-
1
-
-
33748593098
-
Nanowire electronic and optoelectronic devices
-
Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Nanowire electronic and optoelectronic devices, Mater. Today, 9:18–27, 2006.
-
(2006)
Mater. Today
, vol.9
, pp. 18-27
-
-
Li, Y.1
Qian, F.2
Xiang, J.3
Lieber, C. M.4
-
2
-
-
33750190374
-
Semiconductor nanowires: optics and optoelectronics
-
R. Agarwal and C. M. Lieber, Semiconductor nanowires: optics and optoelectronics, Appl. Phys. A, 85:209–215, 2006.
-
(2006)
Appl. Phys. A
, vol.85
, pp. 209-215
-
-
Agarwal, R.1
Lieber, C. M.2
-
3
-
-
70349843701
-
Nanowire photonics
-
R. Yan, D. Gargas, and P. Yang, Nanowire photonics, Nat. Photon., 3:569–576, 2009.
-
(2009)
Nat. Photon
, vol.3
, pp. 569-576
-
-
Yan, R.1
Gargas, D.2
Yang, P.3
-
4
-
-
0005836651
-
Single- and multi-wall carbon nanotube field-effect transistors
-
R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett., 73:2447–2449, 1998.
-
(1998)
Appl. Phys. Lett
, vol.73
, pp. 2447-2449
-
-
Martel, R.1
Schmidt, T.2
Shea, H. R.3
Hertel, T.4
Avouris, P.5
-
5
-
-
0032492884
-
Room-temperature transistor based on a single carbon nanotube
-
S. J. Tans, A. R. M. Verschueren, and C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature, 393:49–52, 1998.
-
(1998)
Nature
, vol.393
, pp. 49-52
-
-
Tans, S. J.1
Verschueren, A. R. M.2
Dekker, C.3
-
6
-
-
0141741721
-
Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors
-
T. Someya, J. Small, P. Kim, C. Nuckolls, and J. T. Yardley, Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors, Nano Lett., 3:877–881, 2003.
-
(2003)
Nano Lett
, vol.3
, pp. 877-881
-
-
Someya, T.1
Small, J.2
Kim, P.3
Nuckolls, C.4
Yardley, J. T.5
-
7
-
-
0038161696
-
High performance silicon nanowire field effect transistors
-
Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, High performance silicon nanowire field effect transistors, Nano Lett., 3:149–152, 2003.
-
(2003)
Nano Lett
, vol.3
, pp. 149-152
-
-
Cui, Y.1
Zhong, Z.2
Wang, D.3
Wang, W. U.4
Lieber, C. M.5
-
8
-
-
29044440093
-
FinFET–a self-aligned double-gate MOSFET scalable to 20 nm
-
D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, FinFET–a self-aligned double-gate MOSFET scalable to 20 nm, IEEE Trans. Electron Devices, 47:2320–2325, 2000.
-
(2000)
IEEE Trans. Electron Devices
, vol.47
, pp. 2320-2325
-
-
Hisamoto, D.1
Lee, W.-C.2
Kedzierski, J.3
Takeuchi, H.4
Asano, K.5
Kuo, C.6
Anderson, E.7
King, T.-J.8
Bokor, J.9
Hu, C.10
-
9
-
-
0035340554
-
Sub-50 nm P-channel FinFET
-
X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor, and C. Hu, Sub-50 nm P-channel FinFET, IEEE Trans. Electron Devices, 48:880–886, 2001.
-
(2001)
IEEE Trans. Electron Devices
, vol.48
, pp. 880-886
-
-
Huang, X.1
Lee, W.-C.2
Kuo, C.3
Hisamoto, D.4
Chang, L.5
Kedzierski, J.6
Anderson, E.7
Takeuchi, H.8
Choi, Y.-K.9
Asano, K.10
Subramanian, V.11
King, T.-J.12
Bokor, J.13
Hu, C.14
-
10
-
-
33845714690
-
Thermal phenomena in nanoscale transistors
-
E. Pop and K. E. Goodson, Thermal phenomena in nanoscale transistors, J. Electron. Packag., 128:102–108, 2006.
-
(2006)
J. Electron. Packag
, vol.128
, pp. 102-108
-
-
Pop, E.1
Goodson, K. E.2
-
11
-
-
0037439322
-
Nanoscale thermal transport
-
D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, Nanoscale thermal transport, J. Appl. Phys., 93:793–818, 2003.
-
(2003)
J. Appl. Phys
, vol.93
, pp. 793-818
-
-
Cahill, D. G.1
Ford, W. K.2
Goodson, K. E.3
Mahan, G. D.4
Majumdar, A.5
Maris, H. J.6
Merlin, R.7
Phillpot, S. R.8
-
12
-
-
77957560335
-
Nanostructured thermoelectrics: Big efficiency gains from small features
-
C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, Nanostructured thermoelectrics: Big efficiency gains from small features, Adv. Mater., 22:3970–3980, 2010.
