-
1
-
-
79953189369
-
Tearin' up my heart: proteolysis in the cardiac sarcomere
-
Portbury A.L., et al. Tearin' up my heart: proteolysis in the cardiac sarcomere. J. Biol. Chem. 2011, 286:9929-9934.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 9929-9934
-
-
Portbury, A.L.1
-
2
-
-
72949096556
-
The ubiquitin-proteasome system in cardiac proteinopathy: a quality control perspective
-
Su H., Wang X. The ubiquitin-proteasome system in cardiac proteinopathy: a quality control perspective. Cardiovasc. Res. 2010, 85:253-262.
-
(2010)
Cardiovasc. Res.
, vol.85
, pp. 253-262
-
-
Su, H.1
Wang, X.2
-
3
-
-
72949105996
-
Atrogin-1 and MuRF1 regulate cardiac MyBP-C levels via different mechanisms
-
Mearini G., et al. Atrogin-1 and MuRF1 regulate cardiac MyBP-C levels via different mechanisms. Cardiovasc. Res. 2010, 85:357-366.
-
(2010)
Cardiovasc. Res.
, vol.85
, pp. 357-366
-
-
Mearini, G.1
-
4
-
-
11244351579
-
Function and regulation of cullin-RING ubiquitin ligases
-
Petroski M.D., Deshaies R.J. Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 2005, 6:9-20.
-
(2005)
Nat. Rev. Mol. Cell Biol.
, vol.6
, pp. 9-20
-
-
Petroski, M.D.1
Deshaies, R.J.2
-
5
-
-
1842591241
-
Nedd8 on cullin: building an expressway to protein destruction
-
Pan Z.Q., et al. Nedd8 on cullin: building an expressway to protein destruction. Oncogene 2004, 23:1985-1997.
-
(2004)
Oncogene
, vol.23
, pp. 1985-1997
-
-
Pan, Z.Q.1
-
6
-
-
33846990100
-
Direct interactions between NEDD8 and ubiquitin E2 conjugating enzymes upregulate cullin-based E3 ligase activity
-
Sakata E., et al. Direct interactions between NEDD8 and ubiquitin E2 conjugating enzymes upregulate cullin-based E3 ligase activity. Nat. Struct. Mol. Biol. 2007, 14:167-168.
-
(2007)
Nat. Struct. Mol. Biol.
, vol.14
, pp. 167-168
-
-
Sakata, E.1
-
7
-
-
56449094567
-
The COP9 signalosome: more than a protease
-
Wei N., et al. The COP9 signalosome: more than a protease. Trends Biochem. Sci. 2008, 33:592-600.
-
(2008)
Trends Biochem. Sci.
, vol.33
, pp. 592-600
-
-
Wei, N.1
-
8
-
-
58149191374
-
Symmetrical modularity of the COP9 signalosome complex suggests its multifunctionality
-
Sharon M., et al. Symmetrical modularity of the COP9 signalosome complex suggests its multifunctionality. Structure 2009, 17:31-40.
-
(2009)
Structure
, vol.17
, pp. 31-40
-
-
Sharon, M.1
-
9
-
-
79952205242
-
Subunit 6 of the COP9 signalosome promotes tumorigenesis in mice through stabilization of MDM2 and is upregulated in human cancers
-
Zhao R., et al. Subunit 6 of the COP9 signalosome promotes tumorigenesis in mice through stabilization of MDM2 and is upregulated in human cancers. J. Clin. Invest. 2011, 121:851-865.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 851-865
-
-
Zhao, R.1
-
10
-
-
55849121186
-
Subunit 3 of the COP9 signalosome is poised to facilitate communication between the extracellular matrix and the nucleus through the muscle-specific β1D integrin
-
Hunter C., et al. Subunit 3 of the COP9 signalosome is poised to facilitate communication between the extracellular matrix and the nucleus through the muscle-specific β1D integrin. Cell Commun. Adhes. 2008, 15:247-260.
-
(2008)
Cell Commun. Adhes.
, vol.15
, pp. 247-260
-
-
Hunter, C.1
-
11
-
-
79952355107
-
Selective autophagy mediated by autophagic adapter proteins
-
Johansen T., Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011, 7:279-296.
-
(2011)
Autophagy
, vol.7
, pp. 279-296
-
-
Johansen, T.1
Lamark, T.2
-
12
-
-
10744225487
-
A unified nomenclature for yeast autophagy-related genes
-
Klionsky D.J., et al. A unified nomenclature for yeast autophagy-related genes. Dev. Cell 2003, 5:539-545.
