-
1
-
-
51049090204
-
Nanoparticle therapeutics: an emerging treatment modality for cancer
-
Davis M.E., Chen Z.G., Shin D.M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008, 7(9):771-782.
-
(2008)
Nat. Rev. Drug Discov.
, vol.7
, Issue.9
, pp. 771-782
-
-
Davis, M.E.1
Chen, Z.G.2
Shin, D.M.3
-
2
-
-
79961039002
-
The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry
-
Algar W.R., et al. The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug. Chem. 2011, 22(5):825-858.
-
(2011)
Bioconjug. Chem.
, vol.22
, Issue.5
, pp. 825-858
-
-
Algar, W.R.1
-
3
-
-
6344261554
-
Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices
-
Andersson J., et al. Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices. Chem. Mater. 2004, 16(21):4160-4167.
-
(2004)
Chem. Mater.
, vol.16
, Issue.21
, pp. 4160-4167
-
-
Andersson, J.1
-
4
-
-
77953686812
-
Enabling individualized therapy through nanotechnology
-
Sakamoto J.H., et al. Enabling individualized therapy through nanotechnology. Pharmacol. Res. 2010, 62(2):57-89.
-
(2010)
Pharmacol. Res.
, vol.62
, Issue.2
, pp. 57-89
-
-
Sakamoto, J.H.1
-
5
-
-
77950118834
-
Cancer-cell targeting and cell-specific delivery by mesoporous silica nanoparticles
-
Rosenholm J.M., Sahlgren C., Linden M. Cancer-cell targeting and cell-specific delivery by mesoporous silica nanoparticles. J. Mater. Chem. 2010, 20:2707-2713.
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 2707-2713
-
-
Rosenholm, J.M.1
Sahlgren, C.2
Linden, M.3
-
6
-
-
77957893294
-
Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - opportunities & challenges
-
Rosenholm J.M., Sahlgren C., Linden M. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - opportunities & challenges. Nanoscale 2010, 2(10):1870-1883.
-
(2010)
Nanoscale
, vol.2
, Issue.10
, pp. 1870-1883
-
-
Rosenholm, J.M.1
Sahlgren, C.2
Linden, M.3
-
7
-
-
79959313919
-
Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment
-
Rosenholm J.M., Sahlgren C., Linden M. Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. Curr. Drug Targets 2011, 12(8):1166-1186.
-
(2011)
Curr. Drug Targets
, vol.12
, Issue.8
, pp. 1166-1186
-
-
Rosenholm, J.M.1
Sahlgren, C.2
Linden, M.3
-
8
-
-
79960027556
-
Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma
-
Benezra M., et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest. 2011, 121(7):2768-2780.
-
(2011)
J. Clin. Invest.
, vol.121
, Issue.7
, pp. 2768-2780
-
-
Benezra, M.1
-
9
-
-
70249136214
-
Protein-nanoparticle interactions: what does the cell see?
-
Lynch I., Salvati A., Dawson K.A. Protein-nanoparticle interactions: what does the cell see?. Nat. Nanotechnol. 2009, 4(9):546-547.
-
(2009)
Nat. Nanotechnol.
, vol.4
, Issue.9
, pp. 546-547
-
-
Lynch, I.1
Salvati, A.2
Dawson, K.A.3
-
10
-
-
67649491055
-
Understanding biophysicochemical interactions at the nano-bio interface
-
Nel A.E., et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8(7):543-557.
-
(2009)
Nat. Mater.
, vol.8
, Issue.7
, pp. 543-557
-
-
Nel, A.E.1
-
11
-
-
33847789142
-
Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles
-
Cedervall T., et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 2007, 104(7):2050-2055.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, Issue.7
, pp. 2050-2055
-
-
Cedervall, T.1
-
12
-
-
55749091647
-
Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts
-
Lundqvist M., et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. U. S. A. 2008, 105(38):14265-14270.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, Issue.38
, pp. 14265-14270
-
-
Lundqvist, M.1
-
13
-
-
79952302512
-
Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles
-
Monopoli M.P., et al. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 2011, 133(8):2525-2534.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, Issue.8
, pp. 2525-2534
-
-
Monopoli, M.P.1
-
14
-
-
49649100580
-
The biocompatibility of mesoporous silicates
-
Hudson S.P., et al. The biocompatibility of mesoporous silicates. Biomaterials 2008, 29(30):4045-4055.
-
(2008)
Biomaterials
, vol.29
, Issue.30
, pp. 4045-4055
-
-
Hudson, S.P.1
-
15
-
-
77950168305
-
Mechanised nanoparticles for drug delivery
-
Coti K.K., et al. Mechanised nanoparticles for drug delivery. Nanoscale 2009, 1(1):16-39.
-
(2009)
Nanoscale
, vol.1
, Issue.1
, pp. 16-39
-
-
Coti, K.K.1
-
16
-
-
76749110662
-
Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications
-
Fadeel B., Garcia-Bennett A.E. Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev. 2010, 62(3):362-374.
-
(2010)
Adv. Drug Deliv. Rev.
, vol.62
, Issue.3
, pp. 362-374
-
-
Fadeel, B.1
Garcia-Bennett, A.E.2
-
17
-
-
46749123819
-
Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers
-
Slowing I.I., et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 2008, 60(11):1278-1288.