-
(2010)
Adv. Mater
, vol.22
, pp. 3970-3980
-
-
Vineis, C. J.1
Shakouri, A.2
Majumdar, A.3
Kanatzidis, M. G.4
-
13
-
-
0001173915
-
Effect of quantum-well structures on the thermoelectric figure of merit
-
L. D. Hicks and M. S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B, 47:12727–12731, 1993.
-
(1993)
Phys. Rev. B
, vol.47
, pp. 12727-12731
-
-
Hicks, L. D.1
Dresselhaus, M. S.2
-
15
-
-
0000292876
-
Thermoelectric power of bismuth nanowires
-
J. Heremans and C. M. Thrush, Thermoelectric power of bismuth nanowires, Phys. Rev. B, 59:12579–12583, 1999.
-
(1999)
Phys. Rev. B
, vol.59
, pp. 12579-12583
-
-
Heremans, J.1
Thrush, C. M.2
-
16
-
-
78049476760
-
1D-to-3D transition of phonon heat conduction in polyethylene using molecular dynamics simulations
-
A. Henry, G. Chen, S. J. Plimpton, and A. Thompson, 1D-to-3D transition of phonon heat conduction in polyethylene using molecular dynamics simulations, Phys. Rev. B, 82:144308, 2010.
-
(2010)
Phys. Rev. B
, vol.82
, pp. 144308
-
-
Henry, A.1
Chen, G.2
Plimpton, S. J.3
Thompson, A.4
-
18
-
-
0000144259
-
Direct thermal conductance measurements on suspended monocrystalline nanostructures
-
T. S. Tighe, J. M. Worlock, and M. L. Roukes, Direct thermal conductance measurements on suspended monocrystalline nanostructures, Appl. Phys. Lett., 70:2687–2689, 1997.
-
(1997)
Appl. Phys. Lett
, vol.70
, pp. 2687-2689
-
-
Tighe, T. S.1
Worlock, J. M.2
Roukes, M. L.3
-
19
-
-
0034720290
-
Measurement of the quantum of thermal conductance
-
K. Schwab, E. A. Henriksen, J. M. Worlock, and M. L. Roukes, Measurement of the quantum of thermal conductance, Nature, 404:974–977, 2000.
-
(2000)
Nature
, vol.404
, pp. 974-977
-
-
Schwab, K.1
Henriksen, E. A.2
Worlock, J. M.3
Roukes, M. L.4
-
20
-
-
0035151384
-
Thermal conductance through discrete quantum channels
-
K. Schwab, J. L. Arlett, J. M. Worlock, and M. L. Roukes, Thermal conductance through discrete quantum channels, Physica E, 9:60–68, 2001.
-
(2001)
Physica E
, vol.9
, pp. 60-68
-
-
Schwab, K.1
Arlett, J. L.2
Worlock, J. M.3
Roukes, M. L.4
-
21
-
-
11044224156
-
Quantized thermal conductance of dielectric quantum wires
-
L. G. C. Rego and G. Kirczenow, Quantized thermal conductance of dielectric quantum wires, Phys. Rev. Lett., 81:232–235, 1998.
-
(1998)
Phys. Rev. Lett
, vol.81
, pp. 232-235
-
-
Rego, L. G. C.1
Kirczenow, G.2
-
23
-
-
0035914983
-
Thermal transport measurements of individual multiwalled nanotubes
-
P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett., 87:215502, 2001.
-
(2001)
Phys. Rev. Lett
, vol.87
, pp. 215502
-
-
Kim, P.1
Shi, L.2
Majumdar, A.3
McEuen, P. L.4
-
24
-
-
0242349591
-
Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device
-
L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, and A. Majumdar, Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device, J. Heat Transfer, 125:881–888, 2003.
-
(2003)
J. Heat Transfer
, vol.125
, pp. 881-888
-
-
Shi, L.1
Li, D.2
Yu, C.3
Jang, W.4
Kim, D.5
Yao, Z.6
Kim, P.7
Majumdar, A.8
-
25
-
-
0142167495
-
Thermal conductivity of individual silicon nanowires
-
D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Thermal conductivity of individual silicon nanowires, Appl. Phys. Lett., 83:2934–2936, 2003.
-
(2003)
Appl. Phys. Lett
, vol.83
, pp. 2934-2936
-
-
Li, D.1
Wu, Y.2
Kim, P.3
Shi, L.4
Yang, P.5
Majumdar, A.6
-
26
-
-
34047181101
-
Four-probe measurements of the in-plane thermoelectric properties of nanofilms
-
A. Mavrokefalos, M. T. Pettes, F. Zhou, and L. Shi, Four-probe measurements of the in-plane thermoelectric properties of nanofilms, Rev. Sci. Instrum., 78:034901, 2007.
-
(2007)
Rev. Sci. Instrum
, vol.78
, pp. 034901
-
-
Mavrokefalos, A.1
Pettes, M. T.2
Zhou, F.3
Shi, L.4
-
27
-
-
34547349881
-
Determination of transport properties in chromium disilicide nanowires via combined thermoelectric and structural characterizations
-
F. Zhou, J. Szczech, M. T. Pettes, A. L. Moore, S. Jin, and L. Shi, Determination of transport properties in chromium disilicide nanowires via combined thermoelectric and structural characterizations, Nano Lett., 7:1649–1654, 2007.
