subspace method aided-driven design of fault detection and isolation system
    • Ding S.X., Zhang P., Naik A., Ding E.L., Huang B. Subspace method aided-driven design of fault detection and isolation system. Journal of Process Control 2009, 19:1496-1510.
    • (2009) Journal of Process Control , vol.19 , pp. 1496-1510
    • Ding, S.X.1    Zhang, P.2    Naik, A.3    Ding, E.L.4    Huang, B.5
  • 11
    • 0032049479 scopus 로고    scopus 로고
    • Joint diagnosis of process and sensor faults using principal component analysis
    • Dunia R., Qin J. Joint diagnosis of process and sensor faults using principal component analysis. Control Engineering Practice 1998, 6:457-469.
    • (1998) Control Engineering Practice , vol.6 , pp. 457-469
    • Dunia, R.1    Qin, J.2
  • 14
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • Kramer M.A. Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal 1991, 37:233-343.
    • (1991) AIChE Journal , vol.37 , pp. 233-343
    • Kramer, M.A.1
  • 16
    • 3042632377 scopus 로고    scopus 로고
    • Statistical monitoring of dynamic processes based on dynamic independent component analysis
    • Lee J.M., Yoo C., Lee I. Statistical monitoring of dynamic processes based on dynamic independent component analysis. Chemical Engineering Science 2004, 59:2995-3006.
    • (2004) Chemical Engineering Science , vol.59 , pp. 2995-3006
    • Lee, J.M.1    Yoo, C.2    Lee, I.3
  • 18
    • 0029267381 scopus 로고
    • Statistical process control of multivariate processes
    • MacGregor J.F., Kourti T. Statistical process control of multivariate processes. Control Engineering Practice 1995, 3:403-414.
    • (1995) Control Engineering Practice , vol.3 , pp. 403-414
    • MacGregor, J.F.1    Kourti, T.2
  • 21
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Qin S.J. Statistical process monitoring: basics and beyond. Journal of Chemometrics 2003, 54:480-502.
    • (2003) Journal of Chemometrics , vol.54 , pp. 480-502
    • Qin, S.J.1
  • 22
    • 0031062026 scopus 로고    scopus 로고
    • Diagnosis of process disturbances by statistical distance and angle measures
    • Raich A., Cinar A. Diagnosis of process disturbances by statistical distance and angle measures. Computer and Chemical Engineering 1997, 21:661-673.
    • (1997) Computer and Chemical Engineering , vol.21 , pp. 661-673
    • Raich, A.1    Cinar, A.2
  • 24
    • 22344456074 scopus 로고    scopus 로고
    • Robust multi-scale principal components analysis with applications to process monitoring
    • Wang D., Romagnoli J.A. Robust multi-scale principal components analysis with applications to process monitoring. Journal of Process Control 2005, 15:869-882.
    • (2005) Journal of Process Control , vol.15 , pp. 869-882
    • Wang, D.1    Romagnoli, J.A.2
  • 25
    • 0022111936 scopus 로고
    • Multivariate CUSUM quality control procedures
    • Woodall W., Ncube M. Multivariate CUSUM quality control procedures. Technometrics 1985, 27:285-292.
    • (1985) Technometrics , vol.27 , pp. 285-292
    • Woodall, W.1    Ncube, M.2
  • 26
    • 0035427805 scopus 로고    scopus 로고
    • Fault diagnosis with multivariate statistical models part I: using steady state fault signatures
    • Yoon S., MacGregor J. Fault diagnosis with multivariate statistical models part I: using steady state fault signatures. Journal of Process Control 2001, 11:387-400.
    • (2001) Journal of Process Control , vol.11 , pp. 387-400
    • Yoon, S.1    MacGregor, J.2
  • 27
    • 58749115727 scopus 로고    scopus 로고
    • Enhanced statistical analysis of nonlinear process using KPCA, KICA and SVM
    • Zhang Y. Enhanced statistical analysis of nonlinear process using KPCA, KICA and SVM. Chemical Engineering Science 2009, 64:801-811.
    • (2009) Chemical Engineering Science , vol.64 , pp. 801-811
    • Zhang, Y.1
  • 28
    • 77954386508 scopus 로고    scopus 로고
    • Fault detection of non-Gaussian processes based on modified independent component analysis
    • Zhang Y., Zhang Y. Fault detection of non-Gaussian processes based on modified independent component analysis. Chemical Engineering Science 2010, 65:4630-4639.
    • (2010) Chemical Engineering Science , vol.65 , pp. 4630-4639
    • Zhang, Y.1    Zhang, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.