-
1
-
-
67650439330
-
Caloric restriction delays disease onset and mortality in rhesus monkeys
-
Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009;325:201-4.
-
(2009)
Science
, vol.325
, pp. 201-204
-
-
Colman, R.J.1
Anderson, R.M.2
Johnson, S.C.3
Kastman, E.K.4
Kosmatka, K.J.5
Beasley, T.M.6
Allison, D.B.7
Cruzen, C.8
Simmons, H.A.9
Kemnitz, J.W.10
Weindruch, R.11
-
2
-
-
2342647592
-
Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans
-
Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A 2004;101:6659-63.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 6659-6663
-
-
Fontana, L.1
Meyer, T.E.2
Klein, S.3
Holloszy, J.O.4
-
3
-
-
30344435943
-
Long-term caloric restriction ameliorates the decline in diastolic function in humans
-
Meyer TE, Kovacs SJ, Ehsani AA, Klein S, Holloszy JO, Fontana L. Long-term caloric restriction ameliorates the decline in diastolic function in humans. J Am Coll Cardiol 2006;47:398-402.
-
(2006)
J Am Coll Cardiol
, vol.47
, pp. 398-402
-
-
Meyer, T.E.1
Kovacs, S.J.2
Ehsani, A.A.3
Klein, S.4
Holloszy, J.O.5
Fontana, L.6
-
4
-
-
36248975293
-
SIRT1 transgenic mice show phenotypes resembling calorie restriction
-
Bordone L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A, Steele AD, Crowe H, Marmor S, Luo J, Gu W, Guarente L. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 2007;6:759-67.
-
(2007)
Aging Cell
, vol.6
, pp. 759-767
-
-
Bordone, L.1
Cohen, D.2
Robinson, A.3
Motta, M.C.4
van Veen, E.5
Czopik, A.6
Steele, A.D.7
Crowe, H.8
Marmor, S.9
Luo, J.10
Gu, W.11
Guarente, L.12
-
5
-
-
45549098657
-
SirT1 regulates energy metabolism and response to caloric restriction in mice
-
Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C, Moffat C, Crawford S, Saliba S, Jardine K, Xuan J, Evans M, Harper ME, McBurney MW. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One 2008;3:e1759.
-
(2008)
PLoS One
, vol.3
-
-
Boily, G.1
Seifert, E.L.2
Bevilacqua, L.3
He, X.H.4
Sabourin, G.5
Estey, C.6
Moffat, C.7
Crawford, S.8
Saliba, S.9
Jardine, K.10
Xuan, J.11
Evans, M.12
Harper, M.E.13
McBurney, M.W.14
-
6
-
-
33947710793
-
Calorie restriction increases muscle mitochondrial biogenesis in healthy humans
-
CALERIE Pennington Team.
-
Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, Smith SR, Ravussin E; CALERIE Pennington Team. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 2007;4:e76.
-
(2007)
PLoS Med
, vol.4
-
-
Civitarese, A.E.1
Carling, S.2
Heilbronn, L.K.3
Hulver, M.H.4
Ukropcova, B.5
Deutsch, W.A.6
Smith, S.R.7
Ravussin, E.8
-
7
-
-
77951174682
-
Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome: potential biochemical mechanisms
-
de Kreutzenberg SV, Ceolotto G, Papparella I, Bortoluzzi A, Semplicini A, Dalla Man C, Cobelli C, Fadini GP, Avogaro A. Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome: potential biochemical mechanisms. Diabetes 2010;59:1006-15.
-
(2010)
Diabetes
, vol.59
, pp. 1006-1015
-
-
de Kreutzenberg, S.V.1
Ceolotto, G.2
Papparella, I.3
Bortoluzzi, A.4
Semplicini, A.5
Dalla Man, C.6
Cobelli, C.7
Fadini, G.P.8
Avogaro, A.9
-
8
-
-
82255164629
-
SirT1 regulates adipose tissue inflammation
-
Gillum MP, Kotas ME, Erion DM, Kursawe R, Chatterjee P, Nead KT, Muise ES, Hsiao JJ, Frederick DW, Yonemitsu S, Banks AS, Qiang L, Bhanot S, Olefsky JM, Sears DD, Caprio S, Shulman GI. SirT1 regulates adipose tissue inflammation. Diabetes 2011;60:3235-45.