-
(2007)
Nano Lett
, vol.7
, pp. 1649-1654
-
-
Zhou, F.1
Szczech, J.2
Pettes, M. T.3
Moore, A. L.4
Jin, S.5
Shi, L.6
-
28
-
-
84856938513
-
Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces
-
J. Yang, Y. Yang, S. W. Waltermire, X. Wu, H. Zhang, T. Gutu, Y. Jiang, Y. Chen, A. A. Zinn, R. Prasher, T. T. Xu, and D. Li, Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces, Nat. Nano, 7:91–95, 2012.
-
(2012)
Nat. Nano
, vol.7
, pp. 91-95
-
-
Yang, J.1
Yang, Y.2
Waltermire, S. W.3
Wu, X.4
Zhang, H.5
Gutu, T.6
Jiang, Y.7
Chen, Y.8
Zinn, A. A.9
Prasher, R.10
Xu, T. T.11
Li, D.12
-
29
-
-
66549116572
-
Thermoelectric and structural characterizations of individual electrodeposited bismuth telluride nanowires
-
A. Mavrokefalos, A. L. Moore, M. T. Pettes, L. Shi, W. Wang, and X. Li, Thermoelectric and structural characterizations of individual electrodeposited bismuth telluride nanowires, J. Appl. Phys., 105:104318, 2009.
-
(2009)
J. Appl. Phys
, vol.105
, pp. 104318
-
-
Mavrokefalos, A.1
Moore, A. L.2
Pettes, M. T.3
Shi, L.4
Wang, W.5
Li, X.6
-
30
-
-
73949127934
-
Thermal and structural characterizations of individual single-, double-, and multi-walled carbon nanotubes
-
M. T. Pettes and L. Shi, Thermal and structural characterizations of individual single-, double-, and multi-walled carbon nanotubes, Adv. Funct. Mater., 19:3918–3925, 2009.
-
(2009)
Adv. Funct. Mater
, vol.19
, pp. 3918-3925
-
-
Pettes, M. T.1
Shi, L.2
-
31
-
-
28344441232
-
Thermoelectric properties of individual electrodeposited bismuth telluride nanowires
-
J. Zhou, C. Jin, J. H. Seol, X. Li, and L. Shi, Thermoelectric properties of individual electrodeposited bismuth telluride nanowires, Appl. Phys. Lett., 87:133109, 2005.
-
(2005)
Appl. Phys. Lett
, vol.87
, pp. 133109
-
-
Zhou, J.1
Jin, C.2
Seol, J. H.3
Li, X.4
Shi, L.5
-
32
-
-
32244440456
-
Microstructure and composition of focused-ion-beam-deposited Pt contacts to GaN nanowires
-
D. Tham, C. Y. Nam, and J. E. Fischer, Microstructure and composition of focused-ion-beam-deposited Pt contacts to GaN nanowires, Adv. Mater., 18:290–294, 2006.
-
(2006)
Adv. Mater
, vol.18
, pp. 290-294
-
-
Tham, D.1
Nam, C. Y.2
Fischer, J. E.3
-
33
-
-
20844438165
-
Electrical conductivity of single CdS nanowire synthesized by aqueous chemical growth
-
Y. Long, Z. Chen, W. Wang, F. Bai, A. Jin, and C. Gu, Electrical conductivity of single CdS nanowire synthesized by aqueous chemical growth, Appl. Phys. Lett., 86:153102, 2005.
-
(2005)
Appl. Phys. Lett
, vol.86
, pp. 153102
-
-
Long, Y.1
Chen, Z.2
Wang, W.3
Bai, F.4
Jin, A.5
Gu, C.6
-
34
-
-
33746832816
-
Fabrication of GaN-based nanoscale device structures utilizing focused ion beam induced Pt deposition
-
A. Motayed, A. V. Davydov, M. D. Vaudin, I. Levin, J. Melngailis, and S. N. Mohammad, Fabrication of GaN-based nanoscale device structures utilizing focused ion beam induced Pt deposition, J. Appl. Phys., 100:024306, 2006.
-
(2006)
J. Appl. Phys
, vol.100
, pp. 024306
-
-
Motayed, A.1
Davydov, A. V.2
Vaudin, M. D.3
Levin, I.4
Melngailis, J.5
Mohammad, S. N.6
-
35
-
-
3242664527
-
Metal delocalization and surface decoration in direct-write nanolithography by electron beam induced deposition
-
V. Gopal, E. A. Stach, V. R. Radmilovic, and I. A. Mowat, Metal delocalization and surface decoration in direct-write nanolithography by electron beam induced deposition, Appl. Phys. Lett., 85:49–51, 2004.
-
(2004)
Appl. Phys. Lett
, vol.85
, pp. 49-51
-
-
Gopal, V.1
Stach, E. A.2
Radmilovic, V. R.3
Mowat, I. A.4
-
36
-
-
77958033784
-
Holey silicon as an efficient thermoelectric material
-
J. Tang, H.-T. Wang, D. H. Lee, M. Fardy, Z. Huo, T. P. Russell, and P. Yang, Holey silicon as an efficient thermoelectric material, Nano Lett., 10:4279–4283, 2010.