-
(2003)
Dev. Cell
, vol.5
, pp. 539-545
-
-
Klionsky, D.J.1
-
13
-
-
65549142204
-
A role for ubiquitin in selective autophagy
-
Kirkin V., et al. A role for ubiquitin in selective autophagy. Mol. Cell 2009, 34:259-269.
-
(2009)
Mol. Cell
, vol.34
, pp. 259-269
-
-
Kirkin, V.1
-
14
-
-
82855181806
-
Proteasome malfunction activates macroautophagy in the heart
-
Zheng Q., et al. Proteasome malfunction activates macroautophagy in the heart. Am. J. Cardiovasc. Dis. 2011, 1:214-226.
-
(2011)
Am. J. Cardiovasc. Dis.
, vol.1
, pp. 214-226
-
-
Zheng, Q.1
-
15
-
-
33645055949
-
Aberrant protein aggregation is essential for a mutant desmin to impair the proteolytic function of the ubiquitin-proteasome system in cardiomyocytes
-
Liu J., et al. Aberrant protein aggregation is essential for a mutant desmin to impair the proteolytic function of the ubiquitin-proteasome system in cardiomyocytes. J. Mol. Cell. Cardiol. 2006, 40:451-454.
-
(2006)
J. Mol. Cell. Cardiol.
, vol.40
, pp. 451-454
-
-
Liu, J.1
-
16
-
-
47749125013
-
Autophagy is an adaptive response in desmin-related cardiomyopathy
-
Tannous P., et al. Autophagy is an adaptive response in desmin-related cardiomyopathy. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:9745-9750.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 9745-9750
-
-
Tannous, P.1
-
17
-
-
79961022260
-
Autophagy and p62 in cardiac proteinopathy
-
Zheng Q., et al. Autophagy and p62 in cardiac proteinopathy. Circ. Res. 2011, 109:296-308.
-
(2011)
Circ. Res.
, vol.109
, pp. 296-308
-
-
Zheng, Q.1
-
18
-
-
79953172201
-
Cardiac Z-disc signaling network
-
Frank D., Frey N. Cardiac Z-disc signaling network. J. Biol. Chem. 2011, 286:9897-9904.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 9897-9904
-
-
Frank, D.1
Frey, N.2
-
19
-
-
0035793703
-
Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain
-
Centner T., et al. Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J. Mol. Biol. 2001, 306:717-726.
-
(2001)
J. Mol. Biol.
, vol.306
, pp. 717-726
-
-
Centner, T.1
-
20
-
-
11144237310
-
Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I
-
Kedar V., et al. Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:18135-18140.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 18135-18140
-
-
Kedar, V.1
-
21
-
-
20544438018
-
MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: towards understanding MURF-dependent muscle ubiquitination
-
Witt S.H., et al. MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: towards understanding MURF-dependent muscle ubiquitination. J. Mol. Biol. 2005, 350:713-722.
-
(2005)
J. Mol. Biol.
, vol.350
, pp. 713-722
-
-
Witt, S.H.1
-
22
-
-
0034698695
-
Regulation of microtubule dynamics and myogenic differentiation by MURF, a striated muscle RING-finger protein
-
Spencer J.A., et al. Regulation of microtubule dynamics and myogenic differentiation by MURF, a striated muscle RING-finger protein. J. Cell Biol. 2000, 150:771-784.
-
(2000)
J. Cell Biol.
, vol.150
, pp. 771-784
-
-
Spencer, J.A.1
-
23
-
-
38549139612
-
Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2
-
Witt C.C., et al. Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2. EMBO J. 2008, 27:350-360.
-
(2008)
EMBO J.
, vol.27
, pp. 350-360
-
-
Witt, C.C.1
-
24
-
-
33947522846
-
Muscle ring finger 1, but not muscle ring finger 2, regulates cardiac hypertrophy in vivo
-
Willis M.S., et al. Muscle ring finger 1, but not muscle ring finger 2, regulates cardiac hypertrophy in vivo. Circ. Res. 2007, 100:456-459.
-
(2007)
Circ. Res.
, vol.100
, pp. 456-459
-
-
Willis, M.S.1
-
25
-
-
66249116681
-
Muscle ring finger 1 mediates cardiac atrophy in vivo
-
Willis M.S., et al. Muscle ring finger 1 mediates cardiac atrophy in vivo. Am. J. Physiol. Heart Circ. Physiol. 2009, 296:H997-H1006.
