메뉴 건너뛰기




Volumn 31, Issue 8, 2013, Pages 468-478

Inverting hydrolases and their use in enantioconvergent biotransformations

Author keywords

Dehalogenase; Deracemization; Enantioconvergent process; Epoxide hydrolase; Inversion; Retention; Sulfatase

Indexed keywords

DE-RACEMIZATION; DEHALOGENASE; EPOXIDE HYDROLASES; INVERSION; RETENTION; SULFATASES;

EID: 84880513684     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2013.05.005     Document Type: Review
Times cited : (44)

References (98)
  • 1
    • 70350474764 scopus 로고    scopus 로고
    • Applications of biotransformations and biocatalysis to complexity generation in organic synthesis
    • Hudlicky T., Reed J.W. Applications of biotransformations and biocatalysis to complexity generation in organic synthesis. Chem. Soc. Rev. 2009, 38:3117-3132.
    • (2009) Chem. Soc. Rev. , vol.38 , pp. 3117-3132
    • Hudlicky, T.1    Reed, J.W.2
  • 2
    • 80052431672 scopus 로고    scopus 로고
    • Biocatalysis: Synthesis of key intermediates for development of pharmaceuticals
    • Patel R.N. Biocatalysis: Synthesis of key intermediates for development of pharmaceuticals. ACS Catal. 2011, 1:1056-1074.
    • (2011) ACS Catal. , vol.1 , pp. 1056-1074
    • Patel, R.N.1
  • 3
    • 33846197938 scopus 로고    scopus 로고
    • Biocatalysis for pharmaceutical intermediates: the future is now
    • Pollard D.J., Woodley J.M. Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol. 2007, 25:66-73.
    • (2007) Trends Biotechnol. , vol.25 , pp. 66-73
    • Pollard, D.J.1    Woodley, J.M.2
  • 4
    • 79251548859 scopus 로고    scopus 로고
    • Biocatalytic enantioselective oxidative C-C coupling by aerobic C-H activation
    • Schrittwieser J.H., et al. Biocatalytic enantioselective oxidative C-C coupling by aerobic C-H activation. Angew. Chem. Int. Ed. 2011, 50:1068-1071.
    • (2011) Angew. Chem. Int. Ed. , vol.50 , pp. 1068-1071
    • Schrittwieser, J.H.1
  • 5
    • 43649098961 scopus 로고    scopus 로고
    • New opportunities for biocatalysis: making pharmaceutical processes greener
    • Woodley J.M. New opportunities for biocatalysis: making pharmaceutical processes greener. Trends Biotechnol. 2008, 26:321-327.
    • (2008) Trends Biotechnol. , vol.26 , pp. 321-327
    • Woodley, J.M.1
  • 6
    • 79960612358 scopus 로고    scopus 로고
    • Enantioenriched compounds via enzyme-catalyzed redox reactions
    • Hall M., Bommarius A.S. Enantioenriched compounds via enzyme-catalyzed redox reactions. Chem. Rev. 2011, 111:4088-4110.
    • (2011) Chem. Rev. , vol.111 , pp. 4088-4110
    • Hall, M.1    Bommarius, A.S.2
  • 7
    • 65349190562 scopus 로고    scopus 로고
    • Recent progress in biocatalysis for asymmetric oxidation and reduction
    • Matsuda T., et al. Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron: Asymmetry 2009, 20:513-557.
    • (2009) Tetrahedron: Asymmetry , vol.20 , pp. 513-557
    • Matsuda, T.1
  • 8
    • 84869044822 scopus 로고    scopus 로고
    • Dynamic kinetic resolution via hydrolase-metal combo catalysis in stereoselective synthesis of bioactive compounds
    • Hoyos P., et al. Dynamic kinetic resolution via hydrolase-metal combo catalysis in stereoselective synthesis of bioactive compounds. Adv. Synth. Catal. 2012, 354:2585-2611.
    • (2012) Adv. Synth. Catal. , vol.354 , pp. 2585-2611
    • Hoyos, P.1
  • 9
  • 10
    • 0041878694 scopus 로고    scopus 로고
    • Combination of enzymes and metal catalysts. A powerful approach in asymmetric catalysis
    • Pamies O., Backvall J.E. Combination of enzymes and metal catalysts. A powerful approach in asymmetric catalysis. Chem. Rev. 2003, 103:3247-3261.
    • (2003) Chem. Rev. , vol.103 , pp. 3247-3261
    • Pamies, O.1    Backvall, J.E.2
  • 11
    • 33749323628 scopus 로고    scopus 로고
    • From a racemate to a single enantiomer: deracemization by stereoinversion
    • Gruber C.C., et al. From a racemate to a single enantiomer: deracemization by stereoinversion. Adv. Synth. Catal. 2006, 348:1789-1805.
    • (2006) Adv. Synth. Catal. , vol.348 , pp. 1789-1805
    • Gruber, C.C.1
  • 12
    • 79953313806 scopus 로고    scopus 로고
    • Recent biocatalytic oxidation-reduction cascades
    • Schrittwieser J.H., et al. Recent biocatalytic oxidation-reduction cascades. Curr. Opin. Chem. Biol. 2011, 15:249-256.
    • (2011) Curr. Opin. Chem. Biol. , vol.15 , pp. 249-256
    • Schrittwieser, J.H.1
  • 13
    • 54249116802 scopus 로고    scopus 로고
    • Orchestration of concurrent oxidation and reduction cycles for stereoinversion and deracemisation of sec-alcohols
    • Voss C.V., et al. Orchestration of concurrent oxidation and reduction cycles for stereoinversion and deracemisation of sec-alcohols. J. Am. Chem. Soc. 2008, 130:13969-13972.