-
(2011)
Diabetes
, vol.60
, pp. 3235-3245
-
-
Gillum, M.P.1
Kotas, M.E.2
Erion, D.M.3
Kursawe, R.4
Chatterjee, P.5
Nead, K.T.6
Muise, E.S.7
Hsiao, J.J.8
Frederick, D.W.9
Yonemitsu, S.10
Banks, A.S.11
Qiang, L.12
Bhanot, S.13
Olefsky, J.M.14
Sears, D.D.15
Caprio, S.16
Shulman, G.I.17
-
9
-
-
79951726016
-
Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1
-
Frojdo S, Durand C, Molin L, Carey AL, El-Osta A, Kingwell BA, Febbraio MA, Solari F, Vidal H, Pirola L. Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1. Mol Cell Endocrinol 2011;335:166-76.
-
(2011)
Mol Cell Endocrinol
, vol.335
, pp. 166-176
-
-
Frojdo, S.1
Durand, C.2
Molin, L.3
Carey, A.L.4
El-Osta, A.5
Kingwell, B.A.6
Febbraio, M.A.7
Solari, F.8
Vidal, H.9
Pirola, L.10
-
10
-
-
84872008953
-
Sirtuins and renal diseases: relationship with aging and diabetic nephropathy
-
Kitada M, Kume S, Takeda-Watanabe A, Kanasaki K, Koya D. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clin Sci (Lond) 2013;124:153-64.
-
(2013)
Clin Sci (Lond)
, vol.124
, pp. 153-164
-
-
Kitada, M.1
Kume, S.2
Takeda-Watanabe, A.3
Kanasaki, K.4
Koya, D.5
-
11
-
-
33244486764
-
Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells
-
Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, McDonagh T, Lemieux M, McBurney M, Szilvasi A, Easlon EJ, Lin SJ, Guarente L. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 2006;4:e31.
-
(2006)
PLoS Biol
, vol.4
-
-
Bordone, L.1
Motta, M.C.2
Picard, F.3
Robinson, A.4
Jhala, U.S.5
Apfeld, J.6
McDonagh, T.7
Lemieux, M.8
McBurney, M.9
Szilvasi, A.10
Easlon, E.J.11
Lin, S.J.12
Guarente, L.13
-
12
-
-
63249112836
-
Overexpression of SIRT1 protects pancreatic beta-cells against cytokine toxicity by suppressing the nuclear factor-kappaB signaling pathway
-
Lee JH, Song MY, Song EK, Kim EK, Moon WS, Han MK, Park JW, Kwon KB, Park BH. Overexpression of SIRT1 protects pancreatic beta-cells against cytokine toxicity by suppressing the nuclear factor-kappaB signaling pathway. Diabetes 2009;58:344-51.
-
(2009)
Diabetes
, vol.58
, pp. 344-351
-
-
Lee, J.H.1
Song, M.Y.2
Song, E.K.3
Kim, E.K.4
Moon, W.S.5
Han, M.K.6
Park, J.W.7
Kwon, K.B.8
Park, B.H.9
-
13
-
-
3042681042
-
Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma
-
Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004;429:771-6.
-
(2004)
Nature
, vol.429
, pp. 771-776
-
-
Picard, F.1
Kurtev, M.2
Chung, N.3
Topark-Ngarm, A.4
Senawong, T.5
Machado De Oliveira, R.6
Leid, M.7
McBurney, M.W.8
Guarente, L.9
-
14
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
-
Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, Alt FW, Wu Z, Puigserver P. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 2007;26:1913-23.
-
(2007)
EMBO J
, vol.26
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
Rodgers, J.T.2
Bare, O.3
Lerin, C.4
Kim, S.H.5
Mostoslavsky, R.6
Alt, F.W.7
Wu, Z.8
Puigserver, P.9
-
15
-
-
84878574279
-
Sirtuins as possible drug targets in type 2 diabetes
-
Kitada M, Kume S, Kanasaki K, Takeda-Watanabe A, Koya D. Sirtuins as possible drug targets in type 2 diabetes. Curr Drug Targets 2013;14:622-36.
-
(2013)
Curr Drug Targets
, vol.14
, pp. 622-636
-
-
Kitada, M.1
Kume, S.2
Kanasaki, K.3
Takeda-Watanabe, A.4
Koya, D.5
-
16
-
-
25144454432
-
Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice
-
Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C, Permutt MA, Imai S. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005;2:105-17.