-
(2009)
Am. J. Physiol. Heart Circ. Physiol.
, vol.296
-
-
Willis, M.S.1
-
26
-
-
34248371018
-
Loss of muscle-specific RING-finger 3 predisposes the heart to cardiac rupture after myocardial infarction
-
Fielitz J., et al. Loss of muscle-specific RING-finger 3 predisposes the heart to cardiac rupture after myocardial infarction. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:4377-4382.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 4377-4382
-
-
Fielitz, J.1
-
27
-
-
0033967937
-
Alpha-B-crystallin expression in tissues derived from different species in different age groups
-
Oertel M.F., et al. Alpha-B-crystallin expression in tissues derived from different species in different age groups. Ophthalmologica 2000, 214:13-23.
-
(2000)
Ophthalmologica
, vol.214
, pp. 13-23
-
-
Oertel, M.F.1
-
28
-
-
0026694490
-
Alpha B-crystallin in cardiac tissue. Association with actin and desmin filaments
-
Bennardini F., et al. Alpha B-crystallin in cardiac tissue. Association with actin and desmin filaments. Circ. Res. 1992, 71:288-294.
-
(1992)
Circ. Res.
, vol.71
, pp. 288-294
-
-
Bennardini, F.1
-
29
-
-
17344361902
-
A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy
-
Vicart P., et al. A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat. Genet. 1998, 20:92-95.
-
(1998)
Nat. Genet.
, vol.20
, pp. 92-95
-
-
Vicart, P.1
-
30
-
-
0035816115
-
Expression of R120G-alphaB-crystallin causes aberrant desmin and alphaB-crystallin aggregation and cardiomyopathy in mice
-
Wang X., et al. Expression of R120G-alphaB-crystallin causes aberrant desmin and alphaB-crystallin aggregation and cardiomyopathy in mice. Circ. Res. 2001, 89:84-91.
-
(2001)
Circ. Res.
, vol.89
, pp. 84-91
-
-
Wang, X.1
-
31
-
-
33750460897
-
Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex
-
Lin D.I., et al. Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex. Mol. Cell 2006, 24:355-366.
-
(2006)
Mol. Cell
, vol.24
, pp. 355-366
-
-
Lin, D.I.1
-
32
-
-
9644270401
-
Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex
-
Li H.H., et al. Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J. Clin. Invest. 2004, 114:1058-1071.
-
(2004)
J. Clin. Invest.
, vol.114
, pp. 1058-1071
-
-
Li, H.H.1
-
33
-
-
0032540267
-
A calcineurin-dependent transcriptional pathway for cardiac hypertrophy
-
Molkentin J.D., et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 1998, 93:215-228.
-
(1998)
Cell
, vol.93
, pp. 215-228
-
-
Molkentin, J.D.1
-
34
-
-
79960343312
-
Endogenous muscle atrophy F-box mediates pressure overload-induced cardiac hypertrophy through regulation of nuclear factor-κB
-
Usui S., et al. Endogenous muscle atrophy F-box mediates pressure overload-induced cardiac hypertrophy through regulation of nuclear factor-κB. Circ. Res. 2011, 109:161-171.
-
(2011)
Circ. Res.
, vol.109
, pp. 161-171
-
-
Usui, S.1
-
35
-
-
0037630018
-
Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy
-
Richard P., et al. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 2003, 107:2227-2232.
-
(2003)
Circulation
, vol.107
, pp. 2227-2232
-
-
Richard, P.1
-
36
-
-
34247519733
-
Cardiac myosin-binding protein C in the heart
-
Carrier L. Cardiac myosin-binding protein C in the heart. Arch. Mal. Coeur Vaiss. 2007, 100:238-243.
-
(2007)
Arch. Mal. Coeur Vaiss.
, vol.100
, pp. 238-243
-
-
Carrier, L.1
-
37
-
-
39649095167
-
Krp1 (Sarcosin) promotes lateral fusion of myofibril assembly intermediates in cultured mouse cardiomyocytes
-
Greenberg C.C., et al. Krp1 (Sarcosin) promotes lateral fusion of myofibril assembly intermediates in cultured mouse cardiomyocytes. Exp. Cell Res. 2008, 314:1177-1191.
-
(2008)
Exp. Cell Res.