-
(2008)
Adv. Drug Deliv. Rev.
, vol.60
, Issue.11
, pp. 1278-1288
-
-
Slowing, I.I.1
-
18
-
-
77956945642
-
Mesoporous silica nanoparticles for intracellular controlled drug delivery
-
Vivero-Escoto J.L., et al. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 2010, 6(18):1952-1967.
-
(2010)
Small
, vol.6
, Issue.18
, pp. 1952-1967
-
-
Vivero-Escoto, J.L.1
-
19
-
-
0012247651
-
A new family of mesoporous molecular-sieves prepared with liquid-crystal templates
-
Beck J.S., et al. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. J. Am. Chem. Soc. 1992, 114(27):10834-10843.
-
(1992)
J. Am. Chem. Soc.
, vol.114
, Issue.27
, pp. 10834-10843
-
-
Beck, J.S.1
-
20
-
-
0026931265
-
Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism
-
Kresge C.T., et al. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359(6397):710-712.
-
(1992)
Nature
, vol.359
, Issue.6397
, pp. 710-712
-
-
Kresge, C.T.1
-
21
-
-
0025168065
-
The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials
-
Yanagisawa T., et al. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bull. Chem. Soc. Jpn. 1990, 63(4):988-992.
-
(1990)
Bull. Chem. Soc. Jpn.
, vol.63
, Issue.4
, pp. 988-992
-
-
Yanagisawa, T.1
-
22
-
-
0032625221
-
Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology
-
Grun M., et al. Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Microporous Mesoporous Mater. 1999, 27(2-3):207-216.
-
(1999)
Microporous Mesoporous Mater.
, vol.27
, Issue.2-3
, pp. 207-216
-
-
Grun, M.1
-
23
-
-
79961071789
-
The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo
-
Huang X., et al. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 2011, 5(7):5390-5399.
-
(2011)
ACS Nano
, vol.5
, Issue.7
, pp. 5390-5399
-
-
Huang, X.1
-
24
-
-
78651342869
-
In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation
-
He Q.J., et al. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small 2011, 7(2):271-280.
-
(2011)
Small
, vol.7
, Issue.2
, pp. 271-280
-
-
He, Q.J.1
-
25
-
-
61949182539
-
Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA
-
Gao F., et al. Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA. J. Phys. Chem. B 2009, 113(6):1796-1804.
-
(2009)
J. Phys. Chem. B
, vol.113
, Issue.6
, pp. 1796-1804
-
-
Gao, F.1
-
26
-
-
80051489934
-
Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery
-
Kim M.H., et al. Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano 2011, 5(5):3568-3576.
-
(2011)
ACS Nano
, vol.5
, Issue.5
, pp. 3568-3576
-
-
Kim, M.H.1
-
27
-
-
0034634766
-
The surface chemistry of amorphous silica. Zhuravlev model
-
Zhuravlev L.T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. A 2000, 173(1-3):1-38.
-
(2000)
Colloids Surf. A
, vol.173
, Issue.1-3
, pp. 1-38
-
-
Zhuravlev, L.T.1
-
28
-
-
78649613789
-
Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with "saccharides"
-
Bernardos A., et al. Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with "saccharides". ACS Nano 2010, 4(11):6353-6368.
-
(2010)
ACS Nano
, vol.4
, Issue.11
, pp. 6353-6368
-
-
Bernardos, A.1
-
29
-
-
3242684047
-
Toward the development of ionically controlled nanoscopic molecular gates
-
Casasus R., et al. Toward the development of ionically controlled nanoscopic molecular gates. J. Am. Chem. Soc. 2004, 126(28):8612-8613.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, Issue.28
, pp. 8612-8613
-
-
Casasus, R.1
-
30
-
-
68049132947
-
PH-responsive drug release from polymer-coated mesoporous silica spheres
-
Gao Q., et al. pH-responsive drug release from polymer-coated mesoporous silica spheres. J. Phys. Chem. C 2009, 113(29):12753-12758.
-
(2009)
J. Phys. Chem. C
, vol.113
, Issue.29
, pp. 12753-12758
-
-
Gao, Q.1
-
31
-
-
76149084184
-
PH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker
-
Liu R., et al. pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker. J. Am. Chem. Soc. 2010, 132(5):1500.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, Issue.5
, pp. 1500
-
-
Liu, R.1
-
32
-
-
77952340878
-
A mesoporous silica nanoparticle with charge-convertible pore walls for efficient intracellular protein delivery
-
Park H.S., et al. A mesoporous silica nanoparticle with charge-convertible pore walls for efficient intracellular protein delivery. Nanotechnology 2010, 21(22).
-
(2010)
Nanotechnology
, vol.21
, Issue.22
-
-
Park, H.S.1
-
33
-
-
38949163631
-
PH-controllable drug release using hydrogel encapsulated mesoporous silica
-
Song S.W., Hidajat K., Kawi S. pH-controllable drug release using hydrogel encapsulated mesoporous silica. Chem. Commun. 2007, 42:4396-4398.
-
(2007)
Chem. Commun.
, vol.42
, pp. 4396-4398
-
-
Song, S.W.1
Hidajat, K.2
Kawi, S.3
-
34
-
-
62149114161
-
Chitosan hydrogel-capped porous SiO(2) as a pH responsive nano-valve for triggered release of insulin
-
Wu J., Sailor M. Chitosan hydrogel-capped porous SiO(2) as a pH responsive nano-valve for triggered release of insulin. Adv. Funct. Mater. 2009, 19(5):733-741.
