메뉴 건너뛰기




Volumn 17, Issue 7, 2013, Pages 811-827

Deciphering HIC1 control pathways to reveal new avenues in cancer therapeutics

Author keywords

Epigenetics; HIC1; Transcriptional repression; Tumor suppressor genes

Indexed keywords

CHEMOKINE RECEPTOR CXCR7; CYCLIN D1; CYCLIN DEPENDENT KINASE 4; DOUBLE STRANDED DNA; EPHRIN A1; EPHRIN RECEPTOR A2; HISTONE DEACETYLASE 1; HISTONE DEACETYLASE 4; HISTONE DEACETYLASE 7; HISTONE METHYLTRANSFERASE; HYPERMETHYLATED IN CANCER 1; ISOPRENALINE; PEPTIDES AND PROTEINS; PROTEIN P21; PROTEIN P53; SIRTUIN 1; STROMAL CELL DERIVED FACTOR 1; TRANSCRIPTION FACTOR SOX9; UNCLASSIFIED DRUG;

EID: 84879061291     PISSN: 14728222     EISSN: 17447631     Source Type: Journal    
DOI: 10.1517/14728222.2013.788152     Document Type: Review
Times cited : (32)

References (149)
  • 1
    • 0015043748 scopus 로고
    • Mutation and cancer: Statistical study of retinoblastoma
    • Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68: 820-3
    • (1971) Proc Natl Acad Sci USA , vol.68 , pp. 820-823
    • Knudson Jr., A.G.1
  • 2
    • 0026556867 scopus 로고
    • Distinct hypermethylation patterns occur at altered chromosome loci in human lung and colon cancer
    • Makos M, Nelkin BD, Lerman MI, et al. Distinct hypermethylation patterns occur at altered chromosome loci in human lung and colon cancer. Proc Natl Acad Sci USA 1992; 89: 1929-33
    • (1992) Proc Natl Acad Sci USA , vol.89 , pp. 1929-1933
    • Makos, M.1    Nelkin, B.D.2    Lerman, M.I.3
  • 5
    • 0032559995 scopus 로고    scopus 로고
    • Methylation of the HIC-1 candidate tumor suppressor gene in human breast cancer
    • Fujii H, Biel MA, Zhou W, et al. Methylation of the HIC-1 candidate tumor suppressor gene in human breast cancer. Oncogene 1998; 16: 2159-64 (Pubitemid 28211691)
    • (1998) Oncogene , vol.16 , Issue.16 , pp. 2159-2164
    • Fujii, H.1    Biel, M.A.2    Zhou, W.3    Weitzman, S.A.4    Baylin, S.B.5    Gabrielson, E.6
  • 7
    • 0038581906 scopus 로고    scopus 로고
    • Identification of frequent cytogenetic aberrations in hepatocellular carcinoma using gene-expression microarray data
    • Crawley JJ, Furge KA. Identification of frequent cytogenetic aberrations in hepatocellular carcinoma using gene-expression microarray data. Genome Biol 2002; 3: RESEARCH0075
    • (2002) Genome Biol , vol.3 , pp. 0075
    • Crawley, J.J.1    Furge, K.A.2
  • 9
    • 0024998205 scopus 로고
    • Deletion mapping of the medulloblastoma locus on chromosome 17p
    • Cogen PH, Daneshvar L, Metzger AK, Edwards MS. Deletion mapping of the medulloblastoma locus on chromosome 17p. Genomics 1990; 8: 279-85 (Pubitemid 20335619)
    • (1990) Genomics , vol.8 , Issue.2 , pp. 279-285
    • Cogen, P.H.1    Daneshvar, L.2    Metzger, A.K.3    Edwards, M.S.B.4
  • 10
    • 0026513426 scopus 로고
    • Involvement of multiple chromosome 17p loci in medulloblastoma tumorigenesis
    • Cogen PH, Daneshvar L, Metzger AK, et al. Involvement of multiple chromosome 17p loci in medulloblastoma tumorigenesis. Am J Hum Genet 1992; 50: 584-9
    • (1992) Am J Hum Genet , vol.50 , pp. 584-589
    • Cogen, P.H.1    Daneshvar, L.2    Metzger, A.K.3
  • 11
    • 0026470033 scopus 로고
    • Evidence for the involvement of a potential second tumor suppressor gene on chromosome 17 distinct from p53 in malignant astrocytomas
    • Saxena A, Clark WC, Robertson JT, et al. Evidence for the involvement of a potential second tumor suppressor gene on chromosome 17 distinct from p53 in malignant astrocytomas. Cancer Res 1992; 52: 6716-21
    • (1992) Cancer Res , vol.52 , pp. 6716-6721
    • Saxena, A.1    Clark, W.C.2    Robertson, J.T.3
  • 12
    • 0029820302 scopus 로고    scopus 로고
    • Molecular genetic analysis of chromosome arm 17p and chromosome arm 22q DNA sequences in sporadic pediatric ependymomas
    • DOI 10.1002/(SICI)1098-2264(199609)17:1<37::AID-GCC6>3.0.CO;2-3
    • von Haken MS, White EC, Daneshvar-Shyesther L, et al. Molecular genetic analysis of chromosome arm 17p and chromosome arm 22q DNA sequences in sporadic pediatric ependymomas. Genes Chromosomes Cancer 1996; 17: 37-44 (Pubitemid 26327933)
    • (1996) Genes Chromosomes and Cancer , vol.17 , Issue.1 , pp. 37-44
    • Von Haken, M.S.1    White, E.C.2    Daneshvar-Shyesther, L.3    Sih, S.4    Choi, E.5    Kalra, R.6    Cogen, P.H.7
  • 14
    • 0030827255 scopus 로고    scopus 로고
    • Loss of heterozygosity of a locus on 17p13.3, independent of p53, is associated with higher grades of astrocytic tumours
    • Chattopadhyay P, Rathore A, Mathur M, et al. Loss of heterozygosity of a locus on 17p13.3, independent of p53, is associated with higher grades of astrocytic tumours. Oncogene 1997; 15: 871-4 (Pubitemid 27390140)
    • (1997) Oncogene , vol.15 , Issue.7 , pp. 871-874
    • Chattopadhyay, P.1    Rathore, A.2    Mathur, M.3    Sarkar, C.4    Mahapatra, A.K.5    Sinha, S.6
  • 16
    • 0036644901 scopus 로고    scopus 로고
    • Hypermethylation of HIC-1 and 17p allelic loss in medulloblastoma
    • Rood BR, Zhang H, Weitman DM, Cogen PH. Hypermethylation of HIC-1 and 17p allelic loss in medulloblastoma. Cancer Res 2002; 62: 3794-7 (Pubitemid 34728863)
    • (2002) Cancer Research , vol.62 , Issue.13 , pp. 3794-3797