, vol.314
, pp. 1177-1191
-
-
Greenberg, C.C.1
-
38
-
-
84863509384
-
Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1.5) protein turnover
-
Lange S., et al. Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1.5) protein turnover. Mol. Biol. Cell 2012, 23:2490-2504.
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 2490-2504
-
-
Lange, S.1
-
39
-
-
79451475816
-
Perturbation of cullin deneddylation via conditional Csn8 ablation impairs the ubiquitin-proteasome system and causes cardiomyocyte necrosis and dilated cardiomyopathy in mice
-
Su H., et al. Perturbation of cullin deneddylation via conditional Csn8 ablation impairs the ubiquitin-proteasome system and causes cardiomyocyte necrosis and dilated cardiomyopathy in mice. Circ. Res. 2011, 108:40-50.
-
(2011)
Circ. Res.
, vol.108
, pp. 40-50
-
-
Su, H.1
-
40
-
-
68149112577
-
CSN-5, a component of the COP9 signalosome complex, regulates the levels of UNC-96 and UNC-98, two components of M-lines in Caenorhabditis elegans muscle
-
Miller R.K., et al. CSN-5, a component of the COP9 signalosome complex, regulates the levels of UNC-96 and UNC-98, two components of M-lines in Caenorhabditis elegans muscle. Mol. Biol. Cell 2009, 20:3608-3616.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 3608-3616
-
-
Miller, R.K.1
-
41
-
-
28144435989
-
Costameres, focal adhesions, and cardiomyocyte mechanotransduction
-
Samarel A.M. Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am. J. Physiol. Heart Circ. Physiol. 2005, 289:H2291-H2301.
-
(2005)
Am. J. Physiol. Heart Circ. Physiol.
, vol.289
-
-
Samarel, A.M.1
-
42
-
-
33745870098
-
Role of protein-tyrosine phosphatase SHP2 in focal adhesion kinase down-regulation during neutrophil cathepsin G-induced cardiomyocytes anoikis
-
Rafiq K., et al. Role of protein-tyrosine phosphatase SHP2 in focal adhesion kinase down-regulation during neutrophil cathepsin G-induced cardiomyocytes anoikis. J. Biol. Chem. 2006, 281:19781-19792.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 19781-19792
-
-
Rafiq, K.1
-
43
-
-
84857327342
-
C-Cbl ubiquitin ligase regulates focal adhesion protein turnover and myofibril degeneration induced by neutrophil protease cathepsin G
-
Rafiq K., et al. c-Cbl ubiquitin ligase regulates focal adhesion protein turnover and myofibril degeneration induced by neutrophil protease cathepsin G. J. Biol. Chem. 2012, 287:5327-5339.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 5327-5339
-
-
Rafiq, K.1
-
46
-
-
77955582765
-
Cardiac sodium channelopathies
-
Amin A.S., et al. Cardiac sodium channelopathies. Pflugers Arch. 2010, 460:223-237.
-
(2010)
Pflugers Arch.
, vol.460
, pp. 223-237
-
-
Amin, A.S.1
-
47
-
-
4043059200
-
Cardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4-2 mediated ubiquitination
-
van Bemmelen M.X., et al. Cardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4-2 mediated ubiquitination. Circ. Res. 2004, 95:284-291.
-
(2004)
Circ. Res.
, vol.95
, pp. 284-291
-
-
van Bemmelen, M.X.1
-
48
-
-
33847639227
-
The KCNQ1 potassium channel is down-regulated by ubiquitylating enzymes of the Nedd4/Nedd4-like family
-
Jespersen T., et al. The KCNQ1 potassium channel is down-regulated by ubiquitylating enzymes of the Nedd4/Nedd4-like family. Cardiovasc. Res. 2007, 74:64-74.
-
(2007)
Cardiovasc. Res.
, vol.74
, pp. 64-74
-
-
Jespersen, T.1
-
49
-
-
77955232406
-
Ubiquitylation and SUMOylation of cardiac ion channels
-
Rougier J.S., et al. Ubiquitylation and SUMOylation of cardiac ion channels. J. Cardiovasc. Pharmacol. 2010, 56:22-28.
-
(2010)
J. Cardiovasc. Pharmacol.
, vol.56
, pp. 22-28
-
-
Rougier, J.S.1
-
50
-
-
33645055408
-
2+ channel activity through protein-protein interactions
-
2+ channel activity through protein-protein interactions. J. Mol. Cell. Cardiol. 2006, 40:562-569.