-
(2009)
Adv. Funct. Mater.
, vol.19
, Issue.5
, pp. 733-741
-
-
Wu, J.1
Sailor, M.2
-
35
-
-
28944440584
-
PH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery
-
Yang Q., et al. pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery. Chem. Mater. 2005, 17(24):5999-6003.
-
(2005)
Chem. Mater.
, vol.17
, Issue.24
, pp. 5999-6003
-
-
Yang, Q.1
-
36
-
-
0037448920
-
A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules
-
Lai C.Y., et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc. 2003, 125(15):4451-4459.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, Issue.15
, pp. 4451-4459
-
-
Lai, C.Y.1
-
37
-
-
0033617522
-
Notch signaling: cell fate control and signal integration in development
-
Artavanis-Tsakonas S., Rand M.D., Lake R.J. Notch signaling: cell fate control and signal integration in development. Science 1999, 284(5415):770-776.
-
(1999)
Science
, vol.284
, Issue.5415
, pp. 770-776
-
-
Artavanis-Tsakonas, S.1
Rand, M.D.2
Lake, R.J.3
-
38
-
-
34250001748
-
Mesoporous silica nanoparticles deliver DNA and chemicals into plants
-
Torney F., et al. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol. 2007, 2(5):295-300.
-
(2007)
Nat. Nanotechnol.
, vol.2
, Issue.5
, pp. 295-300
-
-
Torney, F.1
-
39
-
-
67650529515
-
PH- and photo-switched release of guest molecules from mesoporous silica supports
-
Aznar E., et al. pH- and photo-switched release of guest molecules from mesoporous silica supports. J. Am. Chem. Soc. 2009, 131(19):6833-6843.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, Issue.19
, pp. 6833-6843
-
-
Aznar, E.1
-
40
-
-
68349141561
-
Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells
-
Tsai C.P., et al. Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J. Mater. Chem. 2009, 19(32):5737-5743.
-
(2009)
J. Mater. Chem.
, vol.19
, Issue.32
, pp. 5737-5743
-
-
Tsai, C.P.1
-
41
-
-
67649199464
-
Controlled release using mesoporous materials containing gate-like scaffoldings
-
Aznar E., Martinez-Manez R., Sancenon F. Controlled release using mesoporous materials containing gate-like scaffoldings. Expert Opin. Drug Deliv. 2009, 6(6):643-655.
-
(2009)
Expert Opin. Drug Deliv.
, vol.6
, Issue.6
, pp. 643-655
-
-
Aznar, E.1
Martinez-Manez, R.2
Sancenon, F.3
-
42
-
-
23944437359
-
Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles
-
Giri S., et al. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew. Chem. Int. Ed. Engl. 2005, 44(32):5038-5044.
-
(2005)
Angew. Chem. Int. Ed. Engl.
, vol.44
, Issue.32
, pp. 5038-5044
-
-
Giri, S.1
-
43
-
-
33750594700
-
Switching catalytic reaction conducted in pore void of mesoporous material by redox gate control
-
Fujiwara M., et al. Switching catalytic reaction conducted in pore void of mesoporous material by redox gate control. Chem. Commun. 2006, 44:4635-4637.
-
(2006)
Chem. Commun.
, vol.44
, pp. 4635-4637
-
-
Fujiwara, M.1
-
44
-
-
17444406692
-
Real-time imaging of tunable adenosine 5-triphosphate release from an MCM-41-type mesoporous silica nanosphere-based delivery system
-
Gruenhagen J.A., et al. Real-time imaging of tunable adenosine 5-triphosphate release from an MCM-41-type mesoporous silica nanosphere-based delivery system. Appl. Spectrosc. 2005, 59(4):424-431.
-
(2005)
Appl. Spectrosc.
, vol.59
, Issue.4
, pp. 424-431
-
-
Gruenhagen, J.A.1
-
45
-
-
55549106158
-
Tunable redox-responsive hybrid nanogated ensembles
-
Liu R., et al. Tunable redox-responsive hybrid nanogated ensembles. J. Am. Chem. Soc. 2008, 130(44):14418.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, Issue.44
, pp. 14418
-
-
Liu, R.1
-
46
-
-
70350077671
-
An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates
-
Zhu C.L., et al. An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates. J. Mater. Chem. 2009, 19(41):7765-7770.
-
(2009)
J. Mater. Chem.
, vol.19
, Issue.41
, pp. 7765-7770
-
-
Zhu, C.L.1
-
47
-
-
80051544002
-
A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance
-
He Q., et al. A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials 2011, 32(30):7711-7720.
-
(2011)
Biomaterials
, vol.32
, Issue.30
, pp. 7711-7720
-
-
He, Q.1
-
48
-
-
67650523182
-
Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery
-
Liu J.W., et al. Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery. J. Am. Chem. Soc. 2009, 131(22):7567.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, Issue.22
, pp. 7567
-
-
Liu, J.W.1
-
49
-
-
41949100244
-
Drug nanoparticles: formulating poorly water-soluble compounds
-
Merisko-Liversidge E.M., Liversidge G.G. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol. Pathol. 2008, 36(1):43-48.