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 13969-13972
    • Voss, C.V.1
  • 14
    • 9644291545 scopus 로고    scopus 로고
    • Enantioselective protonations: fundamental insights and new concepts
    • Duhamel L., et al. Enantioselective protonations: fundamental insights and new concepts. Tetrahedron: Asymmetry 2004, 15:3653-3691.
    • (2004) Tetrahedron: Asymmetry , vol.15 , pp. 3653-3691
    • Duhamel, L.1
  • 15
    • 4644259619 scopus 로고    scopus 로고
    • Enzymatic transformations. Part 58: enantioconvergent biohydrolysis of styrene oxide derivatives catalysed by the Solanum tuberosum epoxide hydrolase
    • Monterde M.I., et al. Enzymatic transformations. Part 58: enantioconvergent biohydrolysis of styrene oxide derivatives catalysed by the Solanum tuberosum epoxide hydrolase. Tetrahedron: Asymmetry 2004, 15:2801-2805.
    • (2004) Tetrahedron: Asymmetry , vol.15 , pp. 2801-2805
    • Monterde, M.I.1
  • 16
    • 84874834871 scopus 로고    scopus 로고
    • One-pot deracemization of sec-alcohols: enantioconvergent enzymatic hydrolysis of alkyl sulfates using stereocomplementary sulfatases
    • Schober M., et al. One-pot deracemization of sec-alcohols: enantioconvergent enzymatic hydrolysis of alkyl sulfates using stereocomplementary sulfatases. Angew. Chem. Int. Ed. 2013, 52:3277-3279.
    • (2013) Angew. Chem. Int. Ed. , vol.52 , pp. 3277-3279
    • Schober, M.1
  • 17
    • 80051682587 scopus 로고    scopus 로고
    • A stereoselective inverting sec-alkylsulfatase for the deracemization of sec-alcohols
    • Schober M., et al. A stereoselective inverting sec-alkylsulfatase for the deracemization of sec-alcohols. Org. Lett. 2011, 13:4296-4299.
    • (2011) Org. Lett. , vol.13 , pp. 4296-4299
    • Schober, M.1
  • 18
    • 33644695706 scopus 로고    scopus 로고
    • Selectivity enhancement of enantio- and stereo-complementary epoxide hydrolases and chemo-enzymatic deracemization of (±)-2-methylglycidyl benzyl ether
    • Simeo Y., Faber K. Selectivity enhancement of enantio- and stereo-complementary epoxide hydrolases and chemo-enzymatic deracemization of (±)-2-methylglycidyl benzyl ether. Tetrahedron: Asymmetry 2006, 17:402-409.
    • (2006) Tetrahedron: Asymmetry , vol.17 , pp. 402-409
    • Simeo, Y.1    Faber, K.2
  • 19
    • 80155214234 scopus 로고    scopus 로고
    • A simple enantioconvergent and chemo-enzymatic synthesis of optically active α-substituted amides
    • Szymanski W., et al. A simple enantioconvergent and chemo-enzymatic synthesis of optically active α-substituted amides. Angew. Chem. Int. Ed. 2011, 50:10712-10715.
    • (2011) Angew. Chem. Int. Ed. , vol.50 , pp. 10712-10715
    • Szymanski, W.1
  • 20
    • 78049329370 scopus 로고    scopus 로고
    • Direct enantio-convergent transformation of racemic substrates without racemization or symmetrization
    • Ito H., et al. Direct enantio-convergent transformation of racemic substrates without racemization or symmetrization. Nat. Chem. 2010, 2:972-976.
    • (2010) Nat. Chem. , vol.2 , pp. 972-976
    • Ito, H.1
  • 21
    • 0030580210 scopus 로고    scopus 로고
    • Deracemization of (±)-cis-2,3-epoxyheptane via enantioconvergent biocatalytic hydrolysis using Nocardia EH1-epoxide hydrolase
    • Kroutil W., et al. Deracemization of (±)-cis-2,3-epoxyheptane via enantioconvergent biocatalytic hydrolysis using Nocardia EH1-epoxide hydrolase. Tetrahedron Lett. 1996, 37:8379-8382.
    • (1996) Tetrahedron Lett. , vol.37 , pp. 8379-8382
    • Kroutil, W.1
  • 22
    • 33748638617 scopus 로고    scopus 로고
    • Deracemization of (±)-2,3-disubstituted oxiranes via biocatalytic hydrolysis using epoxide hydrolases: Kinetics of an enantioconvergent process
    • Kroutil W., et al. Deracemization of (±)-2,3-disubstituted oxiranes via biocatalytic hydrolysis using epoxide hydrolases: Kinetics of an enantioconvergent process. J. Chem. Soc., Perkin Trans. 1 1997, 3629-3636.
    • (1997) J. Chem. Soc., Perkin Trans. 1 , pp. 3629-3636
    • Kroutil, W.1
  • 23
    • 10644296395 scopus 로고    scopus 로고
    • Biocatalytic asymmetric and enantioconvergent hydrolysis of trisubstituted oxiranes
    • Steinreiber A., et al. Biocatalytic asymmetric and enantioconvergent hydrolysis of trisubstituted oxiranes. Tetrahedron: Asymmetry 2001, 12:1519-1528.
    • (2001) Tetrahedron: Asymmetry , vol.12 , pp. 1519-1528
    • Steinreiber, A.1
  • 24
    • 44949203597 scopus 로고    scopus 로고
    • Enantioconvergent bioconversion of p-chlorostyrene oxide to (R)-p-chlorophenyl-1,2-ethanediol by the bacterial epoxide hydrolase of Caulobacter crescentus
    • Hwang S., et al. Enantioconvergent bioconversion of p-chlorostyrene oxide to (R)-p-chlorophenyl-1,2-ethanediol by the bacterial epoxide hydrolase of Caulobacter crescentus. Biotechnol. Lett. 2008, 30:1219-1225.