    • Rood, B.R.1    Zhang, H.2    Weitman, D.M.3    Cogen, P.H.4
  • 18
    • 0028172248 scopus 로고
    • P53 gene mutation and mdm2 gene amplification are uncommon in medulloblastoma
    • Adesina AM, Nalbantoglu J, Cavenee WK. p53 gene mutation and mdm2 gene amplification are uncommon in medulloblastoma. Cancer Res 1994; 54: 5649-51
    • (1994) Cancer Res , vol.54 , pp. 5649-5651
    • Adesina, A.M.1    Nalbantoglu, J.2    Cavenee, W.K.3
  • 20
    • 0026634161 scopus 로고
    • Evidence for a 17p tumor related locus distinct from p53 in pediatric primitive neuroectodermal tumors
    • Biegel JA, Burk CD, Barr FG, Emanuel BS. Evidence for a 17p tumor related locus distinct from p53 in pediatric primitive neuroectodermal tumors. Cancer Res 1992; 52: 3391-5
    • (1992) Cancer Res , vol.52 , pp. 3391-3395
    • Biegel, J.A.1    Burk, C.D.2    Barr, F.G.3    Emanuel, B.S.4
  • 21
    • 84863393028 scopus 로고    scopus 로고
    • Molecular subgroups of medulloblastoma: An international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, group 3, and group 4 medulloblastomas
    • Kool M, Korshunov A, Remke M, et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, group 3, and group 4 medulloblastomas. Acta neuropathol 2012; 123: 473-84
    • (2012) Acta Neuropathol , vol.123 , pp. 473-484
    • Kool, M.1    Korshunov, A.2    Remke, M.3
  • 22
    • 84870215426 scopus 로고    scopus 로고
    • Medulloblastomics: The end of the beginning
    • Northcott PA, Jones DT, Kool M, et al. Medulloblastomics: the end of the beginning. Nat Rev Cancer 2012; 12: 818-34
    • (2012) Nat Rev Cancer , vol.12 , pp. 818-834
    • Northcott, P.A.1    Jones, D.T.2    Kool, M.3
  • 23
    • 84860821444 scopus 로고    scopus 로고
    • Molecular subgroups of medulloblastoma: The current consensus
    • Taylor MD, Northcott PA, Korshunov A, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 2012; 123: 465-72
    • (2012) Acta Neuropathol , vol.123 , pp. 465-472
    • Taylor, M.D.1    Northcott, P.A.2    Korshunov, A.3
  • 24
    • 0028040905 scopus 로고
    • Physical mapping of chromosome 17p13.3 in the region of a putative tumor suppressor gene important in medulloblastoma
    • DOI 10.1006/geno.1994.1481
    • McDonald JD, Daneshvar L, Willert JR, et al. Physical mapping of chromosome 17p13.3 in the region of a putative tumor suppressor gene important in medulloblastoma. Genomics 1994; 23: 229-32 (Pubitemid 24296957)
    • (1994) Genomics , vol.23 , Issue.1 , pp. 229-232
    • McDonald, J.D.1    Daneshvar, L.2    Willert, J.R.3    Matsumura, K.4    Waldman, F.5    Cogen, P.H.6
  • 25
    • 0034672485 scopus 로고    scopus 로고
    • Physical and transcriptional mapping of the 17p13.3 region that is frequently deleted in human cancer
    • Hoff C, Seranski P, Mollenhauer J, et al. Physical and transcriptional mapping of the 17p13.3 region that is frequently deleted in human cancer. Genomics 2000; 70: 26-33
    • (2000) Genomics , vol.70 , pp. 26-33
    • Hoff, C.1    Seranski, P.2    Mollenhauer, J.3
  • 27
    • 0029014425 scopus 로고
    • P53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3
    • Wales MM, Biel MA, el Deiry W, et al. p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat Med 1995; 1: 570-7
    • (1995) Nat Med , vol.1 , pp. 570-577
    • Wales, M.M.1    Biel, M.A.2    El Deiry, W.3
  • 28
    • 0035793579 scopus 로고    scopus 로고
    • Identification in the human candidate tumor suppressor gene HIC-1 of a new major alternative TATA-less promoter positively regulated by p53
    • Guerardel C, Deltour S, Pinte S, et al. Identification in the human candidate tumor suppressor gene HIC-1 of a new major alternative TATA-less promoter positively regulated by p53. J Biol Chem 2001; 276: 3078-89
    • (2001) J Biol Chem , vol.276 , pp. 3078-3089
    • Guerardel, C.1    Deltour, S.2    Pinte, S.3
  • 29
    • 33645500652 scopus 로고    scopus 로고
    • Identification of the p53 family-responsive element in the promoter region of the tumor suppressor gene hypermethylated in cancer 1
    • Britschgi C, Rizzi M, Grob TJ, et al. Identification of the p53 family-responsive element in the promoter region of the tumor suppressor gene hypermethylated in cancer 1. Oncogene 2006; 25: 2030-9
    • (2006) Oncogene , vol.25 , pp. 2030-2039
    • Britschgi, C.1    Rizzi, M.2    Grob, T.J.3
  • 30
    • 67649586411 scopus 로고    scopus 로고
    • The tumor suppressor gene hypermethylated in cancer 1 is transcriptionally regulated by E2F1
    • Jenal M, Trinh E, Britschgi C, et al. The tumor suppressor gene hypermethylated in cancer 1 is transcriptionally regulated by E2F1. Mol Cancer Res 2009; 7: 916-22
    • (2009) Mol Cancer Res , vol.7 , pp. 916-922
    • Jenal, M.1    Trinh, E.2    Britschgi, C.3
  • 31
    • 73349114319 scopus 로고    scopus 로고
    • Implication of HIC1 (Hypermethylated in Cancer 1) in the DNA damage response
    • Dehennaut V, Leprince D. Implication of HIC1 (Hypermethylated In Cancer 1) in the DNA damage response. Bull Cancer 2009; 96: E66-72
    • (2009) Bull Cancer , vol.96
    • Dehennaut, V.1    Leprince, D.2
  • 32
    • 79952199274 scopus 로고    scopus 로고
    • Inactivation of the hypermethylated in cancer 1 tumour suppressor-not just a question of promoter hypermethylation?