-
(2005)
Cell Metab
, vol.2
, pp. 105-117
-
-
Moynihan, K.A.1
Grimm, A.A.2
Plueger, M.M.3
Bernal-Mizrachi, E.4
Ford, E.5
Cras-Meneur, C.6
Permutt, M.A.7
Imai, S.8
-
17
-
-
38349112898
-
Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice
-
Ramsey KM, Mills KF, Satoh A, Imai S. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell 2008;7:78-88.
-
(2008)
Aging Cell
, vol.7
, pp. 78-88
-
-
Ramsey, K.M.1
Mills, K.F.2
Satoh, A.3
Imai, S.4
-
18
-
-
34548857700
-
SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B
-
Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X, Zhai Q. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 2007;6:307-19.
-
(2007)
Cell Metab
, vol.6
, pp. 307-319
-
-
Sun, C.1
Zhang, F.2
Ge, X.3
Yan, T.4
Chen, X.5
Shi, X.6
Zhai, Q.7
-
19
-
-
36348974168
-
The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation
-
Zhang J. The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. J Biol Chem 2007;282:34356-64.
-
(2007)
J Biol Chem
, vol.282
, pp. 34356-64
-
-
Zhang, J.1
-
20
-
-
77956677458
-
Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress
-
Schug TT, Xu Q, Gao H, Peres-da-Silva A, Draper DW, Fessler MB, Purushotham A, Li X. Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress. Mol Cell Biol 2010;30:4712-21.
-
(2010)
Mol Cell Biol
, vol.30
, pp. 4712-4721
-
-
Schug, T.T.1
Xu, Q.2
Gao, H.3
Peres-da-Silva, A.4
Draper, D.W.5
Fessler, M.B.6
Purushotham, A.7
Li, X.8
-
21
-
-
61749095297
-
SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes
-
Yoshizaki T, Milne JC, Imamura T, Schenk S, Sonoda N, Babendure JL, Lu JC, Smith JJ, Jirousek MR, Olefsky JM. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol 2009;29:1363-74.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 1363-1374
-
-
Yoshizaki, T.1
Milne, J.C.2
Imamura, T.3
Schenk, S.4
Sonoda, N.5
Babendure, J.L.6
Lu, J.C.7
Smith, J.J.8
Jirousek, M.R.9
Olefsky, J.M.10
-
22
-
-
77349087078
-
SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity
-
Yoshizaki T, Schenk S, Imamura T, Babendure JL, Sonoda N, Bae EJ, Oh DY, Lu M, Milne JC, Westphal C, Bandyopadhyay G, Olefsky JM. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am J Physiol Endocrinol Metab 2010;298:E419-28.
-
(2010)
Am J Physiol Endocrinol Metab
, vol.298
-
-
Yoshizaki, T.1
Schenk, S.2
Imamura, T.3
Babendure, J.L.4
Sonoda, N.5
Bae, E.J.6
Oh, D.Y.7
Lu, M.8
Milne, J.C.9
Westphal, C.10
Bandyopadhyay, G.11
Olefsky, J.M.12
-
23
-
-
84867627541
-
SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells
-
Takeda-Watanabe A, Kitada M, Kanasaki K, Koya D. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells. Biochem Biophys Res Commun 2012;427:191-6.
-
(2012)
Biochem Biophys Res Commun
, vol.427
, pp. 191-196
-
-
Takeda-Watanabe, A.1
Kitada, M.2
Kanasaki, K.3
Koya, D.4
-
24
-
-
84859400813
-
Angiogenic deficiency and adipose tissue dysfunction are associated with macrophage malfunction in SIRT1-/- mice
-
Xu F, Burk D, Gao Z, Yin J, Zhang X, Weng J, Ye J. Angiogenic deficiency and adipose tissue dysfunction are associated with macrophage malfunction in SIRT1-/- mice. Endocrinology 2012;153:1706-16.
-
(2012)
Endocrinology
, vol.153
, pp. 1706-1716
-
-
Xu, F.1
Burk, D.2
Gao, Z.3
Yin, J.4
Zhang, X.5
Weng, J.6
Ye, J.7
-
25
-
-
84864615516
-
Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppar?
-
Qiang L, Wang L, Kon N, Zhao W, Lee S, Zhang Y, Rosenbaum M, Zhao Y, Gu W, Farmer SR, Accili D. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppar?. Cell 2012;150:620-32.