    • (2008) Biotechnol. Lett. , vol.30 , pp. 1219-1225
    • Hwang, S.1
  • 25
    • 52749090358 scopus 로고    scopus 로고
    • One-pot biotransformation of racemic styrene oxide into (R)-1,2-phenylethanediol by two recombinant microbial epoxide hydrolases
    • Hwang S., et al. One-pot biotransformation of racemic styrene oxide into (R)-1,2-phenylethanediol by two recombinant microbial epoxide hydrolases. Biotechnol. Bioprocess Eng. 2008, 13:453-457.
    • (2008) Biotechnol. Bioprocess Eng. , vol.13 , pp. 453-457
    • Hwang, S.1
  • 26
    • 36649004271 scopus 로고    scopus 로고
    • Biosynthesis of (R)-phenyl-1,2-ethanediol from racemic styrene oxide by using bacterial and marine fish epoxide hydrolases
    • Kim H.S., et al. Biosynthesis of (R)-phenyl-1,2-ethanediol from racemic styrene oxide by using bacterial and marine fish epoxide hydrolases. Biotechnol. Lett. 2008, 30:127-133.
    • (2008) Biotechnol. Lett. , vol.30 , pp. 127-133
    • Kim, H.S.1
  • 27
    • 0001194360 scopus 로고
    • Microbiological transformations. 28. Enantiocomplementary epoxide hydrolyses as a preparative access to both enantiomers of styrene oxide
    • Pedragosa-Moreau S., et al. Microbiological transformations. 28. Enantiocomplementary epoxide hydrolyses as a preparative access to both enantiomers of styrene oxide. J. Org. Chem. 1993, 58:5533-5536.
    • (1993) J. Org. Chem. , vol.58 , pp. 5533-5536
    • Pedragosa-Moreau, S.1
  • 28
    • 0026048522 scopus 로고
    • Preparation of optically active secondary alcohols by combination of enzymatic hydrolysis and chemical transformation
    • Danda H., et al. Preparation of optically active secondary alcohols by combination of enzymatic hydrolysis and chemical transformation. Tetrahedron 1991, 47:8701-8716.
    • (1991) Tetrahedron , vol.47 , pp. 8701-8716
    • Danda, H.1
  • 29
    • 33750519853 scopus 로고    scopus 로고
    • Multicomponent diversity and enzymatic enantioselectivity as a route towards both enantiomers of α-amino acids - a model study
    • Szymanski W., Ostaszewski R. Multicomponent diversity and enzymatic enantioselectivity as a route towards both enantiomers of α-amino acids - a model study. Tetrahedron: Asymmetry 2006, 17:2667-2671.
    • (2006) Tetrahedron: Asymmetry , vol.17 , pp. 2667-2671
    • Szymanski, W.1    Ostaszewski, R.2
  • 30
    • 0000939134 scopus 로고
    • Preparation of an optically pure secondary alcohol of synthetic pyrethroids using microbial lipases
    • Mitsuda S., et al. Preparation of an optically pure secondary alcohol of synthetic pyrethroids using microbial lipases. Appl. Microbiol. Biotechnol. 1988, 29:310-315.
    • (1988) Appl. Microbiol. Biotechnol. , vol.29 , pp. 310-315
    • Mitsuda, S.1
  • 31
    • 0025863450 scopus 로고
    • Preparation of (4S)-4-hydroxy-3-methyl-2-(2'-propynyl)-2-cyclopentenone by combination of enzymatic hydrolysis and chemical transformation
    • Danda H., et al. Preparation of (4S)-4-hydroxy-3-methyl-2-(2'-propynyl)-2-cyclopentenone by combination of enzymatic hydrolysis and chemical transformation. Tetrahedron Lett. 1991, 32:5119-5122.
    • (1991) Tetrahedron Lett. , vol.32 , pp. 5119-5122
    • Danda, H.1
  • 32
    • 53849089968 scopus 로고    scopus 로고
    • De-racemization of enantiomers versus de-epimerization of diastereomers: classification of novel types of DYKAT
    • Steinreiber J., et al. De-racemization of enantiomers versus de-epimerization of diastereomers: classification of novel types of DYKAT. Chem. Eur. J. 2008, 14:8060-8072.
    • (2008) Chem. Eur. J. , vol.14 , pp. 8060-8072
    • Steinreiber, J.1
  • 33
    • 8844275956 scopus 로고    scopus 로고
    • Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility
    • Hanson S.R., et al. Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew. Chem. Int. Ed. 2004, 43:5736-5763.
    • (2004) Angew. Chem. Int. Ed. , vol.43 , pp. 5736-5763
    • Hanson, S.R.1
  • 34
    • 33846219981 scopus 로고    scopus 로고
    • New enzymes for biotransformations: microbial alkyl sulfatases displaying stereo- and enantioselectivity
    • Gadler P., Faber K. New enzymes for biotransformations: microbial alkyl sulfatases displaying stereo- and enantioselectivity. Trends Biotechnol. 2007, 25:83-88.
    • (2007) Trends Biotechnol. , vol.25 , pp. 83-88
    • Gadler, P.1    Faber, K.2
  • 35
    • 0037021012 scopus 로고    scopus 로고
    • Enantioselective stereoinversion in the kinetic resolution of rac-sec-alkyl sulfate esters by hydrolysis with an alkylsulfatase from Rhodococcus ruber DSM 44541 furnishes homochiral products
    • Pogorevc M., et al. Enantioselective stereoinversion in the kinetic resolution of rac-sec-alkyl sulfate esters by hydrolysis with an alkylsulfatase from Rhodococcus ruber DSM 44541 furnishes homochiral products. Angew. Chem. Int. Ed. 2002, 41:4052-4054.