    • Jenal M, Britschgi C, Fey MF, Tschan MP. Inactivation of the hypermethylated in cancer 1 tumour suppressor-not just a question of promoter hypermethylation? Swiss Med Wkly 2010; 140: w13106
    • (2010) Swiss Med Wkly , vol.140
    • Jenal, M.1    Britschgi, C.2    Fey, M.F.3    Tschan, M.P.4
  • 34
    • 0033052844 scopus 로고    scopus 로고
    • DNA hypermethylation at the D17S5 locus and reduced HIC-1 mRNA expression are associated with hepatocarcinogenesis
    • Kanai Y, Hui AM, Sun L, et al. DNA hypermethylation at the D17S5 locus and reduced HIC-1 mRNA expression are associated with hepatocarcinogenesis. Hepatology 1999; 29: 703-9 (Pubitemid 29109583)
    • (1999) Hepatology , vol.29 , Issue.3 , pp. 703-709
    • Kanai, Y.1    Hui, A.-M.2    Sun, L.3    Ushijima, S.4    Sakamoto, M.5    Tsuda, H.6    Hirohashi, S.7
  • 36
    • 80052318632 scopus 로고    scopus 로고
    • Promoter hypermethylation of RASSF1A, MGMT, and HIC-1 genes in benign and malignant colorectal tumors
    • Abouzeid HE, Kassem AM, Abdel Wahab AH, et al. Promoter hypermethylation of RASSF1A, MGMT, and HIC-1 genes in benign and malignant colorectal tumors. Tumour Biol 2011; 32: 845-52
    • (2011) Tumour Biol , vol.32 , pp. 845-852
    • Abouzeid, H.E.1    Kassem, A.M.2    Abdel Wahab, A.H.3
  • 37
    • 79960604222 scopus 로고    scopus 로고
    • Identification of novel subregions of LOH in gastric cancer and analysis of the HIC1 and TOB1 tumor suppressor genes in these subregions
    • Yu J, Liu P, Cui X, et al. Identification of novel subregions of LOH in gastric cancer and analysis of the HIC1 and TOB1 tumor suppressor genes in these subregions. Mol Cells 2011; 32: 47-55
    • (2011) Mol Cells , vol.32 , pp. 47-55
    • Yu, J.1    Liu, P.2    Cui, X.3
  • 38
    • 84861414700 scopus 로고    scopus 로고
    • Alterations in promoter methylation status of tumor suppressor HIC1, SFRP2, and DAPK1 genes in prostate carcinomas
    • Kilinc D, Ozdemir O, Ozdemir S, et al. Alterations in promoter methylation status of tumor suppressor HIC1, SFRP2, and DAPK1 genes in prostate carcinomas. DNA Cell Biol 2012; 31: 826-32
    • (2012) DNA Cell Biol , vol.31 , pp. 826-832
    • Kilinc, D.1    Ozdemir, O.2    Ozdemir, S.3
  • 39
    • 84892779770 scopus 로고    scopus 로고
    • Hypermethylation of HIC1 promoter and aberrant expression of HIC1/SIRT1 might contribute to the carcinogenesis of pancreatic cancer
    • Epub ahead of print
    • Zhao G, Qin Q, Zhang J, et al. Hypermethylation of HIC1 promoter and aberrant expression of HIC1/SIRT1 might contribute to the carcinogenesis of pancreatic cancer. Ann Surg Oncol 2012; Epub ahead of print
    • (2012) Ann Surg Oncol
    • Zhao, G.1    Qin, Q.2    Zhang, J.3
  • 40
    • 77956392813 scopus 로고    scopus 로고
    • Demethylation treatment restores hic1 expression and impairs aggressiveness of head and neck squamous cell carcinoma
    • Brieger J, Pongsapich W, Mann SA, et al. Demethylation treatment restores hic1 expression and impairs aggressiveness of head and neck squamous cell carcinoma. Oral Oncol 2010; 46: 678-83
    • (2010) Oral Oncol , vol.46 , pp. 678-683
    • Brieger, J.1    Pongsapich, W.2    Mann, S.A.3
  • 41
    • 0030830914 scopus 로고    scopus 로고
    • DNA hypermethylation at the D17S5 locus in non-small cell lung cancers: Its association with smoking history
    • Eguchi K, Kanai Y, Kobayashi K, Hirohashi S. DNA hypermethylation at the D17S5 locus in non-small cell lung cancers: its association with smoking history. Cancer Res 1997; 57: 4913-15 (Pubitemid 27469002)
    • (1997) Cancer Research , vol.57 , Issue.21 , pp. 4913-4915
    • Eguchi, K.1    Kanai, Y.2    Kobayashi, K.3    Hirohashi, S.4
  • 42
    • 84860299780 scopus 로고    scopus 로고
    • Prognostic and diagnostic relevance of hypermethylated in cancer 1 (HIC1) CpG island methylation in renal cell carcinoma
    • Eggers H, Steffens S, Grosshennig A, et al. Prognostic and diagnostic relevance of hypermethylated in cancer 1 (HIC1) CpG island methylation in renal cell carcinoma. Int J Oncol 2012; 40: 1650-8
    • (2012) Int J Oncol , vol.40 , pp. 1650-1658
    • Eggers, H.1    Steffens, S.2    Grosshennig, A.3
  • 43
    • 79952361977 scopus 로고    scopus 로고
    • DNA hypermethylation markers of poor outcome in laryngeal cancer
    • Stephen JK, Chen KM, Shah V, et al. DNA hypermethylation markers of poor outcome in laryngeal cancer. Clin Epigenetics 2010; 1: 61-9
    • (2010) Clin Epigenetics , vol.1 , pp. 61-69
    • Stephen, J.K.1    Chen, K.M.2    Shah, V.3
  • 48
    • 79958278998 scopus 로고    scopus 로고
    • Loss of a single Hic1 allele accelerates polyp formation in Apc (Delta716) mice
    • Mohammad HP, Zhang W, Prevas HS, et al. Loss of a single Hic1 allele accelerates polyp formation in Apc (Delta716) mice. Oncogene 2011; 30: 2659-69
    • (2011) Oncogene , vol.30 , pp. 2659-2669
    • Mohammad, H.P.1    Zhang, W.2    Prevas, H.S.3
  • 49
    • 0028040875 scopus 로고
    • The POZ domain: A conserved protein-protein interaction motif
    • Bardwell VJ, Treisman R. The POZ domain: a conserved protein-protein interaction motif. Genes Dev 1994; 8: 1664-77 (Pubitemid 24236245)
    • (1994) Genes and Development , vol.8 , Issue.14 , pp. 1664-1677
    • Bardwell, V.J.1    Treisman, R.2
  • 51
    • 0029099016 scopus 로고
    • The BTB/POZ domain: A new protein-protein interaction motif common to DNA-and actin-binding proteins
    • Albagli O, Dhordain P, Deweindt C, et al. The BTB/POZ domain: a new protein-protein interaction motif common to DNA-and actin-binding proteins. Cell Growth Differ 1995; 6: 1193-8
    • (1995) Cell Growth Differ , vol.6 , pp. 1193-1198
    • Albagli, O.1    Dhordain, P.2    Deweindt, C.3
  • 53
    • 56149093770 scopus 로고    scopus 로고
    • HIC1 (Hypermethylated in Cancer 1) epigenetic silencing in tumors
    • Fleuriel C, Touka M, Boulay G, et al. HIC1 (Hypermethylated in Cancer 1) epigenetic silencing in tumors. Int J Biochem Cell Biol 2009; 41: 26-33
    • (2009) Int J Biochem Cell Biol , vol.41 , pp. 26-33
    • Fleuriel, C.1    Touka, M.2    Boulay, G.3
  • 55
    • 4644346198 scopus 로고    scopus 로고
    • The tumor suppressor gene HIC1 (hypermethylated in cancer 1) is a sequence-specific transcriptional repressor: Definition of its consensus binding sequence and analysis of its DNA binding and repressive properties
    • DOI 10.1074/jbc.M401610200