-
(2012)
Cell
, vol.150
, pp. 620-632
-
-
Qiang, L.1
Wang, L.2
Kon, N.3
Zhao, W.4
Lee, S.5
Zhang, Y.6
Rosenbaum, M.7
Zhao, Y.8
Gu, W.9
Farmer, S.R.10
Accili, D.11
-
26
-
-
17944365228
-
The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity
-
Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001;7:941-6.
-
(2001)
Nat Med
, vol.7
, pp. 941-946
-
-
Yamauchi, T.1
Kamon, J.2
Waki, H.3
Terauchi, Y.4
Kubota, N.5
Hara, K.6
Mori, Y.7
Ide, T.8
Murakami, K.9
Tsuboyama-Kasaoka, N.10
Ezaki, O.11
Akanuma, Y.12
Gavrilova, O.13
Vinson, C.14
Reitman, M.L.15
Kagechika, H.16
Shudo, K.17
Yoda, M.18
Nakano, Y.19
Tobe, K.20
Nagai, R.21
Kimura, S.22
Tomita, M.23
Froguel, P.24
Kadowaki, T.25
more..
-
27
-
-
0036063777
-
Diet-induced insulin resistance in mice lacking adiponectin/ACRP30
-
Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 2002;8:731-7.
-
(2002)
Nat Med
, vol.8
, pp. 731-737
-
-
Maeda, N.1
Shimomura, I.2
Kishida, K.3
Nishizawa, H.4
Matsuda, M.5
Nagaretani, H.6
Furuyama, N.7
Kondo, H.8
Takahashi, M.9
Arita, Y.10
Komuro, R.11
Ouchi, N.12
Kihara, S.13
Tochino, Y.14
Okutomi, K.15
Horie, M.16
Takeda, S.17
Aoyama, T.18
Funahashi, T.19
Matsuzawa, Y.20
more..
-
28
-
-
33845985335
-
SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex
-
Qiao L, Shao J. SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. J Biol Chem 2006;281:39915-24.
-
(2006)
J Biol Chem
, vol.281
, pp. 39915-24
-
-
Qiao, L.1
Shao, J.2
-
29
-
-
77951872309
-
Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1
-
Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, Yamaguchi M, Namiki S, Nakayama R, Tabata M, Ogata H, Kubota N, Takamoto I, Hayashi YK, Yamauchi N, Waki H, Fukayama M, Nishino I, Tokuyama K, Ueki K, Oike Y, Ishii S, Hirose K, Shimizu T, Touhara K, Kadowaki T. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature 2010;464:1313-9.
-
(2010)
Nature
, vol.464
, pp. 1313-1319
-
-
Iwabu, M.1
Yamauchi, T.2
Okada-Iwabu, M.3
Sato, K.4
Nakagawa, T.5
Funata, M.6
Yamaguchi, M.7
Namiki, S.8
Nakayama, R.9
Tabata, M.10
Ogata, H.11
Kubota, N.12
Takamoto, I.13
Hayashi, Y.K.14
Yamauchi, N.15
Waki, H.16
Fukayama, M.17
Nishino, I.18
Tokuyama, K.19
Ueki, K.20
Oike, Y.21
Ishii, S.22
Hirose, K.23
Shimizu, T.24
Touhara, K.25
Kadowaki, T.26
more..
-
30
-
-
1642377274
-
Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes
-
Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 2004;350:664-71.
-
(2004)
N Engl J Med
, vol.350
, pp. 664-671
-
-
Petersen, K.F.1
Dufour, S.2
Befroy, D.3
Garcia, R.4
Shulman, G.I.5
-
31
-
-
33847733103
-
Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions
-
Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, Okada-Iwabu M, Kawamoto S, Kubota N, Kubota T, Ito Y, Kamon J, Tsuchida A, Kumagai K, Kozono H, Hada Y, Ogata H, Tokuyama K, Tsunoda M, Ide T, Murakami K, Awazawa M, Takamoto I, Froguel P, Hara K, Tobe K, Nagai R, Ueki K, Kadowaki T. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med 2007;13:332-9.
-
(2007)
Nat Med
, vol.13
, pp. 332-339
-
-
Yamauchi, T.1
Nio, Y.2
Maki, T.3
Kobayashi, M.4
Takazawa, T.5
Iwabu, M.6
Okada-Iwabu, M.7
Kawamoto, S.8
Kubota, N.9
Kubota, T.10
Ito, Y.11
Kamon, J.12
Tsuchida, A.13
Kumagai, K.14
Kozono, H.15
Hada, Y.16
Ogata, H.17
Tokuyama, K.18
Tsunoda, M.19
Ide, T.20
Murakami, K.21
Awazawa, M.22
Takamoto, I.23
Froguel, P.24
Hara, K.25
Tobe, K.26
Nagai, R.27
Ueki, K.28
Kadowaki, T.29
more..