-
(2006)
J. Mol. Cell. Cardiol.
, vol.40
, pp. 562-569
-
-
Kameda, K.1
-
51
-
-
77649100539
-
Cell-cell connection to cardiac disease
-
Sheikh F., et al. Cell-cell connection to cardiac disease. Trends Cardiovasc. Med. 2009, 19:182-190.
-
(2009)
Trends Cardiovasc. Med.
, vol.19
, pp. 182-190
-
-
Sheikh, F.1
-
52
-
-
51749110724
-
Remodelling of gap junctions and connexin expression in diseased myocardium
-
Severs N.J., et al. Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc. Res. 2008, 80:9-19.
-
(2008)
Cardiovasc. Res.
, vol.80
, pp. 9-19
-
-
Severs, N.J.1
-
53
-
-
0026729534
-
Immunolocalization of ubiquitin conjugates at Z-bands and intercalated discs of rat cardiomyocytes in vitro and in vivo
-
Hilenski L.L., et al. Immunolocalization of ubiquitin conjugates at Z-bands and intercalated discs of rat cardiomyocytes in vitro and in vivo. J. Histochem. Cytochem. 1992, 40:1037-1042.
-
(1992)
J. Histochem. Cytochem.
, vol.40
, pp. 1037-1042
-
-
Hilenski, L.L.1
-
54
-
-
0034966851
-
Focal degradation of cytoplasmic organelles in cardiomyocytes during regenerative and plastic myocardial insufficiency
-
Nepomnyashchikh L.M., et al. Focal degradation of cytoplasmic organelles in cardiomyocytes during regenerative and plastic myocardial insufficiency. Bull. Exp. Biol. Med. 2000, 130:1190-1195.
-
(2000)
Bull. Exp. Biol. Med.
, vol.130
, pp. 1190-1195
-
-
Nepomnyashchikh, L.M.1
-
55
-
-
20644440418
-
The kinase domain of titin controls muscle gene expression and protein turnover
-
Lange S., et al. The kinase domain of titin controls muscle gene expression and protein turnover. Science 2005, 308:1599-1603.
-
(2005)
Science
, vol.308
, pp. 1599-1603
-
-
Lange, S.1
-
56
-
-
77956186257
-
Stabilised β-catenin in postnatal ventricular myocardium leads to dilated cardiomyopathy and premature death
-
Hirschy A., et al. Stabilised β-catenin in postnatal ventricular myocardium leads to dilated cardiomyopathy and premature death. Basic Res. Cardiol. 2010, 105:597-608.
-
(2010)
Basic Res. Cardiol.
, vol.105
, pp. 597-608
-
-
Hirschy, A.1
-
57
-
-
33748581280
-
Enhanced ubiquitination of cytoskeletal proteins in pressure overloaded myocardium is accompanied by changes in specific E3 ligases
-
Balasubramanian S., et al. Enhanced ubiquitination of cytoskeletal proteins in pressure overloaded myocardium is accompanied by changes in specific E3 ligases. J. Mol. Cell. Cardiol. 2006, 41:669-679.
-
(2006)
J. Mol. Cell. Cardiol.
, vol.41
, pp. 669-679
-
-
Balasubramanian, S.1
-
58
-
-
1542347695
-
Convergence of Wnt, β-catenin, and cadherin pathways
-
Nelson W.J., Nusse R. Convergence of Wnt, β-catenin, and cadherin pathways. Science 2004, 303:1483-1487.
-
(2004)
Science
, vol.303
, pp. 1483-1487
-
-
Nelson, W.J.1
Nusse, R.2
-
59
-
-
33744498386
-
Estrogen receptor α up-regulation and redistribution in human heart failure
-
Mahmoodzadeh S., et al. Estrogen receptor α up-regulation and redistribution in human heart failure. FASEB J. 2006, 20:926-934.
-
(2006)
FASEB J.
, vol.20
, pp. 926-934
-
-
Mahmoodzadeh, S.1
-
60
-
-
10744222647
-
β-Catenin accumulates in intercalated disks of hypertrophic cardiomyopathic hearts
-
Masuelli L., et al. β-Catenin accumulates in intercalated disks of hypertrophic cardiomyopathic hearts. Cardiovasc. Res. 2003, 60:376-387.
-
(2003)
Cardiovasc. Res.