    • Pinte S, Stankovic-Valentin N, Deltour S, et al. The tumor suppressor gene HIC1 (hypermethylated in cancer 1) is a sequence-specific transcriptional repressor: definition of its consensus binding sequence and analysis of its DNA binding and repressive properties. J Biol Chem 2004; 279: 38313-24 (Pubitemid 39295979)
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.37 , pp. 38313-38324
    • Pinte, S.1    Stankovic-Valentin, N.2    Beltour, S.3    Rood, B.R.4    Guerardel, C.5    Leprince, D.6
  • 58
    • 0032724185 scopus 로고    scopus 로고
    • Structure-function studies of the BTB/POZ transcriptional repression domain from the promyelocytic leukemia zinc finger oncoprotein
    • Li X, Peng H, Schultz DC, et al. Structure-function studies of the BTB/POZ transcriptional repression domain from the promyelocytic leukemia zinc finger oncoprotein. Cancer Res 1999; 59: 5275-82 (Pubitemid 29503994)
    • (1999) Cancer Research , vol.59 , Issue.20 , pp. 5275-5282
    • Li, X.1    Peng, H.2    Schultz, D.C.3    Lopez-Guisa, J.M.4    Rauscher III, F.J.5    Marmorstein, R.6
  • 59
    • 0029416999 scopus 로고
    • The BTB/POZ domain targets the LAZ3/BCL6 oncoprotein to nuclear dots and mediates homomerisation in vivo
    • Dhordain P, Albagli O, Ansieau S, et al. The BTB/POZ domain targets the LAZ3/BCL6 oncoprotein to nuclear dots and mediates homomerisation in vivo. Oncogene 1995; 11: 2689-97
    • (1995) Oncogene , vol.11 , pp. 2689-2697
    • Dhordain, P.1    Albagli, O.2    Ansieau, S.3
  • 61
    • 0036274143 scopus 로고    scopus 로고
    • The human candidate tumor suppressor gene HIC1 recruits CtBP through a degenerate GLDLSKK motif
    • DOI 10.1128/MCB.22.13.4890-4901.2002
    • Deltour S, Pinte S, Guerardel C, et al. The human candidate tumor suppressor gene HIC1 recruits CtBP through a degenerate GLDLSKK motif. Mol Cell Biol 2002; 22: 4890-901 (Pubitemid 34620422)
    • (2002) Molecular and Cellular Biology , vol.22 , Issue.13 , pp. 4890-4901
    • Deltour, S.1    Pinte, S.2    Guerardel, C.3    Wasylyk, B.4    Leprince, D.5
  • 62
    • 33745744942 scopus 로고    scopus 로고
    • HIC1 attenuates Wnt signaling by recruitment of TCF-4 and β-catenin to the nuclear bodies
    • DOI 10.1038/sj.emboj.7601147, PII 7601147
    • Valenta T, Lukas J, Doubravska L, et al. HIC1 attenuates Wnt signaling by recruitment of TCF-4 and beta-catenin to the nuclear bodies. EMBO J 2006; 25: 2326-37 (Pubitemid 44012216)
    • (2006) EMBO Journal , vol.25 , Issue.11 , pp. 2326-2337
    • Valenta, T.1    Lukas, J.2    Doubravska, L.3    Fafilek, B.4    Korinek, V.5
  • 63
    • 0030923430 scopus 로고    scopus 로고
    • Sequence-specific DNA binding and transcriptional regulation by the promyelocytic leukemia zinc finger protein
    • DOI 10.1074/jbc.272.36.22447
    • Li JY, English MA, Ball HJ, et al. Sequence-specific DNA binding and transcriptional regulation by the promyelocytic leukemia zinc finger protein. J Biol Chem 1997; 272: 22447-55 (Pubitemid 27386053)
    • (1997) Journal of Biological Chemistry , vol.272 , Issue.36 , pp. 22447-22455
    • Li, J.-Y.1    English, M.A.2    Ball, H.J.3    Yeyati, P.L.4    Waxman, S.5    Licht, J.D.6
  • 64
    • 0344012183 scopus 로고    scopus 로고
    • The Drosophila melanogaster BTB proteins b9ric a brac bind DNA through a composite DNA binding domain containing a pipsqueak and an AT-Hook motif
    • DOI 10.1093/nar/gkg724
    • Lours C, Bardot O, Godt D, et al. The drosophila melanogaster BTB proteins bric a brac bind DNA through a composite DNA binding domain containing a pipsqueak and an AT-hook motif. Nucleic Acids Res 2003; 31: 5389-98 (Pubitemid 37441907)
    • (2003) Nucleic Acids Research , vol.31 , Issue.18 , pp. 5389-5398
    • Lours, C.1    Bardot, O.2    Godt, D.3    Laski, F.A.4    Couderc, J.-L.5
  • 66
    • 27544434763 scopus 로고    scopus 로고
    • Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses
    • DOI 10.1016/j.cell.2005.08.011, PII S0092867405008159
    • Chen WY, Wang DH, Yen RC, et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 2005; 123: 437-48 (Pubitemid 41546674)
    • (2005) Cell , vol.123 , Issue.3 , pp. 437-448
    • Wen, Y.C.1    Wang, D.H.2    RayWhay, C.Y.3    Luo, J.4    Gu, W.5    Baylin, S.B.6
  • 67
    • 77955616940 scopus 로고    scopus 로고
    • Differential regulation of HIC1 target genes by CtBP and NuRD, via an acetylation/SUMOylation switch, in quiescent versus proliferating cells
    • Van Rechem C, Boulay G, Pinte S, et al. Differential regulation of HIC1 target genes by CtBP and NuRD, via an acetylation/SUMOylation switch, in quiescent versus proliferating cells. Mol Cell Biol 2010; 30: 4045-59
    • (2010) Mol Cell Biol , vol.30 , pp. 4045-4059
    • Van Rechem, C.1    Boulay, G.2    Pinte, S.3
  • 68
    • 84863230325 scopus 로고    scopus 로고
    • Interferon gamma (IFN-gamma) disrupts energy expenditure and metabolic homeostasis by suppressing SIRT1 transcription
    • Li P, Zhao Y, Wu X, et al. Interferon gamma (IFN-gamma) disrupts energy expenditure and metabolic homeostasis by suppressing SIRT1 transcription. Nucleic Acids Res 2012; 40: 1609-20
    • (2012) Nucleic Acids Res , vol.40 , pp. 1609-1620
    • Li, P.1    Zhao, Y.2    Wu, X.3
  • 70
    • 80055020275 scopus 로고    scopus 로고
    • Impact of fibroblast growth factor-binding protein-1 expression on angiogenesis and wound healing
    • Tassi E, McDonnell K, Gibby KA, et al. Impact of fibroblast growth factor-binding protein-1 expression on angiogenesis and wound healing. Am J Pathol 2011; 179: 2220-32
    • (2011) Am J Pathol , vol.179 , pp. 2220-2232
    • Tassi, E.1    McDonnell, K.2    Gibby, K.A.3
  • 72
    • 78049338121 scopus 로고    scopus 로고
    • Characterization of DeltaNp73 expression and regulation in gastric and esophageal tumors
    • Vilgelm AE, Hong SM, Washington MK, et al. Characterization of DeltaNp73 expression and regulation in gastric and esophageal tumors. Oncogene 2010; 29: 5861-8
    • (2010) Oncogene , vol.29 , pp. 5861-5868
    • Vilgelm, A.E.1    Hong, S.M.2    Washington, M.K.3
  • 74
    • 84872370199 scopus 로고    scopus 로고
    • Identification of p21 (CIP1/WAF1) as a direct target gene of HIC1 (Hypermethylated in Cancer 1)
    • Dehennaut V, Loison I, Boulay G, et al. Identification of p21 (CIP1/WAF1) as a direct target gene of HIC1 (Hypermethylated In Cancer 1). Biochem Biophys Res Commun 2013; 430: 49-53