-
32
-
-
0035957375
-
Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1
-
Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, Kelly DP, Spiegelman BM. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci U S A 2001;98:3820-5.
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, pp. 3820-3825
-
-
Michael, L.F.1
Wu, Z.2
Cheatham, R.B.3
Puigserver, P.4
Adelmant, G.5
Lehman, J.J.6
Kelly, D.P.7
Spiegelman, B.M.8
-
33
-
-
27144506185
-
The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
-
Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P, Takemori H, Montminy M. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 2005;437:1109-11.
-
(2005)
Nature
, vol.437
, pp. 1109-1111
-
-
Koo, S.H.1
Flechner, L.2
Qi, L.3
Zhang, X.4
Screaton, R.A.5
Jeffries, S.6
Hedrick, S.7
Xu, W.8
Boussouar, F.9
Brindle, P.10
Takemori, H.11
Montminy, M.12
-
34
-
-
56249100986
-
A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange
-
Liu Y, Dentin R, Chen D, Hedrick S, Ravnskjaer K, Schenk S, Milne J, Meyers DJ, Cole P, Yates J 3rd, Olefsky J, Guarente L, Montminy M. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 2008;456:269-73.
-
(2008)
Nature
, vol.456
, pp. 269-273
-
-
Liu, Y.1
Dentin, R.2
Chen, D.3
Hedrick, S.4
Ravnskjaer, K.5
Schenk, S.6
Milne, J.7
Meyers, D.J.8
Cole, P.9
Yates, J.10
Olefsky, J.11
Guarente, L.12
Montminy, M.13
-
35
-
-
52749091816
-
SirT1 gain of function increases energy efficiency and prevents diabetes in mice
-
Banks AS, Kon N, Knight C, Matsumoto M, Gutierrez-Juarez R, Rossetti L, Gu W, Accili D. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 2008;8:333-41.
-
(2008)
Cell Metab
, vol.8
, pp. 333-341
-
-
Banks, A.S.1
Kon, N.2
Knight, C.3
Matsumoto, M.4
Gutierrez-Juarez, R.5
Rossetti, L.6
Gu, W.7
Accili, D.8
-
36
-
-
80555146753
-
Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance
-
Wang RH, Kim HS, Xiao C, Xu X, Gavrilova O, Deng CX. Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J Clin Invest 2011;121:4477-90.
-
(2011)
J Clin Invest
, vol.121
, pp. 4477-4490
-
-
Wang, R.H.1
Kim, H.S.2
Xiao, C.3
Xu, X.4
Gavrilova, O.5
Deng, C.X.6
-
37
-
-
46249100836
-
Tissue-specific regulation of SIRT1 by calorie restriction
-
Chen D, Bruno J, Easlon E, Lin SJ, Cheng HL, Alt FW, Guarente L. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev 2008;22:1753-7.
-
(2008)
Genes Dev
, vol.22
, pp. 1753-1757
-
-
Chen, D.1
Bruno, J.2
Easlon, E.3
Lin, S.J.4
Cheng, H.L.5
Alt, F.W.6
Guarente, L.7
-
38
-
-
34547906123
-
Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1
-
Rodgers JT, Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci U S A 2007;104:12861-6.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 12861-6
-
-
Rodgers, J.T.1
Puigserver, P.2
-
39
-
-
67650488877
-
SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats
-
Erion DM, Yonemitsu S, Nie Y, Nagai Y, Gillum MP, Hsiao JJ, Iwasaki T, Stark R, Weismann D, Yu XX, Murray SF, Bhanot S, Monia BP, Horvath TL, Gao Q, Samuel VT, Shulman GI. SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats. Proc Natl Acad Sci U S A 2009;106:11288-93.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 11288-93
-
-
Erion, D.M.1
Yonemitsu, S.2
Nie, Y.3
Nagai, Y.4
Gillum, M.P.5
Hsiao, J.J.6
Iwasaki, T.7
Stark, R.8
Weismann, D.9
Yu, X.X.10
Murray, S.F.11
Bhanot, S.12
Monia, B.P.13
Horvath, T.L.14
Gao, Q.15
Samuel, V.T.16
Shulman, G.I.17
-
40
-
-
64049109876
-
STAT3 inhibition of gluconeogenesis is downregulated by SirT1
-
Nie Y, Erion DM, Yuan Z, Dietrich M, Shulman GI, Horvath TL, Gao Q. STAT3 inhibition of gluconeogenesis is downregulated by SirT1. Nat Cell Biol 2009;11:492-500.