-
(2008)
Toxicol. Pathol.
, vol.36
, Issue.1
, pp. 43-48
-
-
Merisko-Liversidge, E.M.1
Liversidge, G.G.2
-
50
-
-
74949092822
-
Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery
-
Lee J.E., et al. Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J. Am. Chem. Soc. 2010, 132(2):552-557.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, Issue.2
, pp. 552-557
-
-
Lee, J.E.1
-
51
-
-
78649978573
-
Increased efficacy of DOXorubicin delivered in multifunctional microparticles for mesothelioma therapy
-
Hillegass J.M., et al. Increased efficacy of DOXorubicin delivered in multifunctional microparticles for mesothelioma therapy. Int. J. Cancer 2011, 129(1):233-244.
-
(2011)
Int. J. Cancer
, vol.129
, Issue.1
, pp. 233-244
-
-
Hillegass, J.M.1
-
52
-
-
79954624195
-
Uniform hollow mesoporous silica nanocages for drug delivery in vitro and in vivo for liver cancer therapy
-
Wang T.T., et al. Uniform hollow mesoporous silica nanocages for drug delivery in vitro and in vivo for liver cancer therapy. J. Mater. Chem. 2011, 21(14):5299-5306.
-
(2011)
J. Mater. Chem.
, vol.21
, Issue.14
, pp. 5299-5306
-
-
Wang, T.T.1
-
53
-
-
80051516651
-
Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of DOXorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model
-
Meng H., et al. Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of DOXorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 2011, 5(5):4131-4144.
-
(2011)
ACS Nano
, vol.5
, Issue.5
, pp. 4131-4144
-
-
Meng, H.1
-
54
-
-
77955613395
-
Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals
-
Lu J., et al. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 2010, 6(16):1794-1805.
-
(2010)
Small
, vol.6
, Issue.16
, pp. 1794-1805
-
-
Lu, J.1
-
55
-
-
84855851289
-
In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification
-
Lu J., et al. In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomedicine 2012, 8(2):212-220.
-
(2012)
Nanomedicine
, vol.8
, Issue.2
, pp. 212-220
-
-
Lu, J.1
-
56
-
-
78649595321
-
In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy
-
Li L., et al. In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano 2010, 4(11):6874-6882.
-
(2010)
ACS Nano
, vol.4
, Issue.11
, pp. 6874-6882
-
-
Li, L.1
-
57
-
-
80053133450
-
Cancer research: past present and future
-
Cao Y., et al. Cancer research: past present and future. Nat. Rev. Cancer 2011, 11:749-754.
-
(2011)
Nat. Rev. Cancer
, vol.11
, pp. 749-754
-
-
Cao, Y.1
-
58
-
-
79961032358
-
Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of Notch signaling in cancer
-
Mamaeva V., et al. Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of Notch signaling in cancer. Mol. Ther. 2011, 19(8):1538-1546.
-
(2011)
Mol. Ther.
, vol.19
, Issue.8
, pp. 1538-1546
-
-
Mamaeva, V.1
-
59
-
-
77951139188
-
Therapeutic antibody targeting of individual Notch receptors
-
Wu Y., et al. Therapeutic antibody targeting of individual Notch receptors. Nature 2010, 464(7291):1052-1057.
-
(2010)
Nature
, vol.464
, Issue.7291
, pp. 1052-1057
-
-
Wu, Y.1
-
60
-
-
70449671729
-
Direct inhibition of the NOTCH transcription factor complex
-
Moellering R.E., et al. Direct inhibition of the NOTCH transcription factor complex. Nature 2009, 462(7270):182-188.
-
(2009)
Nature
, vol.462
, Issue.7270
, pp. 182-188
-
-
Moellering, R.E.1
-
61
-
-
20544460148
-
Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells
-
van Es J.H., et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 2005, 435(7044):959-963.
-
(2005)
Nature
, vol.435
, Issue.7044
, pp. 959-963
-
-
van Es, J.H.1
-
62
-
-
76749157186
-
Chronic DLL4 blockade induces vascular neoplasms
-
Yan M., et al. Chronic DLL4 blockade induces vascular neoplasms. Nature 2010, 463(7282):E6-E7.
-
(2010)
Nature
, vol.463
, Issue.7282
-
-
Yan, M.1
-
63
-
-
70350639581
-
Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs
-
Xia T.A., et al. Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 2009, 3(10):3273-3286.
-
(2009)
ACS Nano
, vol.3
, Issue.10
, pp. 3273-3286
-
-
Xia, T.A.1
-
64
-
-
78650134637
-
Engineered design of mesoporous silica nanoparticles to deliver DOXorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line
-
Meng H.A., et al. Engineered design of mesoporous silica nanoparticles to deliver DOXorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 2010, 4(8):4539-4550.
-
(2010)
ACS Nano
, vol.4
, Issue.8
, pp. 4539-4550
-
-
Meng, H.A.1
-
65
-
-
7944221147
-
Cationic silica nanoparticles as gene carriers: synthesis, characterization and transfection efficiency in vitro and in vivo
-
Kumar M., et al. Cationic silica nanoparticles as gene carriers: synthesis, characterization and transfection efficiency in vitro and in vivo. J. Nanosci. Nanotechnol. 2004, 4(7):876-881.