    • (2013) Biochem Biophys Res Commun , vol.430 , pp. 49-53
    • Dehennaut, V.1    Loison, I.2    Boulay, G.3
  • 75
    • 68949120893 scopus 로고    scopus 로고
    • Scavenger chemokine (CXC Motif) receptor 7 (CXCR7) is a direct target gene of HIC1 Hypermethylated in Cancer 1
    • Van Rechem C, Rood BR, Touka M, et al. Scavenger chemokine (CXC Motif) receptor 7 (CXCR7) is a direct target gene of HIC1 (Hypermethylated in Cancer 1). J Biol Chem 2009; 284: 20927-35
    • (2009) J Biol Chem , vol.284 , pp. 20927-20935
    • Van Rechem, C.1    Rood, B.R.2    Touka, M.3
  • 76
    • 77951877955 scopus 로고    scopus 로고
    • A potential tumor suppressor role for Hic1 in breast cancer through transcriptional repression of ephrin-A1
    • Zhang W, Zeng X, Briggs KJ, et al. A potential tumor suppressor role for Hic1 in breast cancer through transcriptional repression of ephrin-A1. Oncogene 2010; 29: 2467-76
    • (2010) Oncogene , vol.29 , pp. 2467-2476
    • Zhang, W.1    Zeng, X.2    Briggs, K.J.3
  • 77
    • 84875145398 scopus 로고    scopus 로고
    • HIC1 modulates prostate cancer progression by epigenetic modification
    • Zheng J, Wang J, Sun X, et al. HIC1 modulates prostate cancer progression by epigenetic modification. Clin Cancer Res 2013; 19(6): 1400-10
    • (2013) Clin Cancer Res , vol.19 , Issue.6 , pp. 1400-1410
    • Zheng, J.1    Wang, J.2    Sun, X.3
  • 78
    • 79551477143 scopus 로고    scopus 로고
    • Cerebellum development and medulloblastoma
    • Roussel MF, Hatten ME. Cerebellum development and medulloblastoma. Curr Top Dev Biol 2011; 94: 235-82
    • (2011) Curr Top Dev Biol , vol.94 , pp. 235-282
    • Roussel, M.F.1    Hatten, M.E.2
  • 79
    • 55349133789 scopus 로고    scopus 로고
    • Just say no to ATOH: How HIC1 methylation might predispose medulloblastoma to lineage addiction
    • Briggs KJ, Eberhart CG, Watkins DN. Just say no to ATOH: how HIC1 methylation might predispose medulloblastoma to lineage addiction. Cancer Res 2008; 68: 8654-6
    • (2008) Cancer Res , vol.68 , pp. 8654-8656
    • Briggs, K.J.1    Eberhart, C.G.2    Watkins, D.N.3
  • 80
    • 77954380632 scopus 로고    scopus 로고
    • Atoh1 inhibits neuronal differentiation and collaborates with Gli1 to generate medulloblastoma-initiating cells
    • Ayrault O, Zhao H, Zindy F, et al. Atoh1 inhibits neuronal differentiation and collaborates with Gli1 to generate medulloblastoma- initiating cells. Cancer Res 2010; 70: 5618-27
    • (2010) Cancer Res , vol.70 , pp. 5618-5627
    • Ayrault, O.1    Zhao, H.2    Zindy, F.3
  • 81
    • 84858969865 scopus 로고    scopus 로고
    • Hypermethylated in cancer 1 (HIC1) recruits polycomb repressive complex 2 (PRC2) to a subset of its target genes through interaction with human polycomb-like (hPCL) proteins
    • Boulay G, Dubuissez M, Van Rechem C, et al. Hypermethylated in cancer 1 (HIC1) recruits polycomb repressive complex 2 (PRC2) to a subset of its target genes through interaction with human polycomb-like (hPCL) proteins. J Biol Chem 2012; 287: 10509-24
    • (2012) J Biol Chem , vol.287 , pp. 10509-10524
    • Boulay, G.1    Dubuissez, M.2    Van Rechem, C.3
  • 82
    • 84874252337 scopus 로고    scopus 로고
    • Chemokine receptor trio: CXCR3, CXCR4 and CXCR7 crosstalk via CXCL11 and CXCL12
    • Singh AK, Arya RK, Trivedi AK, et al. Chemokine receptor trio: CXCR3, CXCR4 and CXCR7 crosstalk via CXCL11 and CXCL12. Cytokine Growth Factor Rev 2013; 24(1): 41-9
    • (2013) Cytokine Growth Factor Rev , vol.24 , Issue.1 , pp. 41-49
    • Singh, A.K.1    Arya, R.K.2    Trivedi, A.K.3
  • 83
    • 80052768977 scopus 로고    scopus 로고
    • CXCR7/CXCR4 heterodimer constitutively recruits beta-arrestin to enhance cell migration
    • Decaillot FM, Kazmi MA, Lin Y, et al. CXCR7/CXCR4 heterodimer constitutively recruits beta-arrestin to enhance cell migration. J Biol Chem 2011; 286: 32188-97
    • (2011) J Biol Chem , vol.286 , pp. 32188-32197
    • Decaillot, F.M.1    Kazmi, M.A.2    Lin, Y.3
  • 84
    • 76249134336 scopus 로고    scopus 로고
    • Betaarrestin-but not G protein-mediated signaling by the decoy receptor CXCR7
    • Rajagopal S, Kim J, Ahn S, et al. Betaarrestin-but not G protein-mediated signaling by the decoy receptor CXCR7. Proc Natl Acad Sci USA 2010; 107: 628-32
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 628-632
    • Rajagopal, S.1    Kim, J.2    Ahn, S.3
  • 85
    • 42949133032 scopus 로고    scopus 로고
    • The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer
    • Wang J, Shiozawa Y, Wang J, et al. The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem 2008; 283: 4283-94
    • (2008) J Biol Chem , vol.283 , pp. 4283-4294
    • Wang, J.1    Shiozawa, Y.2    Wang, J.3
  • 87
    • 84857444267 scopus 로고    scopus 로고
    • Clinical relevance of Ephs and ephrins in cancer: Lessons from breast, colorectal, and lung cancer profiling
    • Brantley-Sieders DM. Clinical relevance of Ephs and ephrins in cancer: lessons from breast, colorectal, and lung cancer profiling. Semin Cell Dev Biol 2012; 23: 102-8
    • (2012) Semin Cell Dev Biol , vol.23 , pp. 102-108
    • Brantley-Sieders, D.M.1
  • 88
    • 84857241099 scopus 로고    scopus 로고
    • Receptor tyrosyne kinase Epha2 is a direct target-gene of Hic1 Hypermethylated in Cancer 1
    • Foveau B, Boulay G, Pinte S, et al. Receptor tyrosyne kinase Epha2 is a direct target-gene of Hic1 (Hypermethylated in Cancer 1). J Biol Chem 2012; 287: 5366-78
    • (2012) J Biol Chem , vol.287 , pp. 5366-5378
    • Foveau, B.1    Boulay, G.2    Pinte, S.3
  • 90
    • 80052851917 scopus 로고    scopus 로고
    • Eph/ephrin profiling in human breast cancer reveals significant associations between expression level and clinical outcome
    • Brantley-Sieders DM, Jiang A, Sarma K, et al. Eph/ephrin profiling in human breast cancer reveals significant associations between expression level and clinical outcome. PLoS One 2011; 6: e24426
    • (2011) PLoS One , vol.6
    • Brantley-Sieders, D.M.1    Jiang, A.2    Sarma, K.3
  • 91
    • 84857439435 scopus 로고    scopus 로고
    • EphA receptor signaling-complexity and emerging themes
    • Miao H, Wang B. EphA receptor signaling-complexity and emerging themes. Semin Cell Dev Biol 2012; 23: 16-25
    • (2012) Semin Cell Dev Biol , vol.23 , pp. 16-25
    • Miao, H.1    Wang, B.2
  • 92