, vol.60
, pp. 376-387
-
-
Masuelli, L.1
-
61
-
-
33745029734
-
The β-catenin/T-cell factor/lymphocyte enhancer factor signaling pathway is required for normal and stress-induced cardiac hypertrophy
-
Chen X., et al. The β-catenin/T-cell factor/lymphocyte enhancer factor signaling pathway is required for normal and stress-induced cardiac hypertrophy. Mol. Cell. Biol. 2006, 26:4462-4473.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 4462-4473
-
-
Chen, X.1
-
62
-
-
0037756787
-
Structure of a β-TrCP1-Skp1-β-catenin complex: destruction motif binding and lysine specificity of the SCF(β-TrCP1) ubiquitin ligase
-
Wu G., et al. Structure of a β-TrCP1-Skp1-β-catenin complex: destruction motif binding and lysine specificity of the SCF(β-TrCP1) ubiquitin ligase. Mol. Cell 2003, 11:1445-1456.
-
(2003)
Mol. Cell
, vol.11
, pp. 1445-1456
-
-
Wu, G.1
-
63
-
-
84862185367
-
Ubiquitination, intracellular trafficking, and degradation of connexins
-
Su V., Lau A.F. Ubiquitination, intracellular trafficking, and degradation of connexins. Arch. Biochem. Biophys. 2012, 524:16-22.
-
(2012)
Arch. Biochem. Biophys.
, vol.524
, pp. 16-22
-
-
Su, V.1
Lau, A.F.2
-
64
-
-
41949131052
-
A novel connexin43-interacting protein, CIP75, which belongs to the UbL-UBA protein family, regulates the turnover of connexin 43
-
Li X., et al. A novel connexin43-interacting protein, CIP75, which belongs to the UbL-UBA protein family, regulates the turnover of connexin 43. J. Biol. Chem. 2008, 283:5748-5759.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 5748-5759
-
-
Li, X.1
-
65
-
-
0037286470
-
Gap junction remodeling and altered connexin 43 expression in the failing human heart
-
Kostin S., et al. Gap junction remodeling and altered connexin 43 expression in the failing human heart. Mol. Cell. Biochem. 2003, 242:135-144.
-
(2003)
Mol. Cell. Biochem.
, vol.242
, pp. 135-144
-
-
Kostin, S.1
-
66
-
-
10744221216
-
Correlation of connexin43 expression and late ventricular potentials in nonischemic dilated cardiomyopathy
-
Kitamura H., et al. Correlation of connexin43 expression and late ventricular potentials in nonischemic dilated cardiomyopathy. Circ. J. 2003, 67:1017-1021.
-
(2003)
Circ. J.
, vol.67
, pp. 1017-1021
-
-
Kitamura, H.1
-
67
-
-
33748574527
-
Myocardial Cx43 expression in the cases of sudden death due to dilated cardiomyopathy
-
Chen X., Zhang Y. Myocardial Cx43 expression in the cases of sudden death due to dilated cardiomyopathy. Forensic Sci. Int. 2006, 162:170-173.
-
(2006)
Forensic Sci. Int.
, vol.162
, pp. 170-173
-
-
Chen, X.1
Zhang, Y.2
-
68
-
-
0035806899
-
Heterogeneous expression of Gap junction channels in the heart leads to conduction defects and ventricular dysfunction
-
Gutstein D.E., et al. Heterogeneous expression of Gap junction channels in the heart leads to conduction defects and ventricular dysfunction. Circulation 2001, 104:1194-1199.
-
(2001)
Circulation
, vol.104
, pp. 1194-1199
-
-
Gutstein, D.E.1
-
69
-
-
33751202968
-
Cardiomyocyte-restricted deletion of connexin 43 during mouse development
-
Eckardt D., et al. Cardiomyocyte-restricted deletion of connexin 43 during mouse development. J. Mol. Cell. Cardiol. 2006, 41:963-971.
-
(2006)
J. Mol. Cell. Cardiol.
, vol.41
, pp. 963-971
-
-
Eckardt, D.1
-
70
-
-
33749159998
-
Remodeling of connexin 43 in the diabetic rat heart
-
Lin H., et al. Remodeling of connexin 43 in the diabetic rat heart. Mol. Cell. Biochem. 2006, 290:69-78.
-
(2006)
Mol. Cell. Biochem.
, vol.290
, pp. 69-78
-
-
Lin, H.1
-
71
-
-
0032103769
-
Proteolysis of connexin 43-containing gap junctions in normal and heat-stressed cardiac myocytes
-
Laing J.G., et al. Proteolysis of connexin 43-containing gap junctions in normal and heat-stressed cardiac myocytes. Cardiovasc. Res. 1998, 38:711-718.