-
(2010)
Nano Lett
, vol.10
, pp. 4279-4283
-
-
Tang, J.1
Wang, H.-T.2
Lee, D. H.3
Fardy, M.4
Huo, Z.5
Russell, T. P.6
Yang, P.7
-
37
-
-
84879403488
-
Phonon transport and thermoelectricity in defect-engineered InAs nanowires
-
MRS Online Library, Cambridge
-
A. Weathers, A. L. Moore, M. T. Pettes, D. Salta, J. Kim, K. Dick, L. Samuelson, H. Linke, P. Caroff, and L. Shi, Phonon transport and thermoelectricity in defect-engineered InAs nanowires, Proc. MRS Spring Meeting, vol. 1404, MRS Online Library, Cambridge, 2012.
-
(2012)
Proc. MRS Spring Meeting
, vol.1404
-
-
Weathers, A.1
Moore, A. L.2
Pettes, M. T.3
Salta, D.4
Kim, J.5
Dick, K.6
Samuelson, L.7
Linke, H.8
Caroff, P.9
Shi, L.10
-
38
-
-
33645769762
-
Thermal contact resistance and thermal conductivity of a carbon nanofiber
-
C. Yu, S. Saha, J. Zhou, L. Shi, A. M. Cassell, B. A. Cruden, Q. Ngo, and J. Li, Thermal contact resistance and thermal conductivity of a carbon nanofiber, J. Heat Transfer, 128:234–239, 2006.
-
(2006)
J. Heat Transfer
, vol.128
, pp. 234-239
-
-
Yu, C.1
Saha, S.2
Zhou, J.3
Shi, L.4
Cassell, A. M.5
Cruden, B. A.6
Ngo, Q.7
Li, J.8
-
39
-
-
79251559993
-
On errors in thermal conductivity measurements of suspended and supported nanowires using micro-thermometer devices from low to high temperatures
-
A. L. Moore and L. Shi, On errors in thermal conductivity measurements of suspended and supported nanowires using micro-thermometer devices from low to high temperatures, Meas. Sci. Technol., 22:015103, 2011.
-
(2011)
Meas. Sci. Technol
, vol.22
, pp. 015103
-
-
Moore, A. L.1
Shi, L.2
-
40
-
-
29744438825
-
1 omega, 2 omega, and 3 omega methods for measurements of thermal properties
-
C. Dames and G. Chen, 1 omega, 2 omega, and 3 omega methods for measurements of thermal properties, Rev. Sci. Instrum., 76:124902, 2005.
-
(2005)
Rev. Sci. Instrum
, vol.76
, pp. 124902
-
-
Dames, C.1
Chen, G.2
-
41
-
-
83655192462
-
Thermal conductivity of Ge and Ge–Si core–shell nanowires in the phonon confinement regime
-
M. C. Wingert, Z. C. Y. Chen, E. Dechaumphai, J. Moon, J.-H. Kim, J. Xiang, and R. Chen, Thermal conductivity of Ge and Ge–Si core–shell nanowires in the phonon confinement regime, Nano Lett., 11:5507–5513, 2011.
-
(2011)
Nano Lett
, vol.11
, pp. 5507-5513
-
-
Wingert, M. C.1
Chen, Z. C. Y.2
Dechaumphai, E.3
Moon, J.4
Kim, J.-H.5
Xiang, J.6
Chen, R.7
-
42
-
-
0003470014
-
-
Brooks/Cole, Belmont, CA
-
N. Ashcroft and N. D. Mermin, Solid State Physics, Brooks/Cole, Belmont, CA, pp. 523–528, 1976.
-
(1976)
Solid State Physics
, pp. 523-528
-
-
Ashcroft, N.1
Mermin, N. D.2
-
44
-
-
78449275196
-
Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport
-
K. Hippalgaonkar, B. Huang, R. Chen, K. Sawyer, P. Ercius, and A. Majumdar, Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport, Nano Lett., 10:4341–4348, 2010.
-
(2010)
Nano Lett
, vol.10
, pp. 4341-4348
-
-
Hippalgaonkar, K.1
Huang, B.2
Chen, R.3
Sawyer, K.4
Ercius, P.5
Majumdar, A.6
-
45
-
-
80051707459
-
Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate
-
J. Yang, Y. Yang, S. W. Waltermire, T. Gutu, A. A. Zinn, T. T. Xu, Y. Chen, and D. Li, Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate, Small, 7:2334–2340, 2011.
-
(2011)
Small
, vol.7
, pp. 2334-2340
-
-
Yang, J.1
Yang, Y.2
Waltermire, S. W.3
Gutu, T.4
Zinn, A. A.5
Xu, T. T.6
Chen, Y.7
Li, D.8
-
46
-
-
27144490668
-
Measuring the thermal conductivity of a single carbon nanotube
-
M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, and T. Shimizu, Measuring the thermal conductivity of a single carbon nanotube, Phys. Rev. Lett., 95:065502, 2005.