    • 77649114060 scopus 로고    scopus 로고
    • Eph receptors and ephrins in cancer: Bidirectional signalling and beyond
    • Pasquale EB. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 2010; 10: 165-80
    • (2010) Nat Rev Cancer , vol.10 , pp. 165-180
    • Pasquale, E.B.1
  • 93
    • 41149084179 scopus 로고    scopus 로고
    • Eph-Ephrin Bidirectional Signaling in Physiology and Disease
    • DOI 10.1016/j.cell.2008.03.011, PII S0092867408003863
    • Pasquale EB. Eph-ephrin bidirectional signaling in physiology and disease. Cell 2008; 133: 38-52 (Pubitemid 351442996)
    • (2008) Cell , vol.133 , Issue.1 , pp. 38-52
    • Pasquale, E.B.1
  • 94
    • 84857348808 scopus 로고    scopus 로고
    • Loss of hypermethylated in Cancer 1 (HIC1) in breast cancer cells contributes to stress induced migration and invasion through beta-2 adrenergic receptor (ADRB2) misregulation
    • Boulay G, Malaquin N, Loison I, et al. Loss of hypermethylated In Cancer 1 (HIC1) in breast cancer cells contributes to stress induced migration and invasion through beta-2 adrenergic receptor (ADRB2) misregulation. J Biol Chem 2012; 287: 5379-89
    • (2012) J Biol Chem , vol.287 , pp. 5379-5389
    • Boulay, G.1    Malaquin, N.2    Loison, I.3
  • 95
  • 96
    • 0037103133 scopus 로고    scopus 로고
    • Repression of AP-1 function: A mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene
    • Vasanwala FH, Kusam S, Toney LM, Dent AL. Repression of AP-1 function: a mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene. J Immunol 2002; 169: 1922-9 (Pubitemid 34857655)
    • (2002) Journal of Immunology , vol.169 , Issue.4 , pp. 1922-1929
    • Vasanwala, F.H.1    Kusam, S.2    Toney, L.M.3    Dent, A.L.4
  • 97
    • 0033593036 scopus 로고    scopus 로고
    • Recruitment of SMRT/N-CoR-mSin3A-HDAC-repressing complexes is not a general mechanism for BTB/POZ transcriptional repressors: The case of HIC-1 and γFBP-B
    • DOI 10.1073/pnas.96.26.14831
    • Deltour S, Guerardel C, Leprince D. Recruitment of SMRT/N-CoR-mSin3AHDAC- repressing complexes is not a general mechanism for BTB/POZ transcriptional repressors: the case of HIC-1 and gammaFBP-B. Proc Natl Acad Sci USA 1999; 96: 14831-6 (Pubitemid 30019725)
    • (1999) Proceedings of the National Academy of Sciences of the United States of America , vol.96 , Issue.26 , pp. 14831-14836
    • Deltour, S.1    Guerardel, C.2    Leprince, D.3
  • 98
    • 33745222095 scopus 로고    scopus 로고
    • A L225A substitution in the human tumour suppressor HIC1 abolishes its interaction with the corepressor ctbp
    • Stankovic-Valentin N, Verger A, Deltour-Balerdi S, et al. A L225A substitution in the human tumour suppressor HIC1 abolishes its interaction with the corepressor CtBP. FEBS J 2006; 273: 2879-90
    • (2006) FEBS J , vol.273 , pp. 2879-2890
    • Stankovic-Valentin, N.1    Verger, A.2    Deltour-Balerdi, S.3
  • 99
    • 34147208064 scopus 로고    scopus 로고
    • An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved ψKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity
    • DOI 10.1128/MCB.01098-06
    • Stankovic-Valentin N, Deltour S, Seeler J, et al. An acetylation/ deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity. Mol Cell Biol 2007; 27: 2661-75 (Pubitemid 46581356)
    • (2007) Molecular and Cellular Biology , vol.27 , Issue.7 , pp. 2661-2675
    • Stankovic-Valentin, N.1    Deltour, S.2    Seeler, J.3    Pinte, S.4    Vergoten, G.5    Guerardel, C.6    Dejean, A.7    Leprince, D.8
  • 102
    • 34447632818 scopus 로고    scopus 로고
    • Transcriptional regulation by C-terminal binding proteins
    • DOI 10.1016/j.biocel.2007.01.025, PII S1357272507000453
    • Chinnadurai G. Transcriptional regulation by C-terminal binding proteins. Int J Biochem Cell Biol 2007; 39: 1593-607 (Pubitemid 47088308)
    • (2007) International Journal of Biochemistry and Cell Biology , vol.39 , Issue.9 , pp. 1593-1607
    • Chinnadurai, G.1
  • 105
    • 15944406765 scopus 로고    scopus 로고
    • SUMO: A history of modification
    • DOI 10.1016/j.molcel.2005.03.012
    • Hay RT. SUMO: a history of modification. Mol Cell 2005; 18: 1-12 (Pubitemid 40444643)
    • (2005) Molecular Cell , vol.18 , Issue.1 , pp. 1-12
    • Hay, R.T.1
  • 107
    • 78649396592 scopus 로고    scopus 로고
    • The SUMO pathway: Emerging mechanisms that shape specificity, conjugation and recognition
    • Gareau JR, Lima CD. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 2010; 11: 861-71
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 861-871
    • Gareau, J.R.1    Lima, C.D.2
  • 108
    • 34547856653 scopus 로고    scopus 로고
    • The human Mi-2/NuRD complex and gene regulation
    • DOI 10.1038/sj.onc.1210611, PII 1210611
    • Denslow SA, Wade PA. The human Mi-2/NuRD complex and gene regulation. Oncogene 2007; 26: 5433-8 (Pubitemid 47255925)
    • (2007) Oncogene , vol.26 , Issue.37 , pp. 5433-5438
    • Denslow, S.A.1    Wade, P.A.2
  • 109
    • 74949090052 scopus 로고    scopus 로고
    • NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development
    • Miccio A, Wang Y, Hong W, et al. NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development. EMBO J 2010; 29: 442-56
    • (2010) EMBO J , vol.29 , pp. 442-456
    • Miccio, A.1    Wang, Y.2    Hong, W.3
  • 110
    • 74549137552 scopus 로고    scopus 로고
    • The Mi-2/NuRD complex: A critical epigenetic regulator of hematopoietic development, differentiation and cancer
    • Ramirez J, Hagman J. The Mi-2/NuRD complex: a critical epigenetic regulator of hematopoietic development, differentiation and cancer. Epigenetics 2009; 4: 532-6
    • (2009) Epigenetics , vol.4 , pp. 532-536
    • Ramirez, J.1    Hagman, J.2
  • 111
    • 33847274257 scopus 로고    scopus 로고
    • Metastasis tumor antigens, an emerging family of multifaceted master coregulators
    • DOI 10.1074/jbc.R600029200
    • Manavathi B, Kumar R. Metastasis tumor antigens, an emerging family of multifaceted master coregulators. J Biol Chem 2007; 282: 1529-33 (Pubitemid 47076673)
    • (2007) Journal of Biological Chemistry , vol.282 , Issue.3 , pp. 1529-1533
    • Manavathi, B.1    Kumar, R.2
  • 113
    • 67449119146 scopus 로고    scopus 로고
    • HIC1 interacts with a specific subunit of SWI/SNF complexes, ARID1A/BAF250A
    • Van Rechem C, Boulay G, Leprince D. HIC1 interacts with a specific subunit of SWI/SNF complexes, ARID1A/BAF250A. Biochem Biophys Res Commun 2009; 385: 586-90