-
(1998)
Cardiovasc. Res.
, vol.38
, pp. 711-718
-
-
Laing, J.G.1
-
72
-
-
33749386740
-
Ubiquitin protein ligase Nedd4 binds to connexin 43 by a phosphorylation-modulated process
-
Leykauf K., et al. Ubiquitin protein ligase Nedd4 binds to connexin 43 by a phosphorylation-modulated process. J. Cell Sci. 2006, 119:3634-3642.
-
(2006)
J. Cell Sci.
, vol.119
, pp. 3634-3642
-
-
Leykauf, K.1
-
73
-
-
23144439184
-
Proteolysis: anytime, any place, anywhere?
-
Pines J., Lindon C. Proteolysis: anytime, any place, anywhere?. Nat. Cell Biol. 2005, 7:731-735.
-
(2005)
Nat. Cell Biol.
, vol.7
, pp. 731-735
-
-
Pines, J.1
Lindon, C.2
-
74
-
-
0037335034
-
How the ubiquitin-proteasome system controls transcription
-
Muratani M., Tansey W.P. How the ubiquitin-proteasome system controls transcription. Nat. Rev. Mol. Cell Biol. 2003, 4:192-201.
-
(2003)
Nat. Rev. Mol. Cell Biol.
, vol.4
, pp. 192-201
-
-
Muratani, M.1
Tansey, W.P.2
-
75
-
-
33645643078
-
Differential regulation of cardiomyocyte survival and hypertrophy by MDM2, an E3 ubiquitin ligase
-
Toth A., et al. Differential regulation of cardiomyocyte survival and hypertrophy by MDM2, an E3 ubiquitin ligase. J. Biol. Chem. 2006, 281:3679-3689.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 3679-3689
-
-
Toth, A.1
-
76
-
-
0032868105
-
Increased p53 protein expression in human failing myocardium
-
Song H., et al. Increased p53 protein expression in human failing myocardium. J. Heart Lung Transplant. 1999, 18:744-749.
-
(1999)
J. Heart Lung Transplant.
, vol.18
, pp. 744-749
-
-
Song, H.1
-
77
-
-
33947520124
-
P53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload
-
Sano M., et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 2007, 446:444-448.
-
(2007)
Nature
, vol.446
, pp. 444-448
-
-
Sano, M.1
-
78
-
-
34248185149
-
MDM2 splice variants predominantly localize to the nucleoplasm mediated by a COOH-terminal nuclear localization signal
-
Schuster K., et al. MDM2 splice variants predominantly localize to the nucleoplasm mediated by a COOH-terminal nuclear localization signal. Mol. Cancer Res. 2007, 5:403-412.
-
(2007)
Mol. Cancer Res.
, vol.5
, pp. 403-412
-
-
Schuster, K.1
-
79
-
-
84865675670
-
Regulation of p53: a collaboration between Mdm2 and Mdmx
-
Pei D., et al. Regulation of p53: a collaboration between Mdm2 and Mdmx. Oncotarget 2012, 3:228-235.
-
(2012)
Oncotarget
, vol.3
, pp. 228-235
-
-
Pei, D.1
-
80
-
-
33644772395
-
Tissue-specific differences of p53 inhibition by Mdm2 and Mdm4
-
Grier J.D., et al. Tissue-specific differences of p53 inhibition by Mdm2 and Mdm4. Mol. Cell. Biol. 2006, 26:192-198.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 192-198
-
-
Grier, J.D.1
-
81
-
-
34250344087
-
Loss of Mdm4 results in p53-dependent dilated cardiomyopathy
-
Xiong S., et al. Loss of Mdm4 results in p53-dependent dilated cardiomyopathy. Circulation 2007, 115:2925-2930.
-
(2007)
Circulation
, vol.115
, pp. 2925-2930
-
-
Xiong, S.1
-
82
-
-
84858147140
-
Various jobs of proteolytic enzymes in skeletal muscle during unloading: facts and speculations
-
Kachaeva E.V., Shenkman B.S. Various jobs of proteolytic enzymes in skeletal muscle during unloading: facts and speculations. J. Biomed. Biotechnol. 2012, 2012:493618.