-
(2009)
Nat Cell Biol
, vol.11
, pp. 492-500
-
-
Nie, Y.1
Erion, D.M.2
Yuan, Z.3
Dietrich, M.4
Shulman, G.I.5
Horvath, T.L.6
Gao, Q.7
-
41
-
-
77958595135
-
SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism
-
Ponugoti B, Kim DH, Xiao Z, Smith Z, Miao J, Zang M, Wu SY, Chiang CM, Veenstra TD, Kemper JK. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem 2010;285:33959-70.
-
(2010)
J Biol Chem
, vol.285
, pp. 33959-70
-
-
Ponugoti, B.1
Kim, D.H.2
Xiao, Z.3
Smith, Z.4
Miao, J.5
Zang, M.6
Wu, S.Y.7
Chiang, C.M.8
Veenstra, T.D.9
Kemper, J.K.10
-
42
-
-
34948883324
-
SIRT1 deacetylates and positively regulates the nuclear receptor LXR
-
Li X, Zhang S, Blander G, Tse JG, Krieger M, Guarente L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell 2007;28:91-106.
-
(2007)
Mol Cell
, vol.28
, pp. 91-106
-
-
Li, X.1
Zhang, S.2
Blander, G.3
Tse, J.G.4
Krieger, M.5
Guarente, L.6
-
43
-
-
70350606061
-
FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states
-
Kemper JK, Xiao Z, Ponugoti B, Miao J, Fang S, Kanamaluru D, Tsang S, Wu SY, Chiang CM, Veenstra TD. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab 2009;10:392-404.
-
(2009)
Cell Metab
, vol.10
, pp. 392-404
-
-
Kemper, J.K.1
Xiao, Z.2
Ponugoti, B.3
Miao, J.4
Fang, S.5
Kanamaluru, D.6
Tsang, S.7
Wu, S.Y.8
Chiang, C.M.9
Veenstra, T.D.10
-
44
-
-
77954515012
-
Lack of SIRT1 (Mammalian Sirtuin 1) activity leads to liver steatosis in the SIRT1+/- mice: a role of lipid mobilization and inflammation
-
Xu F, Gao Z, Zhang J, Rivera CA, Yin J, Weng J, Ye J. Lack of SIRT1 (Mammalian Sirtuin 1) activity leads to liver steatosis in the SIRT1+/- mice: a role of lipid mobilization and inflammation. Endocrinology 2010;151:2504-14.
-
(2010)
Endocrinology
, vol.151
, pp. 2504-2514
-
-
Xu, F.1
Gao, Z.2
Zhang, J.3
Rivera, C.A.4
Yin, J.5
Weng, J.6
Ye, J.7
-
45
-
-
47749128879
-
Sirt1 protects against high-fat diet-induced metabolic damage
-
Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M, Tschop MH. Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci U S A 2008;105:9793-8.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 9793-9798
-
-
Pfluger, P.T.1
Herranz, D.2
Velasco-Miguel, S.3
Serrano, M.4
Tschop, M.H.5
-
46
-
-
80455143206
-
Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans
-
Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, Hoeks J, van der Krieken S, Ryu D, Kersten S, Moonen-Kornips E, Hesselink MK, Kunz I, Schrauwen-Hinderling VB, Blaak EE, Auwerx J, Schrauwen P. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 2011;14:612-22.
-
(2011)
Cell Metab
, vol.14
, pp. 612-622
-
-
Timmers, S.1
Konings, E.2
Bilet, L.3
Houtkooper, R.H.4
van de Weijer, T.5
Goossens, G.H.6
Hoeks, J.7
van der Krieken, S.8
Ryu, D.9
Kersten, S.10
Moonen-Kornips, E.11
Hesselink, M.K.12
Kunz, I.13
Schrauwen-Hinderling, V.B.14
Blaak, E.E.15
Auwerx, J.16
Schrauwen, P.17
-
47
-
-
33749999530
-
Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators
-
St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 2006;127:397-408.