    • (2009) Biochem Biophys Res Commun , vol.385 , pp. 586-590
    • Van Rechem, C.1    Boulay, G.2    Leprince, D.3
  • 114
    • 33846977688 scopus 로고    scopus 로고
    • Distinct mammalian SWI/SNF chromatin remodeling complexes with opposing roles in cell-cycle control
    • Nagl NG Jr, Wang X, Patsialou A, et al. Distinct mammalian SWI/SNF chromatin remodeling complexes with opposing roles in cell-cycle control. Embo J 2007; 26: 752-63
    • (2007) Embo J , vol.26 , pp. 752-763
    • Nagl Jr., N.G.1    Wang, X.2    Patsialou, A.3
  • 115
    • 77949384048 scopus 로고    scopus 로고
    • Mammalian SWI/SNF-A subunit BAF250/ARID1 is an E3 ubiquitin ligase that targets histone H2B
    • Li XS, Trojer P, Matsumura T, et al. Mammalian SWI/SNF-a subunit BAF250/ARID1 is an E3 ubiquitin ligase that targets histone H2B. Mol Cell Biol 2010; 30: 1673-88
    • (2010) Mol Cell Biol , vol.30 , pp. 1673-1688
    • Li, X.S.1    Trojer, P.2    Matsumura, T.3
  • 116
    • 84872320026 scopus 로고    scopus 로고
    • Chromatin remodeling defects and cancer: The SWI/SNF example
    • Bourdeaut F, Bieche I. Chromatin remodeling defects and cancer: the SWI/SNF example. Bull Cancer 2012; 99: 1133-40
    • (2012) Bull Cancer , vol.99 , pp. 1133-1140
    • Bourdeaut, F.1    Bieche, I.2
  • 117
    • 9244265488 scopus 로고    scopus 로고
    • A novel human homologue of Drosophila polycomblike gene is up-regulated in multiple cancers
    • DOI 10.1016/j.gene.2004.09.006, PII S0378111904005505
    • Wang S, Robertson GP, Zhu J. A novel human homologue of Drosophila polycomblike gene is up-regulated in multiple cancers. Gene 2004; 343: 69-78 (Pubitemid 39551030)
    • (2004) Gene , vol.343 , Issue.1 , pp. 69-78
    • Wang, S.1    Robertson, G.P.2    Zhu, J.3
  • 118
    • 79951540680 scopus 로고    scopus 로고
    • Functional characterization of human Polycomb-like 3 isoforms identifies them as components of distinct EZH2 protein complexes
    • Boulay G, Rosnoblet C, Guerardel C, et al. Functional characterization of human Polycomb-like 3 isoforms identifies them as components of distinct EZH2 protein complexes. Biochem J 2011; 434: 333-42
    • (2011) Biochem J , vol.434 , pp. 333-342
    • Boulay, G.1    Rosnoblet, C.2    Guerardel, C.3
  • 119
    • 77954758157 scopus 로고    scopus 로고
    • Polycomb group protein-mediated repression of transcription
    • Morey L, Helin K. Polycomb group protein-mediated repression of transcription. Trends Biochem Sci 2010; 35: 323-32
    • (2010) Trends Biochem Sci , vol.35 , pp. 323-332
    • Morey, L.1    Helin, K.2
  • 120
    • 78751662908 scopus 로고    scopus 로고
    • The Polycomb complex PRC2 and its mark in life
    • Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature 2011; 469: 343-9
    • (2011) Nature , vol.469 , pp. 343-349
    • Margueron, R.1    Reinberg, D.2
  • 122
    • 84859258692 scopus 로고    scopus 로고
    • Polycomb-like 3 promotes polycomb repressive complex 2 binding to CpG islands and embryonic stem cell self-renewal
    • Hunkapiller J, Shen Y, Diaz A, et al. Polycomb-like 3 promotes polycomb repressive complex 2 binding to CpG islands and embryonic stem cell self-renewal. PLoS Genet 2012; 8: e1002576
    • (2012) PLoS Genet , vol.8
    • Hunkapiller, J.1    Shen, Y.2    Diaz, A.3
  • 123
    • 84873417354 scopus 로고    scopus 로고
    • An H3K36 methylation-engaging tudor motif of polycomb-like proteins mediates PRC2 complex targeting
    • Cai L, Rothbart SB, Lu R, et al. An H3K36 methylation-engaging tudor motif of polycomb-like proteins mediates PRC2 complex targeting. Mol Cell 2013; 49: 1-12
    • (2013) Mol Cell , vol.49 , pp. 1-12
    • Cai, L.1    Rothbart, S.B.2    Lu, R.3
  • 124
    • 84870825642 scopus 로고    scopus 로고
    • Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation
    • Brien GL, Gambero G, O'Connell DJ, et al. Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat Struct Mol Biol 2012; 19: 1273-81
    • (2012) Nat Struct Mol Biol , vol.19 , pp. 1273-1281
    • Brien, G.L.1    Gambero, G.2    O'connell, D.J.3
  • 125
    • 84870833161 scopus 로고    scopus 로고
    • Phf19 links methylated Lys36 of histone H3 to regulation of polycomb activity
    • Ballare C, Lange M, Lapinaite A, et al. Phf19 links methylated Lys36 of histone H3 to regulation of polycomb activity. Nat Struct Mol Biol 2012; 19: 1257-65
    • (2012) Nat Struct Mol Biol , vol.19 , pp. 1257-1265
    • Ballare, C.1    Lange, M.2    Lapinaite, A.3
  • 126
    • 84870855250 scopus 로고    scopus 로고
    • Molecular basis for H3K36me3 recognition by the tudor domain of PHF1
    • Musselman CA, Avvakumov N, Watanabe R, et al. Molecular basis for H3K36me3 recognition by the tudor domain of PHF1. Nat Struct Mol Biol 2012; 19: 1266-72
    • (2012) Nat Struct Mol Biol , vol.19 , pp. 1266-1272
    • Musselman, C.A.1    Avvakumov, N.2    Watanabe, R.3
  • 127
    • 80052528576 scopus 로고    scopus 로고
    • Histone H3 trimethylation at lysine 36 is associated with constitutive and facultative heterochromatin
    • Chantalat S, Depaux A, Hery P, et al. Histone H3 trimethylation at lysine 36 is associated with constitutive and facultative heterochromatin. Genome Res 2011; 21: 1426-37
    • (2011) Genome Res , vol.21 , pp. 1426-1437
    • Chantalat, S.1    Depaux, A.2    Hery, P.3
  • 128
    • 79955494277 scopus 로고    scopus 로고
    • Histone methylation by PRC2 is inhibited by active chromatin marks
    • Schmitges FW, Prusty AB, Faty M, et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell 2011; 42: 330-41
    • (2011) Mol Cell , vol.42 , pp. 330-341
    • Schmitges, F.W.1    Prusty, A.B.2    Faty, M.3
  • 129
    • 84869102655 scopus 로고    scopus 로고
    • The emerging role of polycomb repressors in the response to DNA damage
    • Vissers JH, van Lohuizen M, Citterio E. The emerging role of Polycomb repressors in the response to DNA damage. J Cell Sci 2012; 125: 3939-48
    • (2012) J Cell Sci , vol.125 , pp. 3939-3948
    • Vissers, J.H.1    Van Lohuizen, M.2    Citterio, E.3
  • 130
    • 44349103099 scopus 로고    scopus 로고
    • A polycomb group protein, PHF1, is involved in the response to DNA double-strand breaks in human cell
    • DOI 10.1093/nar/gkn146
    • Hong Z, Jiang J, Lan L, et al. A polycomb group protein, PHF1, is involved in the response to DNA double-strand breaks in human cell. Nucleic Acids Res 2008; 36: 2939-47 (Pubitemid 351737186)