-
(2004)
J. Nanosci. Nanotechnol.
, vol.4
, Issue.7
, pp. 876-881
-
-
Kumar, M.1
-
66
-
-
23844467409
-
Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain
-
Bharali D.J., et al. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc. Natl. Acad. Sci. U. S. A. 2005, 102(32):11539-11544.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, Issue.32
, pp. 11539-11544
-
-
Bharali, D.J.1
-
67
-
-
79958180527
-
Adsorption and desorption behaviors of DNA with magnetic mesoporous silica nanoparticles
-
Li X., Zhang J.X., Gu H.C. Adsorption and desorption behaviors of DNA with magnetic mesoporous silica nanoparticles. Langmuir 2011, 27(10):6099-6106.
-
(2011)
Langmuir
, vol.27
, Issue.10
, pp. 6099-6106
-
-
Li, X.1
Zhang, J.X.2
Gu, H.C.3
-
68
-
-
80053580456
-
The packaging of siRNA within the mesoporous structure of silica nanoparticles
-
Li X., et al. The packaging of siRNA within the mesoporous structure of silica nanoparticles. Biomaterials 2011, 32(35):9546-9556.
-
(2011)
Biomaterials
, vol.32
, Issue.35
, pp. 9546-9556
-
-
Li, X.1
-
69
-
-
33748273545
-
Adsorption of DNA into mesoporous silica
-
Solberg S.M., Landry C.C. Adsorption of DNA into mesoporous silica. J. Phys. Chem. B 2006, 110(31):15261-15268.
-
(2006)
J. Phys. Chem. B
, vol.110
, Issue.31
, pp. 15261-15268
-
-
Solberg, S.M.1
Landry, C.C.2
-
70
-
-
53849096994
-
An overview of cancer multidrug resistance: a still unsolved problem
-
Lage H. An overview of cancer multidrug resistance: a still unsolved problem. Cell. Mol. Life Sci. 2008, 65(20):3145-3167.
-
(2008)
Cell. Mol. Life Sci.
, vol.65
, Issue.20
, pp. 3145-3167
-
-
Lage, H.1
-
71
-
-
73349141177
-
Co-delivery of DOXorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells
-
Chen A.M., et al. Co-delivery of DOXorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 2009, 5(23):2673-2677.
-
(2009)
Small
, vol.5
, Issue.23
, pp. 2673-2677
-
-
Chen, A.M.1
-
72
-
-
81255143432
-
Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA
-
Taratula O., et al. Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. J. Drug Target. 2011, 19(10):900-914.
-
(2011)
J. Drug Target.
, vol.19
, Issue.10
, pp. 900-914
-
-
Taratula, O.1
-
73
-
-
79956028537
-
Enhanced chemotherapy of cancer using pH-sensitive mesoporous silica nanoparticles to antagonize P-glycoprotein-mediated drug resistance
-
Huang I.P., et al. Enhanced chemotherapy of cancer using pH-sensitive mesoporous silica nanoparticles to antagonize P-glycoprotein-mediated drug resistance. Mol. Cancer Ther. 2011, 10(5):761-769.
-
(2011)
Mol. Cancer Ther.
, vol.10
, Issue.5
, pp. 761-769
-
-
Huang, I.P.1
-
74
-
-
84856532109
-
Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT
-
Gary-Bobo M., et al. Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int. J. Pharm. 2012, 423(2):5149-5150.
-
(2012)
Int. J. Pharm.
, vol.423
, Issue.2
, pp. 5149-5150
-
-
Gary-Bobo, M.1
-
75
-
-
81755163017
-
Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors
-
Gary-Bobo M., et al. Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors. Angew. Chem. Int. Ed. 2011, 50(48):11425-11429.
-
(2011)
Angew. Chem. Int. Ed.
, vol.50
, Issue.48
, pp. 11425-11429
-
-
Gary-Bobo, M.1
-
76
-
-
84861586236
-
Multifunctionalized mesoporous silica nanoparticles for the in vitro treatment of retinoblastoma: drug delivery, one and two-photon photodynamic therapy
-
Gary-Bobo M., et al. Multifunctionalized mesoporous silica nanoparticles for the in vitro treatment of retinoblastoma: drug delivery, one and two-photon photodynamic therapy. Int. J. Pharm. 2012, 432(1-2):99-104.
-
(2012)
Int. J. Pharm.
, vol.432
, Issue.1-2
, pp. 99-104
-
-
Gary-Bobo, M.1
-
77
-
-
84863886127
-
Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro
-
Qiao X.F., et al. Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro. Nanoscale 2012, 4(15):4611-4623.
-
(2012)
Nanoscale
, vol.4
, Issue.15
, pp. 4611-4623
-
-
Qiao, X.F.1
-
78
-
-
84864125045
-
Peptides as targeting elements and tissue penetration devices for nanoparticles
-
Ruoslahti E. Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv. Mater. 2012, 24(28):3747-3756.
-
(2012)
Adv. Mater.
, vol.24
, Issue.28
, pp. 3747-3756
-
-
Ruoslahti, E.1
-
79
-
-
77952901022
-
Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs
-
Sugahara K.N., et al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 2010, 328(5981):1031-1035.