    • (2002) Angew. Chem. Int. Ed. , vol.41 , pp. 4052-4054
    • Pogorevc, M.1
  • 36
    • 33646732453 scopus 로고    scopus 로고
    • The crystal structure of SdsA1, an alkylsulfatase from Pseudomonas aeruginosa, defines a third class of sulfatases
    • Hagelueken G., et al. The crystal structure of SdsA1, an alkylsulfatase from Pseudomonas aeruginosa, defines a third class of sulfatases. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:7631-7636.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 7631-7636
    • Hagelueken, G.1
  • 37
    • 12144286270 scopus 로고    scopus 로고
    • Crystal structure of the alkylsulfatase AtsK: insights into the catalytic mechanism of the Fe(II) α-ketoglutarate-dependent dioxygenase superfamily
    • Müller I., et al. Crystal structure of the alkylsulfatase AtsK: insights into the catalytic mechanism of the Fe(II) α-ketoglutarate-dependent dioxygenase superfamily. Biochemistry 2004, 43:3075-3088.
    • (2004) Biochemistry , vol.43 , pp. 3075-3088
    • Müller, I.1
  • 38
    • 36349005289 scopus 로고    scopus 로고
    • Highly enantioselective biohydrolysis of sec-alkyl sulfate esters with inversion of configuration catalysed by Pseudomonas spp
    • Gadler P., Faber K. Highly enantioselective biohydrolysis of sec-alkyl sulfate esters with inversion of configuration catalysed by Pseudomonas spp. Eur. J. Org. Chem. 2007, 2007:5527-5530.
    • (2007) Eur. J. Org. Chem. , vol.2007 , pp. 5527-5530
    • Gadler, P.1    Faber, K.2
  • 39
    • 26844512979 scopus 로고    scopus 로고
    • Highly enantioselective sec-alkyl sulfatase activity of the marine planctomycete Rhodopirellula baltica shows retention of configuration
    • Wallner S.R., et al. Highly enantioselective sec-alkyl sulfatase activity of the marine planctomycete Rhodopirellula baltica shows retention of configuration. Angew. Chem. Int. Ed. 2005, 44:6381-6384.
    • (2005) Angew. Chem. Int. Ed. , vol.44 , pp. 6381-6384
    • Wallner, S.R.1
  • 40
    • 84870054826 scopus 로고    scopus 로고
    • Structure and mechanism of an inverting alkylsulfatase from Pseudomonas sp DSM6611 specific for secondary alkyl sulfates
    • Knaus T., et al. Structure and mechanism of an inverting alkylsulfatase from Pseudomonas sp DSM6611 specific for secondary alkyl sulfates. FEBS J. 2012, 279:4374-4384.
    • (2012) FEBS J. , vol.279 , pp. 4374-4384
    • Knaus, T.1
  • 41
    • 84862528940 scopus 로고    scopus 로고
    • The substrate spectrum of the inverting sec-alkylsulfatase Pisa1
    • Schober M., et al. The substrate spectrum of the inverting sec-alkylsulfatase Pisa1. Adv. Synth. Catal. 2012, 354:1737-1742.
    • (2012) Adv. Synth. Catal. , vol.354 , pp. 1737-1742
    • Schober, M.1
  • 42
    • 84871877057 scopus 로고    scopus 로고
    • Chemo-enzymatic asymmetric total synthesis of (R)-lasiodiplodin methyl ether through a sulfatase-based deracemization process
    • Fuchs M., et al. Chemo-enzymatic asymmetric total synthesis of (R)-lasiodiplodin methyl ether through a sulfatase-based deracemization process. Eur. J. Org. Chem. 2013, 356-361.
    • (2013) Eur. J. Org. Chem. , pp. 356-361
    • Fuchs, M.1
  • 43
    • 84857754139 scopus 로고    scopus 로고
    • Epoxide hydrolases and their application in organic synthesis
    • Kotik M., et al. Epoxide hydrolases and their application in organic synthesis. Curr. Org. Chem. 2012, 16:451-482.
    • (2012) Curr. Org. Chem. , vol.16 , pp. 451-482
    • Kotik, M.1
  • 44
    • 0033591361 scopus 로고    scopus 로고
    • The X-ray structure of epoxide hydrolase from Agrobacterium radiobacter AD1 - an enzyme to detoxify harmful epoxides
    • Nardini M., et al. The X-ray structure of epoxide hydrolase from Agrobacterium radiobacter AD1 - an enzyme to detoxify harmful epoxides. J. Biol. Chem. 1999, 274:14579-14586.
    • (1999) J. Biol. Chem. , vol.274 , pp. 14579-14586
    • Nardini, M.1
  • 45
    • 0037863737 scopus 로고    scopus 로고
    • Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site
    • Arand M., et al. Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site. EMBO J. 2003, 22:2583-2592.
    • (2003) EMBO J. , vol.22 , pp. 2583-2592
    • Arand, M.1
  • 46
    • 76749138467 scopus 로고    scopus 로고
    • Structure-function relationships of epoxide hydrolases and their potential use in biocatalysis
    • Widersten M., et al. Structure-function relationships of epoxide hydrolases and their potential use in biocatalysis. Biochim. Biophys. Acta 2010, 1800:316-326.
    • (2010) Biochim. Biophys. Acta , vol.1800 , pp. 316-326
    • Widersten, M.1
  • 47
    • 77952583553 scopus 로고    scopus 로고
    • Access to enantiopure aromatic epoxides and diols using epoxide hydrolases derived from total biofilter DNA
    • Kotik M., et al. Access to enantiopure aromatic epoxides and diols using epoxide hydrolases derived from total biofilter DNA. J. Mol. Catal. B: Enzymatic 2010, 65:41-48.