    • (2008) Nucleic Acids Research , vol.36 , Issue.9 , pp. 2939-2947
    • Hong, Z.1    Jiang, J.2    Lan, L.3    Nakajima, S.4    Kanno, S.-I.5    Koseki, H.6    Yasui, A.7
  • 131
    • 84872065073 scopus 로고    scopus 로고
    • Polycomb group protein PHF1 regulates p53-dependent cell growth arrest and apoptosis
    • Yang Y, Wang C, Zhang P, et al. Polycomb group protein PHF1 regulates p53-dependent cell growth arrest and apoptosis. J Biol Chem 2013; 288: 529-39
    • (2013) J Biol Chem , vol.288 , pp. 529-539
    • Yang, Y.1    Wang, C.2    Zhang, P.3
  • 132
    • 67650445737 scopus 로고    scopus 로고
    • Distinct HIC1-SIRT1-p53 loop deregulation in lung squamous carcinoma and adenocarcinoma patients
    • Tseng RC, Lee CC, Hsu HS, et al. Distinct HIC1-SIRT1-p53 loop deregulation in lung squamous carcinoma and adenocarcinoma patients. Neoplasia 2009; 11: 763-70
    • (2009) Neoplasia , vol.11 , pp. 763-770
    • Tseng, R.C.1    Lee, C.C.2    Hsu, H.S.3
  • 133
    • 62449178216 scopus 로고    scopus 로고
    • The critical role of the class III histone deacetylase SIRT1 in cancer
    • Liu T, Liu PY, Marshall GM. The critical role of the class III histone deacetylase SIRT1 in cancer. Cancer Res 2009; 69: 1702-5
    • (2009) Cancer Res , vol.69 , pp. 1702-1705
    • Liu, T.1    Liu, P.Y.2    Marshall, G.M.3
  • 134
    • 33748416853 scopus 로고    scopus 로고
    • A Recurrent Phospho-Sumoyl Switch in Transcriptional Repression and Beyond
    • DOI 10.1016/j.molcel.2006.08.009, PII S1097276506005697
    • Yang XJ, Gregoire S. A recurrent phospho-sumoyl switch in transcriptional repression and beyond. Mol Cell 2006; 23: 779-86 (Pubitemid 44344522)
    • (2006) Molecular Cell , vol.23 , Issue.6 , pp. 779-786
    • Yang, X.-J.1    Gregoire, S.2
  • 137
    • 14844344773 scopus 로고    scopus 로고
    • Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors
    • DOI 10.1128/MCB.25.6.2273-2287.2005
    • Gregoire S, Yang XJ. Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors. Mol Cell Biol 2005; 25: 2273-87 (Pubitemid 40354624)
    • (2005) Molecular and Cellular Biology , vol.25 , Issue.6 , pp. 2273-2287
    • Gregoire, S.1    Yang, X.-J.2
  • 138
    • 25444462980 scopus 로고    scopus 로고
    • Regulation of MEF2 by histone beacetylase 4- and SIRT1 deacetylase-mediated lysine modifications
    • DOI 10.1128/MCB.25.19.8456-8464.2005
    • Zhao X, Sternsdorf T, Bolger TA, et al. Regulation of MEF2 by histone deacetylase 4-and SIRT1 deacetylase-mediated lysine modifications. Mol Cell Biol 2005; 25: 8456-64 (Pubitemid 41369167)
    • (2005) Molecular and Cellular Biology , vol.25 , Issue.19 , pp. 8456-8464
    • Zhao, X.1    Sternsdorf, T.2    Bolger, T.A.3    Evans, R.M.4    Yao, T.-P.5
  • 139
    • 51349091041 scopus 로고    scopus 로고
    • Histone deacetylase 7 promotes PML sumoylation and is essential for PML nuclear body formation
    • Gao C, Ho CC, Reineke E, et al. Histone deacetylase 7 promotes PML sumoylation and is essential for PML nuclear body formation. Mol Cell Biol 2008; 28: 5658-67
    • (2008) Mol Cell Biol , vol.28 , pp. 5658-5667
    • Gao, C.1    Ho, C.C.2    Reineke, E.3
  • 140
    • 84876230292 scopus 로고    scopus 로고
    • DNA double-strand breaks lead to activation of Hyperrmethylated in Cancer 1 (HIC1) gene by SUMOylation to regulate DNA repair
    • Epub ahead of print
    • Dehennaut V, Loison I, Dubuissez M, et al. DNA double-strand breaks lead to activation of Hyperrmethylated in Cancer 1 (HIC1) gene by SUMOylation to regulate DNA repair. J Biol Chem 2013; Epub ahead of print
    • (2013) J Biol Chem
    • Dehennaut, V.1    Loison, I.2    Dubuissez, M.3
  • 141
    • 82455219091 scopus 로고    scopus 로고
    • Peptide switch is essential for Sirt1 deacetylase activity
    • Kang H, Suh JY, Jung YS, et al. Peptide switch is essential for Sirt1 deacetylase activity. Mol Cell 2011; 44: 203-13
    • (2011) Mol Cell , vol.44 , pp. 203-213
    • Kang, H.1    Suh, J.Y.2    Jung, Y.S.3
  • 142
    • 69949138641 scopus 로고    scopus 로고
    • CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage
    • Kang H, Jung JW, Kim MK, Chung JH. CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage. PLoS ONE 2009; 4: e6611
    • (2009) PLoS ONE , vol.4
    • Kang, H.1    Jung, J.W.2    Kim, M.K.3    Chung, J.H.4
  • 144
    • 78650201378 scopus 로고    scopus 로고
    • A demethylating antineoplastic strategies: A comparative point of view
    • Amatori S, Bagaloni I, Donati B, et al. A demethylating antineoplastic strategies: a comparative point of view. Genes Cancer 2010; 1: 197-209
    • (2010) Genes Cancer , vol.1 , pp. 197-209
    • Amatori, S.1    Bagaloni, I.2    Donati, B.3
  • 145
    • 77149135270 scopus 로고    scopus 로고
    • Breast cancer epigenetics: From DNA methylation to microRNAs
    • Veeck J, Esteller M. Breast cancer epigenetics: from DNA methylation to microRNAs. J Mammary Gland Biol Neoplasia 2010; 15: 5-17
    • (2010) J Mammary Gland Biol Neoplasia , vol.15 , pp. 5-17
    • Veeck, J.1    Esteller, M.2
  • 146
    • 79952167230 scopus 로고    scopus 로고
    • Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation
    • Yap DB, Chu J, Berg T, et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 2011; 117: 2451-9
    • (2011) Blood , vol.117 , pp. 2451-2459
    • Yap, D.B.1    Chu, J.2    Berg, T.3
  • 147
    • 84867632489 scopus 로고    scopus 로고
    • A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells
    • Knutson SK, Wigle TJ, Warholic NM, et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 2012; 8: 890-6
    • (2012) Nat Chem Biol , vol.8 , pp. 890-896
    • Knutson, S.K.1    Wigle, T.J.2    Warholic, N.M.3
  • 148
    • 84869003466 scopus 로고    scopus 로고
    • Epigenetic therapy leaps ahead with specific targeting of EZH2
    • Melnick A. Epigenetic therapy leaps ahead with specific targeting of EZH2. Cancer Cell 2012; 22: 569-70
    • (2012) Cancer Cell , vol.22 , pp. 569-570
    • Melnick, A.1
  • 149
    • 84870573126 scopus 로고    scopus 로고
    • EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations
    • McCabe MT, Ott HM, Ganji G, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 2012; 492: 108-12
    • (2012) Nature , vol.492 , pp. 108-112
    • McCabe, M.T.1    Ott, H.M.2    Ganji, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.