-
(2010)
Science
, vol.328
, Issue.5981
, pp. 1031-1035
-
-
Sugahara, K.N.1
-
80
-
-
77949762340
-
Targeting of drugs and nanoparticles to tumors
-
Ruoslahti E., Bhatia S.N., Sailor M.J. Targeting of drugs and nanoparticles to tumors. J. Cell Biol. 2010, 188(6):759-768.
-
(2010)
J. Cell Biol.
, vol.188
, Issue.6
, pp. 759-768
-
-
Ruoslahti, E.1
Bhatia, S.N.2
Sailor, M.J.3
-
81
-
-
79959518231
-
Nanoparticles that communicate in vivo to amplify tumour targeting
-
von Maltzahn G., et al. Nanoparticles that communicate in vivo to amplify tumour targeting. Nat. Mater. 2011, 10(7):545-552.
-
(2011)
Nat. Mater.
, vol.10
, Issue.7
, pp. 545-552
-
-
von Maltzahn, G.1
-
82
-
-
84855851289
-
In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification
-
Lu J., et al. In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomedicine 2012, 8(2):212-220.
-
(2012)
Nanomedicine
, vol.8
, Issue.2
, pp. 212-220
-
-
Lu, J.1
-
83
-
-
84855195008
-
Mesoporous silica nanoparticle-functionalized poly(methyl methacrylate)-based bone cement for effective antibiotics delivery
-
Shen S.C., et al. Mesoporous silica nanoparticle-functionalized poly(methyl methacrylate)-based bone cement for effective antibiotics delivery. J. Mater. Sci. Mater. Med. 2011, 22(10):2283-2292.
-
(2011)
J. Mater. Sci. Mater. Med.
, vol.22
, Issue.10
, pp. 2283-2292
-
-
Shen, S.C.1
-
84
-
-
77955616904
-
In vitro and in vivo evaluation of a novel ferrocyanide functionalized nanopourous silica decorporation agent for cesium in rats
-
Timchalk C., et al. In vitro and in vivo evaluation of a novel ferrocyanide functionalized nanopourous silica decorporation agent for cesium in rats. Health Phys. 2010, 99(3):420-429.
-
(2010)
Health Phys.
, vol.99
, Issue.3
, pp. 420-429
-
-
Timchalk, C.1
-
85
-
-
77952293567
-
Accelerated Achilles tendon healing by PDGF gene delivery with mesoporous silica nanoparticles
-
Suwalski A., et al. Accelerated Achilles tendon healing by PDGF gene delivery with mesoporous silica nanoparticles. Biomaterials 2010, 31(19):5237-5245.
-
(2010)
Biomaterials
, vol.31
, Issue.19
, pp. 5237-5245
-
-
Suwalski, A.1
-
86
-
-
84860336186
-
Nanomedicine as an emerging approach against intracellular pathogens
-
Armstead A.L., Li B. Nanomedicine as an emerging approach against intracellular pathogens. Int. J. Nanomedicine 2011, 6:3281-3293.
-
(2011)
Int. J. Nanomedicine
, vol.6
, pp. 3281-3293
-
-
Armstead, A.L.1
Li, B.2
-
87
-
-
84860147608
-
Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles
-
Clemens D.L., et al. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob. Agents Chemother. 2012, 56(5):2535-2545.
-
(2012)
Antimicrob. Agents Chemother.
, vol.56
, Issue.5
, pp. 2535-2545
-
-
Clemens, D.L.1
-
88
-
-
84859129491
-
Influence of geometry, porosity, and surface characteristics of silica nanoparticles on acute toxicity: their vasculature effect and tolerance threshold
-
Yu T., et al. Influence of geometry, porosity, and surface characteristics of silica nanoparticles on acute toxicity: their vasculature effect and tolerance threshold. ACS Nano 2012, 6(3):2289-2301.
-
(2012)
ACS Nano
, vol.6
, Issue.3
, pp. 2289-2301
-
-
Yu, T.1
-
89
-
-
78650266662
-
Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice
-
Liu T., et al. Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice. Biomaterials 2011, 32(6):1657-1668.
-
(2011)
Biomaterials
, vol.32
, Issue.6
, pp. 1657-1668
-
-
Liu, T.1
-
90
-
-
38149038610
-
Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magnetic resonance imaging studies
-
Wu S.H., et al. Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magnetic resonance imaging studies. ChemBioChem 2008, 9(1):53-57.
-
(2008)
ChemBioChem
, vol.9
, Issue.1
, pp. 53-57
-
-
Wu, S.H.1
-
91
-
-
58949102416
-
Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution
-
Lee C.H., et al. Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution. Adv. Funct. Mater. 2009, 19(2):215-222.
-
(2009)
Adv. Funct. Mater.
, vol.19
, Issue.2
, pp. 215-222
-
-
Lee, C.H.1
-
92
-
-
78651342869
-
In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation
-
He Q., et al. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small 2011, 7(2):271-280.
-
(2011)
Small
, vol.7
, Issue.2
, pp. 271-280
-
-
He, Q.1
-
93
-
-
54249135767
-
Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery
-
Kim J., et al. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. Int. Ed. 2008, 47(44):8438-8441.
-
(2008)
Angew. Chem. Int. Ed.
, vol.47
, Issue.44
, pp. 8438-8441
-
-
Kim, J.1
-
94
-
-
34248382535
-
The chemistry of silica and its potential health benefits
-
Martin K.R. The chemistry of silica and its potential health benefits. J. Nutr. Health Aging 2007, 11(2):94-97.