-
(2006)
Cell
, vol.127
, pp. 397-408
-
-
St-Pierre, J.1
Drori, S.2
Uldry, M.3
Silvaggi, J.M.4
Rhee, J.5
Jäger, S.6
Handschin, C.7
Zheng, K.8
Lin, J.9
Yang, W.10
Simon, D.K.11
Bachoo, R.12
Spiegelman, B.M.13
-
48
-
-
46349096040
-
Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression
-
Hasegawa K, Wakino S, Yoshioka K, Tatematsu S, Hara Y, Minakuchi H, Washida N, Tokuyama H, Hayashi K, Itoh H. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochem Biophys Res Commun 2008;372:51-6.
-
(2008)
Biochem Biophys Res Commun
, vol.372
, pp. 51-56
-
-
Hasegawa, K.1
Wakino, S.2
Yoshioka, K.3
Tatematsu, S.4
Hara, Y.5
Minakuchi, H.6
Washida, N.7
Tokuyama, H.8
Hayashi, K.9
Itoh, H.10
-
49
-
-
20844461135
-
Obesity and metabolic syndrome in circadian Clock mutant mice
-
Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 2005;308:1043-5.
-
(2005)
Science
, vol.308
, pp. 1043-1045
-
-
Turek, F.W.1
Joshu, C.2
Kohsaka, A.3
Lin, E.4
Ivanova, G.5
McDearmon, E.6
Laposky, A.7
Losee-Olson, S.8
Easton, A.9
Jensen, D.R.10
Eckel, R.H.11
Takahashi, J.S.12
Bass, J.13
-
50
-
-
35548930677
-
High-fat diet disrupts behavioral and molecular circadian rhythms in mice
-
Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, Turek FW, Bass J. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 2007;6:414-21.
-
(2007)
Cell Metab
, vol.6
, pp. 414-421
-
-
Kohsaka, A.1
Laposky, A.D.2
Ramsey, K.M.3
Estrada, C.4
Joshu, C.5
Kobayashi, Y.6
Turek, F.W.7
Bass, J.8
-
51
-
-
47549088250
-
The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008;134:329-40.
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
Kaluzova, M.2
Grimaldi, B.3
Sahar, S.4
Hirayama, J.5
Chen, D.6
Guarente, L.P.7
Sassone-Corsi, P.8
-
52
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008;134:317-28.
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
Gatfield, D.2
Stratmann, M.3
Reinke, H.4
Dibner, C.5
Kreppel, F.6
Mostoslavsky, R.7
Alt, F.W.8
Schibler, U.9
-
53
-
-
37249053976
-
CLOCK-mediated acetylation of BMAL1 controls circadian function
-
Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Sassone-Corsi P. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 2007;450:1086-90.
-
(2007)
Nature
, vol.450
, pp. 1086-1090
-
-
Hirayama, J.1
Sahar, S.2
Grimaldi, B.3
Tamaru, T.4
Takamatsu, K.5
Nakahata, Y.6
Sassone-Corsi, P.7
-
54
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bemis JE, Xie R, Disch JS, Ng PY, Nunes JJ, Lynch AV, Yang H, Galonek H, Israelian K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair DA, Olefsky JM, Jirousek MR, Elliott PJ, Westphal CH. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007;450:712-6.
-
(2007)
Nature
, vol.450
, pp. 712-716
-
-
Milne, J.C.1
Lambert, P.D.2
Schenk, S.3
Carney, D.P.4
Smith, J.J.5
Gagne, D.J.6
Jin, L.7
Boss, O.8
Perni, R.B.9
Vu, C.B.10
Bemis, J.E.11
Xie, R.12
Disch, J.S.13
Ng, P.Y.14
Nunes, J.J.15
Lynch, A.V.16
Yang, H.17
Galonek, H.18
Israelian, K.19
Choy, W.20
Iffland, A.21
Lavu, S.22
Medvedik, O.23
Sinclair, D.A.24
Olefsky, J.M.25
Jirousek, M.R.26
Elliott, P.J.27
Westphal, C.H.28
more..
-
55
-
-
80052910300
-
Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients
-
Brasnyo P, Molnar GA, Mohas M, Marko L, Laczy B, Cseh J, Mikolas E, Szijarto IA, Merei A, Halmai R, Meszaros LG, Sumegi B, Wittmann I. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br J Nutr 2011;106:383-9.