-
(2005)
Phys. Rev. Lett
, vol.95
, pp. 065502
-
-
Fujii, M.1
Zhang, X.2
Xie, H.3
Ago, H.4
Takahashi, K.5
Ikuta, T.6
Abe, H.7
Shimizu, T.8
-
47
-
-
36148970107
-
A hot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope
-
C. Dames, S. Chen, C. T. Harris, J. Y. Huang, Z. F. Ren, M. S. Dresselhaus, and G. Chen, A hot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope, Rev. Sci. Instrum., 78:104903, 2007.
-
(2007)
Rev. Sci. Instrum
, vol.78
, pp. 104903
-
-
Dames, C.1
Chen, S.2
Harris, C. T.3
Huang, J. Y.4
Ren, Z. F.5
Dresselhaus, M. S.6
Chen, G.7
-
48
-
-
77950867574
-
Polyethylene nanofibres with very high thermal conductivities
-
S. Shen, A. Henry, J. Tong, R. Zheng, and G. Chen, Polyethylene nanofibres with very high thermal conductivities, Nat. Nanotechnol., 5:251–255, 2010.
-
(2010)
Nat. Nanotechnol
, vol.5
, pp. 251-255
-
-
Shen, S.1
Henry, A.2
Tong, J.3
Zheng, R.4
Chen, G.5
-
49
-
-
63649101577
-
Application of thethermal fash technique for low thermal diffusivity micro/nanofibers
-
M. T. Demko, Z. Dai, H. Yan, W. P. King, M. Cakmak, and A. R. Abramson, Application of thethermal fash technique for low thermal diffusivity micro/nanofibers, Rev. Sci. Instrum., 80:036103, 2009.
-
(2009)
Rev. Sci. Instrum
, vol.80
, pp. 036103
-
-
Demko, M. T.1
Dai, Z.2
Yan, H.3
King, W. P.4
Cakmak, M.5
Abramson, A. R.6
-
50
-
-
51749083899
-
Near-field radiative heat transfer between a sphere and a substrate
-
A. Narayanaswamy, S. Shen, and G. Chen, Near-field radiative heat transfer between a sphere and a substrate, Phys. Rev. B, 78:115303, 2008.
-
(2008)
Phys. Rev. B
, vol.78
, pp. 115303
-
-
Narayanaswamy, A.1
Shen, S.2
Chen, G.3
-
52
-
-
36549099049
-
Thermal conductivity measurement from 30 to 750 K: the 3 omega method
-
D. G. Cahill, Thermal conductivity measurement from 30 to 750 K: the 3 omega method, Rev. Sci. Instrum., 61:802–808, 1990.
-
(1990)
Rev. Sci. Instrum
, vol.61
, pp. 802-808
-
-
Cahill, D. G.1
-
53
-
-
0035397356
-
3 omega method for specific heat and thermal conductivity measurements
-
L. Lu, W. Yi, and D. L. Zhang, 3 omega method for specific heat and thermal conductivity measurements, Rev. Sci. Instrum., 72:2996–3003, 2001.
-
(2001)
Rev. Sci. Instrum
, vol.72
, pp. 2996-3003
-
-
Lu, L.1
Yi, W.2
Zhang, D. L.3
-
54
-
-
0001554865
-
Linear specific heat of carbon nanotubes
-
W. Yi, L. Lu, Z. Dian-lin, Z. W. Pan, and S. S. Xie, Linear specific heat of carbon nanotubes, Phys. Rev. B, 59:R9015–R9018, 1999.
-
(1999)
Phys. Rev. B
, vol.59
, pp. R9015-R9018
-
-
Yi, W.1
Lu, L.2
Dian-lin, Z.3
Pan, Z. W.4
Xie, S. S.5
-
55
-
-
39349101576
-
Electrical and thermal transport in single nickel nanowire
-
M. N. Ou, T. J. Yang, S. R. Harutyunyan, Y. Y. Chen, C. D. Chen, and S. J. Lai, Electrical and thermal transport in single nickel nanowire, Appl. Phys. Lett., 92:063101, 2008.
-
(2008)
Appl. Phys. Lett
, vol.92
, pp. 063101
-
-
Ou, M. N.1
Yang, T. J.2
Harutyunyan, S. R.3
Chen, Y. Y.4
Chen, C. D.5
Lai, S. J.6
-
56
-
-
66449114263
-
Mesoscopic size effects on the thermal conductance of silicon nanowire
-
J. S. Heron, T. Fournier, N. Mingo, and O. Bourgeois, Mesoscopic size effects on the thermal conductance of silicon nanowire, Nano Lett., 9:1861–1865, 2009.
-
(2009)
Nano Lett
, vol.9
, pp. 1861-1865
-
-
Heron, J. S.1
Fournier, T.2
Mingo, N.3
Bourgeois, O.4
-
57
-
-
80053928538
-
Tunable thermal conductivity in defect engineered nanowires at low temperatures
-
A. P. R, and
-
S. Dhara, H. S. Solanki, A. P. R, V. Singh, S. Sengupta, B. A. Chalke, A. Dhar, M. Gokhale, A. Bhattacharya, and M. M. Deshmukh, Tunable thermal conductivity in defect engineered nanowires at low temperatures, Phys. Rev. B, 84:121307, 2011.