-
(2007)
J. Nutr. Health Aging
, vol.11
, Issue.2
, pp. 94-97
-
-
Martin, K.R.1
-
95
-
-
77953020259
-
Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles
-
Souris J.S., et al. Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomaterials 2010, 31(21):5564-5574.
-
(2010)
Biomaterials
, vol.31
, Issue.21
, pp. 5564-5574
-
-
Souris, J.S.1
-
96
-
-
77951699994
-
Sustained small interfering RNA delivery by mesoporous silicon particles
-
Tanaka T., et al. Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res. 2010, 70(9):3687-3696.
-
(2010)
Cancer Res.
, vol.70
, Issue.9
, pp. 3687-3696
-
-
Tanaka, T.1
-
97
-
-
38049161380
-
Mesoporous silica particles induce size dependent effects on human dendritic cells
-
Vallhov H., et al. Mesoporous silica particles induce size dependent effects on human dendritic cells. Nano Lett. 2007, 7(12):3576-3582.
-
(2007)
Nano Lett.
, vol.7
, Issue.12
, pp. 3576-3582
-
-
Vallhov, H.1
-
98
-
-
69249212166
-
Efficient internalization of mesoporous silica particles of different sizes by primary human macrophages without impairment of macrophage clearance of apoptotic or antibody-opsonized target cells
-
Witasp E., et al. Efficient internalization of mesoporous silica particles of different sizes by primary human macrophages without impairment of macrophage clearance of apoptotic or antibody-opsonized target cells. Toxicol. Appl. Pharmacol. 2009, 239(3):306-319.
-
(2009)
Toxicol. Appl. Pharmacol.
, vol.239
, Issue.3
, pp. 306-319
-
-
Witasp, E.1
-
99
-
-
77958516026
-
Dendritic cell internalization of foam-structured fluorescent mesoporous silica nanoparticles
-
Mumin A.M., et al. Dendritic cell internalization of foam-structured fluorescent mesoporous silica nanoparticles. J. Colloid Interface Sci. 2011, 353(1):156-162.
-
(2011)
J. Colloid Interface Sci.
, vol.353
, Issue.1
, pp. 156-162
-
-
Mumin, A.M.1
-
100
-
-
80053578495
-
The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis
-
Lee S., Yun H.S., Kim S.H. The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials 2011, 32(35):9434-9443.
-
(2011)
Biomaterials
, vol.32
, Issue.35
, pp. 9434-9443
-
-
Lee, S.1
Yun, H.S.2
Kim, S.H.3
-
101
-
-
77955900751
-
Functional assessment of metal oxide nanoparticle toxicity in immune cells
-
Maurer-Jones M.A., Lin Y.S., Haynes C.L. Functional assessment of metal oxide nanoparticle toxicity in immune cells. ACS Nano 2010, 4(6):3363-3373.
-
(2010)
ACS Nano
, vol.4
, Issue.6
, pp. 3363-3373
-
-
Maurer-Jones, M.A.1
Lin, Y.S.2
Haynes, C.L.3
-
102
-
-
84864715995
-
Labeling and exocytosis of secretory compartments in RBL mastocytes by polystyrene and mesoporous silica nanoparticles
-
Ekkapongpisit M., et al. Labeling and exocytosis of secretory compartments in RBL mastocytes by polystyrene and mesoporous silica nanoparticles. Int. J. Nanomedicine 2012, 7:1829-1840.
-
(2012)
Int. J. Nanomedicine
, vol.7
, pp. 1829-1840
-
-
Ekkapongpisit, M.1
-
103
-
-
84870371389
-
Mesoporous silica nanoparticles as a compound delivery system in zebrafish embryos
-
Sharif F., et al. Mesoporous silica nanoparticles as a compound delivery system in zebrafish embryos. Int. J. Nanomedicine 2012, 7:1875-1890.
-
(2012)
Int. J. Nanomedicine
, vol.7
, pp. 1875-1890
-
-
Sharif, F.1
-
104
-
-
0038359740
-
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis
-
Fubini B., Hubbard A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic. Biol. Med. 2003, 34(12):1507-1516.
-
(2003)
Free Radic. Biol. Med.
, vol.34
, Issue.12
, pp. 1507-1516
-
-
Fubini, B.1
Hubbard, A.2
-
105
-
-
40949129640
-
Silica binding and toxicity in alveolar macrophages
-
Hamilton R.F., Thakur S.A., Holian A. Silica binding and toxicity in alveolar macrophages. Free Radic. Biol. Med. 2008, 44(7):1246-1258.
-
(2008)
Free Radic. Biol. Med.
, vol.44
, Issue.7
, pp. 1246-1258
-
-
Hamilton, R.F.1
Thakur, S.A.2
Holian, A.3
-
106
-
-
0025267439
-
Silica directly increases permeability of alveolar epithelial-cells
-
Merchant R.K., Peterson M.W., Hunninghake G.W. Silica directly increases permeability of alveolar epithelial-cells. J. Appl. Physiol. 1990, 68(4):1354-1359.
-
(1990)
J. Appl. Physiol.
, vol.68
, Issue.4
, pp. 1354-1359
-
-
Merchant, R.K.1
Peterson, M.W.2
Hunninghake, G.W.3
-
107
-
-
0025840198
-
Silica increases cytosolic free calcium-ion concentration of alveolar macrophages in vitro
-
Chen J., et al. Silica increases cytosolic free calcium-ion concentration of alveolar macrophages in vitro. Toxicol. Appl. Pharmacol. 1991, 111(2):211-220.