-
(2011)
Br J Nutr
, vol.106
, pp. 383-389
-
-
Brasnyo, P.1
Molnar, G.A.2
Mohas, M.3
Marko, L.4
Laczy, B.5
Cseh, J.6
Mikolas, E.7
Szijarto, I.A.8
Merei, A.9
Halmai, R.10
Meszaros, L.G.11
Sumegi, B.12
Wittmann, I.13
-
56
-
-
84871445402
-
Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance
-
Yoshino J, Conte C, Fontana L, Mittendorfer B, Imai S, Schechtman KB, Gu C, Kunz I, Rossi Fanelli F, Patterson BW, Klein S. Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metab 2012;16:658-64.
-
(2012)
Cell Metab
, vol.16
, pp. 658-664
-
-
Yoshino, J.1
Conte, C.2
Fontana, L.3
Mittendorfer, B.4
Imai, S.5
Schechtman, K.B.6
Gu, C.7
Kunz, I.8
Rossi Fanelli, F.9
Patterson, B.W.10
Klein, S.11
-
57
-
-
84875431034
-
High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition
-
Poulsen MM, Vestergaard PF, Clasen BF, Radko Y, Christensen LP, Stodkilde-Jorgensen H, Moller N, Jessen N, Pedersen SB, Jorgensen JO. High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes 2013;62:1186-95.
-
(2013)
Diabetes
, vol.62
, pp. 1186-1195
-
-
Poulsen, M.M.1
Vestergaard, P.F.2
Clasen, B.F.3
Radko, Y.4
Christensen, L.P.5
Stodkilde-Jorgensen, H.6
Moller, N.7
Jessen, N.8
Pedersen, S.B.9
Jorgensen, J.O.10
-
58
-
-
84874721105
-
Evidence for a common mechanism of SIRT1 regulation by allosteric activators
-
E SY
-
Hubbard BP, Gomes AP, Dai H, Li J, Case AW, Considine T, Riera TV, Lee JE, E SY, Lamming DW, Pentelute BL, Schuman ER, Stevens LA, Ling AJ, Armour SM, Michan S, Zhao H, Jiang Y, Sweitzer SM, Blum CA, Disch JS, Ng PY, Howitz KT, Rolo AP, Hamuro Y, Moss J, Perni RB, Ellis JL, Vlasuk GP, Sinclair DA. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 2013;339:1216-9.
-
(2013)
Science
, vol.339
, pp. 1216-1219
-
-
Hubbard, B.P.1
Gomes, A.P.2
Dai, H.3
Li, J.4
Case, A.W.5
Considine, T.6
Riera, T.V.7
Lee, J.E.8
Lamming, D.W.9
Pentelute, B.L.10
Schuman, E.R.11
Stevens, L.A.12
Ling, A.J.13
Armour, S.M.14
Michan, S.15
Zhao, H.16
Jiang, Y.17
Sweitzer, S.M.18
Blum, C.A.19
Disch, J.S.20
Ng, P.Y.21
Howitz, K.T.22
Rolo, A.P.23
Hamuro, Y.24
Moss, J.25
Perni, R.B.26
Ellis, J.L.27
Vlasuk, G.P.28
Sinclair, D.A.29
more..
-
59
-
-
84863011114
-
Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases
-
Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 2012;148:421-33.
-
(2012)
Cell
, vol.148
, pp. 421-433
-
-
Park, S.J.1
Ahmad, F.2
Philp, A.3
Baar, K.4
Williams, T.5
Luo, H.6
Ke, H.7
Rehmann, H.8
Taussig, R.9
Brown, A.L.10
Kim, M.K.11
Beaven, M.A.12
Burgin, A.B.13
Manganiello, V.14
Chung, J.H.15
-
60
-
-
84860477354
-
SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function
-
Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS, Hubbard BP, Varela AT, Davis JG, Varamini B, Hafner A, Moaddel R, Rolo AP, Coppari R, Palmeira CM, de Cabo R, Baur JA, Sinclair DA. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 2012;15:675-90.
-
(2012)
Cell Metab
, vol.15
, pp. 675-690
-
-
Price, N.L.1
Gomes, A.P.2
Ling, A.J.3
Duarte, F.V.4
Martin-Montalvo, A.5
North, B.J.6
Agarwal, B.7
Ye, L.8
Ramadori, G.9
Teodoro, J.S.10
Hubbard, B.P.11
Varela, A.T.12
Davis, J.G.13
Varamini, B.14
Hafner, A.15
Moaddel, R.16
Rolo, A.P.17
Coppari, R.18
Palmeira, C.M.19
de Cabo, R.20
Baur, J.A.21
Sinclair, D.A.22
more..
|