-
(2011)
Phys. Rev. B
, vol.84
, pp. 121307
-
-
Dhara, S.1
Solanki, H. S.2
Singh, V.3
Sengupta, S.4
Chalke, B. A.5
Dhar, A.6
Gokhale, M.7
Bhattacharya, A.8
Deshmukh, M. M.9
-
58
-
-
33748295791
-
Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method
-
T.-Y. Choi, D. Poulikakos, J. Tharian, and U. Sennhauser, Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method, Nano Lett., 6:1589–1593, 2006.
-
(2006)
Nano Lett
, vol.6
, pp. 1589-1593
-
-
Choi, T.-Y.1
Poulikakos, D.2
Tharian, J.3
Sennhauser, U.4
-
59
-
-
34047103902
-
Thermal characterization of microscale conductive and non-conductive wires using transient electrothermal technique
-
J. Guo, X. Wang, and T. Wang, Thermal characterization of microscale conductive and non-conductive wires using transient electrothermal technique, J. Appl. Phys., 101:063537, 2007.
-
(2007)
J. Appl. Phys
, vol.101
, pp. 063537
-
-
Guo, J.1
Wang, X.2
Wang, T.3
-
60
-
-
67650324437
-
Simultaneous measurements of the specific heat and thermal conductivity of suspended thin samples by transient electrothermal method
-
B. Feng, W. Ma, Z. Li, and X. Zhang, Simultaneous measurements of the specific heat and thermal conductivity of suspended thin samples by transient electrothermal method, Rev. Sci. Instrum., 80:064901, 2009.
-
(2009)
Rev. Sci. Instrum
, vol.80
, pp. 064901
-
-
Feng, B.1
Ma, W.2
Li, Z.3
Zhang, X.4
-
61
-
-
79551665075
-
Thermophysical properties of multi-wall carbon nanotube bundles at elevated temperatures up to 830 K
-
X. Huang, J. Wang, G. Eres, and X. Wang, Thermophysical properties of multi-wall carbon nanotube bundles at elevated temperatures up to 830 K, Carbon, 49:1680–1691, 2011.
-
(2011)
Carbon
, vol.49
, pp. 1680-1691
-
-
Huang, X.1
Wang, J.2
Eres, G.3
Wang, X.4
-
62
-
-
45149087974
-
Development of pulsed laser-assisted thermal relaxation technique for thermal characterization of microscale wires
-
J. Guo, X. Wang, D. B. Geohegan, G. Eres, and C. Vincent, Development of pulsed laser-assisted thermal relaxation technique for thermal characterization of microscale wires, J. Appl. Phys., 103:113505, 2008.
-
(2008)
J. Appl. Phys
, vol.103
, pp. 113505
-
-
Guo, J.1
Wang, X.2
Geohegan, D. B.3
Eres, G.4
Vincent, C.5
-
63
-
-
65549111696
-
Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method
-
Q. Li, C. Liu, X. Wang, and S. Fan, Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method, Nanotechnology, 20:145702, 2009.
-
(2009)
Nanotechnology
, vol.20
, pp. 145702
-
-
Li, Q.1
Liu, C.2
Wang, X.3
Fan, S.4
-
64
-
-
69549127857
-
Characterization of thermal transport in micro/nanoscale wires by steady-state electro-Raman-thermal technique
-
Y. Yue, G. Eres, X. Wang, and L. Guo, Characterization of thermal transport in micro/nanoscale wires by steady-state electro-Raman-thermal technique, Appl. Phys. A, 97:19–23, 2009.
-
(2009)
Appl. Phys. A
, vol.97
, pp. 19-23
-
-
Yue, Y.1
Eres, G.2
Wang, X.3
Guo, L.4
-
65
-
-
39349103052
-
Optical measurement of thermal transport in suspended carbon nanotubes
-
I. K. Hsu, R. Kumar, A. Bushmaker, S. B. Cronin, M. T. Pettes, L. Shi, T. Brintlinger, M. S. Fuhrer, and J. Cumings, Optical measurement of thermal transport in suspended carbon nanotubes, Appl. Phys. Lett., 92:063119, 2008.
-
(2008)
Appl. Phys. Lett
, vol.92
, pp. 063119
-
-
Hsu, I. K.1
Kumar, R.2
Bushmaker, A.3
Cronin, S. B.4
Pettes, M. T.5
Shi, L.6
Brintlinger, T.7
Fuhrer, M. S.8
Cumings, J.9
-
66
-
-
42349087225
-
Superior thermal conductivity of single-layer graphene
-
A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett., 8:902–907, 2008.
-
(2008)
Nano Lett
, vol.8
, pp. 902-907
-
-
Balandin, A. A.1
Ghosh, S.2
Bao, W. Z.3
Calizo, I.4
Teweldebrhan, D.5
Miao, F.6
Lau, C. N.7
-
67
-
-
77952410071
-
Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition
-
W. W. Cai, A. L. Moore, Y. W. Zhu, X. S. Li, S. S. Chen, L. Shi, and R. S. Ruoff, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano Lett., 10:1645–1651, 2010.