    • (2010) J. Mol. Catal. B: Enzymatic , vol.65 , pp. 41-48
    • Kotik, M.1
  • 48
    • 67650547522 scopus 로고    scopus 로고
    • Directed evolution of an enantioselective epoxide hydrolase: uncovering the source of enantioselectivity at each evolutionary stage
    • Reetz M.T., et al. Directed evolution of an enantioselective epoxide hydrolase: uncovering the source of enantioselectivity at each evolutionary stage. J. Am. Chem. Soc. 2009, 131:7334-7343.
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 7334-7343
    • Reetz, M.T.1
  • 49
    • 78149264575 scopus 로고    scopus 로고
    • Directed evolution of enantioconvergency: the case of an epoxide hydrolase-catalyzed reaction of a racemic epoxide
    • Zheng H., et al. Directed evolution of enantioconvergency: the case of an epoxide hydrolase-catalyzed reaction of a racemic epoxide. ChemCatChem 2010, 2:958-961.
    • (2010) ChemCatChem , vol.2 , pp. 958-961
    • Zheng, H.1
  • 50
    • 78149259021 scopus 로고    scopus 로고
    • Manipulating the stereoselectivity of limonene epoxide hydrolase by directed evolution based on iterative saturation mutagenesis
    • Zheng H., Reetz M.T. Manipulating the stereoselectivity of limonene epoxide hydrolase by directed evolution based on iterative saturation mutagenesis. J. Am. Chem. Soc. 2010, 132:15744-15751.
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 15744-15751
    • Zheng, H.1    Reetz, M.T.2
  • 51
    • 77954358041 scopus 로고    scopus 로고
    • Modification of substrate specificity resulting in an epoxide hydrolase with shifted enantiopreference for (2,3-epoxypropyl)benzene
    • Gurell A., Widersten M. Modification of substrate specificity resulting in an epoxide hydrolase with shifted enantiopreference for (2,3-epoxypropyl)benzene. ChemBioChem 2010, 11:1422-1429.
    • (2010) ChemBioChem , vol.11 , pp. 1422-1429
    • Gurell, A.1    Widersten, M.2
  • 52
    • 84866723266 scopus 로고    scopus 로고
    • Obtaining optical purity for product diols in enzyme-catalyzed epoxide hydrolysis: Contributions from changes in both enantio- and regioselectivity
    • Carlsson A.J., et al. Obtaining optical purity for product diols in enzyme-catalyzed epoxide hydrolysis: Contributions from changes in both enantio- and regioselectivity. Biochemistry 2012, 51:7627-7637.
    • (2012) Biochemistry , vol.51 , pp. 7627-7637
    • Carlsson, A.J.1
  • 53
    • 34848893919 scopus 로고    scopus 로고
    • Cloning of an epoxide hydrolase-encoding gene from Aspergillus niger M200, overexpression in E. coli, and modification of activity and enantioselectivity of the enzyme by protein engineering
    • Kotik M., et al. Cloning of an epoxide hydrolase-encoding gene from Aspergillus niger M200, overexpression in E. coli, and modification of activity and enantioselectivity of the enzyme by protein engineering. J. Biotechnol. 2007, 132:8-15.
    • (2007) J. Biotechnol. , vol.132 , pp. 8-15
    • Kotik, M.1
  • 54
    • 58149477514 scopus 로고    scopus 로고
    • Improved enantioselective conversion of styrene epoxides and meso-epoxides through epoxide hydrolases with a mutated nucleophile-flanking residue
    • van Loo B., et al. Improved enantioselective conversion of styrene epoxides and meso-epoxides through epoxide hydrolases with a mutated nucleophile-flanking residue. Enzyme Microb. Technol. 2009, 44:145-153.
    • (2009) Enzyme Microb. Technol. , vol.44 , pp. 145-153
    • van Loo, B.1
  • 55
    • 77956192684 scopus 로고    scopus 로고
    • Characterization of the epoxide hydrolase NcsF2 from the neocarzinostatin biosynthetic gene cluster
    • Lin S., et al. Characterization of the epoxide hydrolase NcsF2 from the neocarzinostatin biosynthetic gene cluster. Org. Lett. 2010, 12:3816-3819.
    • (2010) Org. Lett. , vol.12 , pp. 3816-3819
    • Lin, S.1
  • 57
    • 34247097923 scopus 로고    scopus 로고
    • Biocatalysis by dehalogenating enzymes
    • Academic Press, I. Allen (Ed.)
    • Janssen D.B. Biocatalysis by dehalogenating enzymes. Advances in Applied Microbiology 2007, 233-252. Academic Press. I. Allen (Ed.).
    • (2007) Advances in Applied Microbiology , pp. 233-252
    • Janssen, D.B.1
  • 58
    • 79952125741 scopus 로고    scopus 로고
    • A mechanistic analysis of enzymatic degradation of organohalogen compounds
    • Kurihara T. A mechanistic analysis of enzymatic degradation of organohalogen compounds. Biosci. Biotechnol. Biochem. 2011, 75:189-198.
    • (2011) Biosci. Biotechnol. Biochem. , vol.75 , pp. 189-198
    • Kurihara, T.1
  • 59
    • 0032909021 scopus 로고    scopus 로고
    • Investigation of two evolutionarily unrelated halocarboxylic acid dehalogenase gene families
    • Hill K.E., et al. Investigation of two evolutionarily unrelated halocarboxylic acid dehalogenase gene families. J. Bacteriol. 1999, 181:2535-2547.
    • (1999) J. Bacteriol. , vol.181 , pp. 2535-2547
    • Hill, K.E.1
  • 60
    • 0028896841 scopus 로고
    • Microbial dehalogenation
    • Slater J.H., et al. Microbial dehalogenation. Biodegradation 1995, 6:181-189.