-
(1991)
Toxicol. Appl. Pharmacol.
, vol.111
, Issue.2
, pp. 211-220
-
-
Chen, J.1
-
108
-
-
78649572160
-
The nanosilica hazard: another variable entity
-
Napierska D., et al. The nanosilica hazard: another variable entity. Part. Fibre Toxicol. 2010, 7.
-
(2010)
Part. Fibre Toxicol.
, vol.7
-
-
Napierska, D.1
-
109
-
-
55849145117
-
Assessing methods for blood cell cytotoxic responses to inorganic nanoparticles and nanoparticle aggregates
-
Diaz B., et al. Assessing methods for blood cell cytotoxic responses to inorganic nanoparticles and nanoparticle aggregates. Small 2008, 4(11):2025-2034.
-
(2008)
Small
, vol.4
, Issue.11
, pp. 2025-2034
-
-
Diaz, B.1
-
110
-
-
69949134902
-
Accelerated oxidation of epinephrine by silica nanoparticles
-
Tao Z.M., et al. Accelerated oxidation of epinephrine by silica nanoparticles. Langmuir 2009, 25(17):10183-10188.
-
(2009)
Langmuir
, vol.25
, Issue.17
, pp. 10183-10188
-
-
Tao, Z.M.1
-
111
-
-
77649191565
-
Cytotoxicity study of ordered mesoporous silica MCM-41 and SBA-15 microparticles on Caco-2 cells
-
Heikkilä T., et al. Cytotoxicity study of ordered mesoporous silica MCM-41 and SBA-15 microparticles on Caco-2 cells. Eur. J. Pharm. Biopharm. 2010, 74(3):483-494.
-
(2010)
Eur. J. Pharm. Biopharm.
, vol.74
, Issue.3
, pp. 483-494
-
-
Heikkilä, T.1
-
112
-
-
77649179574
-
Nano-SiO(2) induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepatic cell line
-
Ye Y.Y., et al. Nano-SiO(2) induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepatic cell line. Toxicol. In Vitro 2010, 24(3):751-758.
-
(2010)
Toxicol. In Vitro
, vol.24
, Issue.3
, pp. 751-758
-
-
Ye, Y.Y.1
-
113
-
-
78651347295
-
Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes
-
Nabeshi H., et al. Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes. Part. Fibre Toxicol. 2011, 8.
-
(2011)
Part. Fibre Toxicol.
, vol.8
-
-
Nabeshi, H.1
-
114
-
-
57649243749
-
Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro
-
Park E.J., Park K. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol. Lett. 2009, 184(1):18-25.
-
(2009)
Toxicol. Lett.
, vol.184
, Issue.1
, pp. 18-25
-
-
Park, E.J.1
Park, K.2
-
115
-
-
77951710094
-
Silica-based nanoparticle uptake and cellular response by primary microglia
-
Choi J., et al. Silica-based nanoparticle uptake and cellular response by primary microglia. Environ. Heal. Perspect. 2010, 118(5):589-595.
-
(2010)
Environ. Heal. Perspect.
, vol.118
, Issue.5
, pp. 589-595
-
-
Choi, J.1
-
116
-
-
77953649363
-
The promotion of human malignant melanoma growth by mesoporous silica nanoparticles through decreased reactive oxygen species
-
Huang X.L., et al. The promotion of human malignant melanoma growth by mesoporous silica nanoparticles through decreased reactive oxygen species. Biomaterials 2010, 31(24):6142-6153.
-
(2010)
Biomaterials
, vol.31
, Issue.24
, pp. 6142-6153
-
-
Huang, X.L.1
-
117
-
-
77954382754
-
The effect of surface modification of amorphous silica particles on NLRP3 inflammasome mediated IL-1 beta production, ROS production and endosomal rupture
-
Morishige T., et al. The effect of surface modification of amorphous silica particles on NLRP3 inflammasome mediated IL-1 beta production, ROS production and endosomal rupture. Biomaterials 2010, 31(26):6833-6842.
-
(2010)
Biomaterials
, vol.31
, Issue.26
, pp. 6833-6842
-
-
Morishige, T.1
-
118
-
-
84855268371
-
Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population
-
Kim J.A., et al. Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nat. Nanotechnol. 2011, 7(1):62-68.
-
(2011)
Nat. Nanotechnol.
, vol.7
, Issue.1
, pp. 62-68
-
-
Kim, J.A.1
-
119
-
-
72549097805
-
Nanoparticles can cause DNA damage across a cellular barrier
-
Bhabra G., et al. Nanoparticles can cause DNA damage across a cellular barrier. Nat. Nanotechnol. 2009, 4(12):876-883.
-
(2009)
Nat. Nanotechnol.
, vol.4
, Issue.12
, pp. 876-883
-
-
Bhabra, G.1
-
120
-
-
83555165976
-
Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness
-
Sood A., et al. Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. Nat. Nanotechnol. 2011, 6(12):824-833.
-
(2011)
Nat. Nanotechnol.
, vol.6
, Issue.12
, pp. 824-833
-
-
Sood, A.1
|