-
(2010)
Nano Lett
, vol.10
, pp. 1645-1651
-
-
Cai, W. W.1
Moore, A. L.2
Zhu, Y. W.3
Li, X. S.4
Chen, S. S.5
Shi, L.6
Ruoff, R. S.7
-
68
-
-
77951763787
-
Thermal conductivity of graphene in corbino membrane geometry
-
C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R. R. Nair, and A. K. Geim, Thermal conductivity of graphene in corbino membrane geometry, Acs Nano, 4:1889–1892, 2010.
-
(2010)
Acs Nano
, vol.4
, pp. 1889-1892
-
-
Faugeras, C.1
Faugeras, B.2
Orlita, M.3
Potemski, M.4
Nair, R. R.5
Geim, A. K.6
-
69
-
-
78650881185
-
Thermal conductivity of GaAs nanowires studied by micro-Raman spectroscopy combined with laser heating
-
M. Soini, I. Zardo, E. Uccelli, S. Funk, G. Koblmuller, A. Fontcuberta i Morral, and G. Abstreiter, Thermal conductivity of GaAs nanowires studied by micro-Raman spectroscopy combined with laser heating, Appl. Phys. Lett., 97:263107, 2010.
-
(2010)
Appl. Phys. Lett
, vol.97
, pp. 263107
-
-
Soini, M.1
Zardo, I.2
Uccelli, E.3
Funk, S.4
Koblmuller, G.5
Fontcuberta i Morral, A.6
Abstreiter, G.7
-
70
-
-
65249091931
-
Optical absorption and thermal transport of individual suspended carbon nanotube bundles
-
I. K. Hsu, M. T. Pettes, A. Bushmaker, M. Aykol, L. Shi, and S. B. Cronin, Optical absorption and thermal transport of individual suspended carbon nanotube bundles, Nano Lett., 9:590–594, 2009.
-
(2009)
Nano Lett
, vol.9
, pp. 590-594
-
-
Hsu, I. K.1
Pettes, M. T.2
Bushmaker, A.3
Aykol, M.4
Shi, L.5
Cronin, S. B.6
-
71
-
-
63149197720
-
Spatially resolved temperature measurements of electrically heated carbon nanotubes
-
V. V. Deshpande, S. Hsieh, A. W. Bushmaker, M. Bockrath, and S. B. Cronin, Spatially resolved temperature measurements of electrically heated carbon nanotubes, Phys. Rev. Lett., 102:105501, 2009.
-
(2009)
Phys. Rev. Lett
, vol.102
, pp. 105501
-
-
Deshpande, V. V.1
Hsieh, S.2
Bushmaker, A. W.3
Bockrath, M.4
Cronin, S. B.5
-
72
-
-
38049182863
-
Direct observation of mode selective electron-phonon coupling in suspended carbon nanotubes
-
A. W. Bushmaker, V. V. Deshpande, M. W. Bockrath, and S. B. Cronin, Direct observation of mode selective electron-phonon coupling in suspended carbon nanotubes, Nano Lett., 7:3618–3622, 2007.
-
(2007)
Nano Lett
, vol.7
, pp. 3618-3622
-
-
Bushmaker, A. W.1
Deshpande, V. V.2
Bockrath, M. W.3
Cronin, S. B.4
-
73
-
-
41549086591
-
Raman spectroscopic evidence for hot-phonon generation in electrically biased carbon nanotubes
-
M. Oron-Carl and R. Krupke, Raman spectroscopic evidence for hot-phonon generation in electrically biased carbon nanotubes, Phys. Rev. Lett., 100:127401, 2008.
-
(2008)
Phys. Rev. Lett
, vol.100
, pp. 127401
-
-
Oron-Carl, M.1
Krupke, R.2
-
74
-
-
78149444864
-
The effect of gas environment on electrical heating in suspended carbon nanotubes
-
I. K. Hsu, M. T. Pettes, M. Aykol, L. Shi, and S. B. Cronin, The effect of gas environment on electrical heating in suspended carbon nanotubes, J. Appl. Phys., 108:084307, 2010.
-
(2010)
J. Appl. Phys
, vol.108
, pp. 084307
-
-
Hsu, I. K.1
Pettes, M. T.2
Aykol, M.3
Shi, L.4
Cronin, S. B.5
-
75
-
-
80052402573
-
Direct observation of heat dissipation in individual suspended carbon nanotubes using a two-laser technique
-
I. K. Hsu, M. T. Pettes, M. Aykol, C.-C. Chang, W.-H. Hung, J. Theiss, L. Shi, and S. B. Cronin, Direct observation of heat dissipation in individual suspended carbon nanotubes using a two-laser technique, J. Appl. Phys., 110:044328, 2011.