    • (1995) Biodegradation , vol.6 , pp. 181-189
    • Slater, J.H.1
  • 61
    • 0000435582 scopus 로고    scopus 로고
    • Bacterial 2-haloacid dehalogenases: structures and catalytic properties
    • Soda K., et al. Bacterial 2-haloacid dehalogenases: structures and catalytic properties. Pure Appl. Chem. 1996, 68:2097-2103.
    • (1996) Pure Appl. Chem. , vol.68 , pp. 2097-2103
    • Soda, K.1
  • 62
    • 31344438696 scopus 로고    scopus 로고
    • Crystal structure of the probable haloacid dehalogenase PH0459 from Pyrococcus horikoshii OT3
    • Arai R., et al. Crystal structure of the probable haloacid dehalogenase PH0459 from Pyrococcus horikoshii OT3. Protein Sci. 2006, 15:373-377.
    • (2006) Protein Sci. , vol.15 , pp. 373-377
    • Arai, R.1
  • 63
    • 0029786674 scopus 로고    scopus 로고
    • Crystal structure of L-2-haloacid dehalogenase from Pseudomonas sp YL - An α/β-hydrolase structure that is different from the α/β-hydrolase fold
    • Hisano T., et al. Crystal structure of L-2-haloacid dehalogenase from Pseudomonas sp YL - An α/β-hydrolase structure that is different from the α/β-hydrolase fold. J. Biol. Chem. 1996, 271:20322-20330.
    • (1996) J. Biol. Chem. , vol.271 , pp. 20322-20330
    • Hisano, T.1
  • 64
    • 0031455377 scopus 로고    scopus 로고
    • Three-dimensional structure of L-2-haloacid dehalogenase from Xanthobacter autotrophicus GJ10 complexed with the substrate-analogue formate
    • Ridder I.S., et al. Three-dimensional structure of L-2-haloacid dehalogenase from Xanthobacter autotrophicus GJ10 complexed with the substrate-analogue formate. J. Biol. Chem. 1997, 272:33015-33022.
    • (1997) J. Biol. Chem. , vol.272 , pp. 33015-33022
    • Ridder, I.S.1
  • 65
    • 58149194643 scopus 로고    scopus 로고
    • Biochemical and structural studies of an L-haloacid dehalogenase from the thermophilic archaeon Sulfolobus tokodaii
    • Rye C.A., et al. Biochemical and structural studies of an L-haloacid dehalogenase from the thermophilic archaeon Sulfolobus tokodaii. Extremophiles 2009, 13:179-190.
    • (2009) Extremophiles , vol.13 , pp. 179-190
    • Rye, C.A.1
  • 66
    • 41149165092 scopus 로고    scopus 로고
    • The crystal structure of Dehl reveals a new α-haloacid dehalogenase fold and active-site mechanism
    • Schmidberger J.W., et al. The crystal structure of Dehl reveals a new α-haloacid dehalogenase fold and active-site mechanism. J. Mol. Biol. 2008, 378:284-294.
    • (2008) J. Mol. Biol. , vol.378 , pp. 284-294
    • Schmidberger, J.W.1
  • 67
    • 0028978221 scopus 로고
    • 18O incorporation experiments
    • 18O incorporation experiments. J. Biol. Chem. 1995, 270:18309-18312.
    • (1995) J. Biol. Chem. , vol.270 , pp. 18309-18312
    • Liu, J.Q.1
  • 68
    • 0029006127 scopus 로고
    • Comprehensive site-directed mutagenesis of L-2-haloacid dehalogenase to probe catalytic amino acid residues
    • Kurihara T., et al. Comprehensive site-directed mutagenesis of L-2-haloacid dehalogenase to probe catalytic amino acid residues. J. Biochem. 1995, 117:1317-1322.
    • (1995) J. Biochem. , vol.117 , pp. 1317-1322
    • Kurihara, T.1
  • 69
    • 80052462995 scopus 로고    scopus 로고
    • A review on non-stereospecific haloalkanoic acid dehalogenases
    • Hamid T.H.T.A., et al. A review on non-stereospecific haloalkanoic acid dehalogenases. Afr. J. Biotechnol. 2011, 10:9725-9736.
    • (2011) Afr. J. Biotechnol. , vol.10 , pp. 9725-9736
    • Hamid, T.H.T.A.1
  • 71
    • 0033597883 scopus 로고    scopus 로고
    • DL-2-haloacid dehalogenase from Pseudomonas sp 113 is a new class of dehalogenase catalyzing hydrolytic dehalogenation not involving enzyme-substrate ester intermediate
    • Nardi-Dei V., et al. DL-2-haloacid dehalogenase from Pseudomonas sp 113 is a new class of dehalogenase catalyzing hydrolytic dehalogenation not involving enzyme-substrate ester intermediate. J. Biol. Chem. 1999, 274:20977-20981.
    • (1999) J. Biol. Chem. , vol.274 , pp. 20977-20981
    • Nardi-Dei, V.1
  • 72
    • 0041932474 scopus 로고    scopus 로고
    • A new DL-2-haloacid dehalogenase acting on 2-haloacid amides: purification, characterization, and mechanism
    • Park C., et al. A new DL-2-haloacid dehalogenase acting on 2-haloacid amides: purification, characterization, and mechanism. J. Mol. Catal. B: Enzymatic 2003, 23:329-336.
    • (2003) J. Mol. Catal. B: Enzymatic , vol.23 , pp. 329-336
    • Park, C.1
  • 73
    • 0034605578 scopus 로고    scopus 로고
    • Bacterial 2-haloacid dehalogenases: structures and reaction mechanisms
    • Kurihara T., et al. Bacterial 2-haloacid dehalogenases: structures and reaction mechanisms. J. Mol. Catal. B: Enzymatic 2000, 10:57-65.