-
(2011)
J. Appl. Phys
, vol.110
, pp. 044328
-
-
Hsu, I. K.1
Pettes, M. T.2
Aykol, M.3
Chang, C.-C.4
Hung, W.-H.5
Theiss, J.6
Shi, L.7
Cronin, S. B.8
-
76
-
-
71949106195
-
Thermal conductance of InAs nanowire composites
-
A. I. Persson, Y. K. Koh, D. G. Cahill, L. Samuelson, and H. Linke, Thermal conductance of InAs nanowire composites, Nano Lett., 9:4484–4488, 2009.
-
(2009)
Nano Lett
, vol.9
, pp. 4484-4488
-
-
Persson, A. I.1
Koh, Y. K.2
Cahill, D. G.3
Samuelson, L.4
Linke, H.5
-
77
-
-
79961110456
-
Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases
-
F. Zhou, A. L. Moore, J. Bolinsson, A. Persson, L. Fröberg, M. T. Pettes, H. Kong, L. Rabenberg, P. Caroff, D. A. Stewart, N. Mingo, K. A. Dick, L. Samuelson, H. Linke, and L. Shi, Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases, Phys. Rev. B, 83:205416, 2011.
-
(2011)
Phys. Rev. B
, vol.83
, pp. 205416
-
-
Zhou, F.1
Moore, A. L.2
Bolinsson, J.3
Persson, A.4
Fröberg, L.5
Pettes, M. T.6
Kong, H.7
Rabenberg, L.8
Caroff, P.9
Stewart, D. A.10
Mingo, N.11
Dick, K. A.12
Samuelson, L.13
Linke, H.14
Shi, L.15
-
78
-
-
78650283230
-
Quantitative temperature measurement of an electrically heated carbon nanotube using the null-point method
-
J. Chung, K. Kim, G. Hwang, O. Kwon, S. Jung, J. Lee, J. W. Lee, and G. T. Kim, Quantitative temperature measurement of an electrically heated carbon nanotube using the null-point method, Rev. Sci. Instru., 81:114901, 2010.
-
(2010)
Rev. Sci. Instru
, vol.81
, pp. 114901
-
-
Chung, J.1
Kim, K.2
Hwang, G.3
Kwon, O.4
Jung, S.5
Lee, J.6
Lee, J. W.7
Kim, G. T.8
-
79
-
-
56849087622
-
Quantitative scanning thermal microscopy using double scan technique
-
K. Kim, J. Chung, J. Won, O. Kwon, J. S. Lee, S. H. Park, and Y. K. Choi, Quantitative scanning thermal microscopy using double scan technique, Appl. Phys. Lett., 93:3, 2008.
-
(2008)
Appl. Phys. Lett
, vol.93
, pp. 3
-
-
Kim, K.1
Chung, J.2
Won, J.3
Kwon, O.4
Lee, J. S.5
Park, S. H.6
Choi, Y. K.7
-
80
-
-
79951527277
-
Low-frequency acoustic phonon temperature distribution in electrically biased graphene
-
I. Jo, I. K. Hsu, Y. J. Lee, M. M. Sadeghi, S. Kim, S. Cronin, E. Tutuc, S. K. Banerjee, Z. Yao, and L. Shi, Low-frequency acoustic phonon temperature distribution in electrically biased graphene, Nano Lett., 11:85–90, 2011.
-
(2011)
Nano Lett
, vol.11
, pp. 85-90
-
-
Jo, I.1
Hsu, I. K.2
Lee, Y. J.3
Sadeghi, M. M.4
Kim, S.5
Cronin, S.6
Tutuc, E.7
Banerjee, S. K.8
Yao, Z.9
Shi, L.10
-
81
-
-
0242666818
-
Determination of carrier density in Te-doped Bi nanowires
-
Y.-M. Lin and M. S. Dresselhaus, Determination of carrier density in Te-doped Bi nanowires, Appl. Phys. Lett., 83:3567–3569, 2003.
-
(2003)
Appl. Phys. Lett
, vol.83
, pp. 3567-3569
-
-
Lin, Y.-M.1
Dresselhaus, M. S.2
-
82
-
-
1542346077
-
Thermopower measurement of individual single walled carbon nanotubes
-
J. Small and P. Kim, Thermopower measurement of individual single walled carbon nanotubes, Microscale Thermophys. Eng., 8:1–5, 2004.
-
(2004)
Microscale Thermophys. Eng
, vol.8
, pp. 1-5
-
-
Small, J.1
Kim, P.2
-
83
-
-
33847691939
-
Measurement and analysis of thermopower and electrical conductivity of an indium antimonide nanowire from a vapor-liquid-solid method
-
J. H. Seol, A. L. Moore, S. K. Saha, F. Zhou, L. Shi, Q. L. Ye, R. Scheffler, N. Mingo, and T. Yamada, Measurement and analysis of thermopower and electrical conductivity of an indium antimonide nanowire from a vapor-liquid-solid method, J. Appl. Phys., 101:023706, 2007.
-
(2007)
J. Appl. Phys
, vol.101
, pp. 023706
-
-
Seol, J. H.1
Moore, A. L.2
Saha, S. K.3
Zhou, F.4
Shi, L.5
Ye, Q. L.6
Scheffler, R.7
Mingo, N.8
Yamada, T.9
|