    • (2000) J. Mol. Catal. B: Enzymatic , vol.10 , pp. 57-65
    • Kurihara, T.1
  • 74
    • 84871694759 scopus 로고    scopus 로고
    • Structure prediction, molecular dynamics simulation and docking studies of D-specific dehalogenase from Rhizobium sp RC1
    • Sudi I.Y., et al. Structure prediction, molecular dynamics simulation and docking studies of D-specific dehalogenase from Rhizobium sp RC1. Int. J. Mol. Sci. 2012, 13:15724-15754.
    • (2012) Int. J. Mol. Sci. , vol.13 , pp. 15724-15754
    • Sudi, I.Y.1
  • 76
    • 0019915696 scopus 로고
    • Stereospecificity of 2-monochloropropionate dehalogenation by the two dehalogenases of Pseudomonas putida PP3: evidence for two different dehalogenation mechanisms
    • Weightman A.J., et al. Stereospecificity of 2-monochloropropionate dehalogenation by the two dehalogenases of Pseudomonas putida PP3: evidence for two different dehalogenation mechanisms. J. Gen. Microbiol. 1982, 128:1755-1762.
    • (1982) J. Gen. Microbiol. , vol.128 , pp. 1755-1762
    • Weightman, A.J.1
  • 77
    • 0021461843 scopus 로고
    • Enzymatic preparation of D- and L-lactic acid from racemic 2-chloropropionic acid
    • Motosugi K., et al. Enzymatic preparation of D- and L-lactic acid from racemic 2-chloropropionic acid. Biotechnol. Bioeng. 1984, 26:805-806.
    • (1984) Biotechnol. Bioeng. , vol.26 , pp. 805-806
    • Motosugi, K.1
  • 78
    • 0344222647 scopus 로고    scopus 로고
    • (S)-2-chloropanoic acid: developments in its industrial manufacture
    • Wiley
    • Taylor S.C. (S)-2-chloropanoic acid: developments in its industrial manufacture. Chirality in Industry 1997, Vol. 2:207-223. Wiley.
    • (1997) Chirality in Industry , vol.2 , pp. 207-223
    • Taylor, S.C.1
  • 79
    • 0026328037 scopus 로고
    • Total conversion of racemic 2-chloropropionic acid into D-lactate by combination of enzymatic and chemical dehalogenations
    • Hasan A.K.M.Q., et al. Total conversion of racemic 2-chloropropionic acid into D-lactate by combination of enzymatic and chemical dehalogenations. J. Ferment. Bioeng. 1991, 72:481-482.
    • (1991) J. Ferment. Bioeng. , vol.72 , pp. 481-482
    • Hasan, A.K.M.Q.1
  • 80
    • 0026262238 scopus 로고
    • Catalytic action of L-2-halo acid dehalogenase on long-chain L-2-haloalkanoic acids in organic solvents
    • Hasan A.K.M.Q., et al. Catalytic action of L-2-halo acid dehalogenase on long-chain L-2-haloalkanoic acids in organic solvents. Biotechnol. Bioeng. 1991, 38:1114-1117.
    • (1991) Biotechnol. Bioeng. , vol.38 , pp. 1114-1117
    • Hasan, A.K.M.Q.1
  • 81
    • 84871749232 scopus 로고    scopus 로고
    • Haloalkane dehalogenases: biotechnological applications
    • Koudelakova T., et al. Haloalkane dehalogenases: biotechnological applications. Biotechnol. J. 2013, 8:32-45.
    • (2013) Biotechnol. J. , vol.8 , pp. 32-45
    • Koudelakova, T.1
  • 82
    • 77953559126 scopus 로고    scopus 로고
    • Sequence- and activity-based screening of microbial genomes for novel dehalogenases
    • Chan W.Y., et al. Sequence- and activity-based screening of microbial genomes for novel dehalogenases. Microb. Biotechnol. 2010, 3:107-120.
    • (2010) Microb. Biotechnol. , vol.3 , pp. 107-120
    • Chan, W.Y.1
  • 83
    • 33947375555 scopus 로고    scopus 로고
    • Phylogenetic analysis of haloalkane dehalogenases
    • Chovancova E., et al. Phylogenetic analysis of haloalkane dehalogenases. Proteins: Struct. Funct. Bioinform. 2007, 67:305-316.
    • (2007) Proteins: Struct. Funct. Bioinform. , vol.67 , pp. 305-316
    • Chovancova, E.1
  • 84
    • 79953165705 scopus 로고    scopus 로고
    • Substrate specificity of haloalkane dehalogenases
    • Koudelakova T., et al. Substrate specificity of haloalkane dehalogenases. Biochem. J. 2011, 435:345-354.
    • (2011) Biochem. J. , vol.435 , pp. 345-354
    • Koudelakova, T.1
  • 85
    • 79953208277 scopus 로고    scopus 로고
    • Biochemical characteristics of the novel haloalkane dehalogenase DatA, isolated from the plant pathogen Agrobacterium tumefaciens C58
    • Hasan K., et al. Biochemical characteristics of the novel haloalkane dehalogenase DatA, isolated from the plant pathogen Agrobacterium tumefaciens C58. Appl. Environ. Microbiol. 2011, 77:1881-1884.
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 1881-1884
    • Hasan, K.1
  • 86
    • 77956043476 scopus 로고    scopus 로고
    • Enantioselectivity of haloalkane dehalogenases and its modulation by surface loop engineering
    • Prokop Z., et al. Enantioselectivity of haloalkane dehalogenases and its modulation by surface loop engineering. Angew. Chem. Int. Ed. 2010, 49:6111-6115.
    • (2010) Angew. Chem. Int. Ed. , vol.49 , pp. 6111-6115
    • Prokop, Z.1
  • 87
    • 79960577802 scopus 로고    scopus 로고
    • Stereoselectivity and conformational stability of haloalkane dehalogenase DbjA from Bradyrhizobium japonicum USDA110: the effect of pH and temperature
    • Chaloupkova R., et al. Stereoselectivity and conformational stability of haloalkane dehalogenase DbjA from Bradyrhizobium japonicum USDA110: the effect of pH and temperature. FEBS J. 2011, 278:2728-2738.
    • (2011) FEBS J. , vol.278 , pp. 2728-2738
    • Chaloupkova, R.1
  • 88
    • 84873532872 scopus 로고    scopus 로고
    • Engineering enzyme stability and resistance to an organic cosolvent by modification of residues in the access tunnel
    • Koudelakova T., et al. Engineering enzyme stability and resistance to an organic cosolvent by modification of residues in the access tunnel. Angew. Chem. Int. Ed. 2013, 52:1959-1963.
    • (2013) Angew. Chem. Int. Ed. , vol.52 , pp. 1959-1963
    • Koudelakova, T.1
  • 89
    • 70349330482 scopus 로고    scopus 로고
    • Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate
    • Pavlova M., et al. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat. Chem. Biol. 2009, 5:727-733.
    • (2009) Nat. Chem. Biol. , vol.5 , pp. 727-733
    • Pavlova, M.1
  • 90
    • 0242438879 scopus 로고    scopus 로고
    • Industrialization of the microbial resolution of chiral C3 and C4 synthetic units: from a small beginning to a major operation, a personal account
    • Kasai N., Suzuki T. Industrialization of the microbial resolution of chiral C3 and C4 synthetic units: from a small beginning to a major operation, a personal account. Adv. Synth. Catal. 2003, 345:437-455.
    • (2003) Adv. Synth. Catal. , vol.345 , pp. 437-455
    • Kasai, N.1    Suzuki, T.2
  • 91
    • 84155174672 scopus 로고    scopus 로고
    • Directed evolution strategies for enantiocomplementary haloalkane dehalogenases: from chemical waste to enantiopure building blocks
    • van Leeuwen J.G.E., et al. Directed evolution strategies for enantiocomplementary haloalkane dehalogenases: from chemical waste to enantiopure building blocks. ChemBioChem 2012, 13:137-148.
    • (2012) ChemBioChem , vol.13 , pp. 137-148
    • van Leeuwen, J.G.E.1
  • 92
    • 84864456310 scopus 로고    scopus 로고
    • Haloalkane dehalogenase catalysed desymmetrisation and tandem kinetic resolution for the preparation of chiral haloalcohols
    • Westerbeek A., et al. Haloalkane dehalogenase catalysed desymmetrisation and tandem kinetic resolution for the preparation of chiral haloalcohols. Tetrahedron 2012, 68:7645-7650.
    • (2012) Tetrahedron , vol.68 , pp. 7645-7650
    • Westerbeek, A.1
  • 93
    • 79955429613 scopus 로고    scopus 로고
    • Kinetic resolution of α-bromoamides: experimental and theoretical investigation of highly enantioselective reactions catalyzed by haloalkane dehalogenases
    • Westerbeek A., et al. Kinetic resolution of α-bromoamides: experimental and theoretical investigation of highly enantioselective reactions catalyzed by haloalkane dehalogenases. Adv. Synth. Catal. 2011, 353:931-944.
    • (2011) Adv. Synth. Catal. , vol.353 , pp. 931-944
    • Westerbeek, A.1
  • 94
    • 82955241462 scopus 로고    scopus 로고
    • Dynamic kinetic resolution process employing haloalkane dehalogenase
    • Westerbeek A., et al. Dynamic kinetic resolution process employing haloalkane dehalogenase. ACS Catal. 2011, 1:1654-1660.
    • (2011) ACS Catal. , vol.1 , pp. 1654-1660
    • Westerbeek, A.1
  • 95
    • 84872686357 scopus 로고    scopus 로고
    • Stereochemistry of LinB-catalyzed biotransformation of δ-HBCD to 1R,2R,5S,6R,9R,10S-pentabromocyclododecanol
    • Heeb N.V., et al. Stereochemistry of LinB-catalyzed biotransformation of δ-HBCD to 1R,2R,5S,6R,9R,10S-pentabromocyclododecanol. Chemosphere 2013, 90:1911-1919.
    • (2013) Chemosphere , vol.90 , pp. 1911-1919
    • Heeb, N.V.1
  • 96
    • 28644444340 scopus 로고    scopus 로고
    • Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities
    • Janssen D.B., et al. Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities. Environ. Microbiol. 2005, 7:1868-1882.
    • (2005) Environ. Microbiol. , vol.7 , pp. 1868-1882
    • Janssen, D.B.1
  • 97
    • 0032576854 scopus 로고    scopus 로고
    • Chemo-enzymatic deracemization of (±)-2,2-disubstituted oxiranes
    • Orru R.V.A., et al. Chemo-enzymatic deracemization of (±)-2,2-disubstituted oxiranes. Tetrahedron 1998, 54:859-874.
    • (1998) Tetrahedron , vol.54 , pp. 859-874
    • Orru, R.V.A.1
  • 98
    • 84863736380 scopus 로고    scopus 로고
    • Biochemical characterization of a novel haloalkane dehalogenase from a cold-adapted bacterium
    • Drienovska I., et al. Biochemical characterization of a novel haloalkane dehalogenase from a cold-adapted bacterium. Appl. Environ. Microbiol. 2012, 78:4995-4998.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 4995-4998
    • Drienovska, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.