-
(2012)
J. Biomed. Biotechnol.
, vol.2012
, pp. 493618
-
-
Kachaeva, E.V.1
Shenkman, B.S.2
-
83
-
-
0038390128
-
Roles of cardiac transcription factors in cardiac hypertrophy
-
Akazawa H., Komuro I. Roles of cardiac transcription factors in cardiac hypertrophy. Circ. Res. 2003, 92:1079-1088.
-
(2003)
Circ. Res.
, vol.92
, pp. 1079-1088
-
-
Akazawa, H.1
Komuro, I.2
-
84
-
-
80054817543
-
Lamins, laminopathies and disease mechanisms: possible role for proteasomal degradation of key regulatory proteins
-
Parnaik V.K., et al. Lamins, laminopathies and disease mechanisms: possible role for proteasomal degradation of key regulatory proteins. J. Biosci. 2011, 36:471-479.
-
(2011)
J. Biosci.
, vol.36
, pp. 471-479
-
-
Parnaik, V.K.1
-
85
-
-
84860327128
-
Accumulation of the inner nuclear envelope protein Sun1 is pathogenic in progeric and dystrophic laminopathies
-
Chen C.Y., et al. Accumulation of the inner nuclear envelope protein Sun1 is pathogenic in progeric and dystrophic laminopathies. Cell 2012, 149:565-577.
-
(2012)
Cell
, vol.149
, pp. 565-577
-
-
Chen, C.Y.1
-
86
-
-
0032977685
-
Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy
-
Bonne G., et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat. Genet. 1999, 21:285-288.
-
(1999)
Nat. Genet.
, vol.21
, pp. 285-288
-
-
Bonne, G.1
-
87
-
-
0033518282
-
Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease
-
Fatkin D., et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N. Engl. J. Med. 1999, 341:1715-1724.
-
(1999)
N. Engl. J. Med.
, vol.341
, pp. 1715-1724
-
-
Fatkin, D.1
-
88
-
-
0347987907
-
The ubiquitin-proteasome system in cardiovascular diseases - a hypothesis extended
-
Herrmann J., et al. The ubiquitin-proteasome system in cardiovascular diseases - a hypothesis extended. Cardiovasc. Res. 2004, 61:11-21.
-
(2004)
Cardiovasc. Res.
, vol.61
, pp. 11-21
-
-
Herrmann, J.1
-
89
-
-
38549105011
-
Suppression of cardiomyocyte hypertrophy by inhibition of the ubiquitin-proteasome system
-
Meiners S., et al. Suppression of cardiomyocyte hypertrophy by inhibition of the ubiquitin-proteasome system. Hypertension 2008, 51:302-308.
-
(2008)
Hypertension
, vol.51
, pp. 302-308
-
-
Meiners, S.1
-
90
-
-
14844338880
-
Impairment of the ubiquitin-proteasome system by truncated cardiac myosin binding protein C mutants
-
Sarikas A., et al. Impairment of the ubiquitin-proteasome system by truncated cardiac myosin binding protein C mutants. Cardiovasc. Res. 2005, 66:33-44.
-
(2005)
Cardiovasc. Res.
, vol.66
, pp. 33-44
-
-
Sarikas, A.1
-
91
-
-
2642551603
-
Development of the proteasome inhibitor Velcade (Bortezomib)
-
Adams J., Kauffman M. Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Invest. 2004, 22:304-311.
-
(2004)
Cancer Invest.
, vol.22
, pp. 304-311
-
-
Adams, J.1
Kauffman, M.2
-
92
-
-
0035665515
-
PR-39 and PR-11 peptides inhibit ischemia-reperfusion injury by blocking proteasome-mediated IκBα degradation
-
Bao J., et al. PR-39 and PR-11 peptides inhibit ischemia-reperfusion injury by blocking proteasome-mediated IκBα degradation. Am. J. Physiol. Heart Circ. Physiol. 2001, 281:H2612-H2618.
-
(2001)
Am. J. Physiol. Heart Circ. Physiol.
, vol.281
-
-
Bao, J.1
-
93
-
-
79955941126
-
Targeting the ubiquitin E3 ligase MuRF1 to inhibit muscle atrophy
-
Eddins M.J., et al. Targeting the ubiquitin E3 ligase MuRF1 to inhibit muscle atrophy. Cell Biochem. Biophys. 2011, 60:113-118.
-
(2011)
Cell Biochem. Biophys.
, vol.60
, pp. 113-118
-
-
Eddins, M.J.1
-
94
-
-
0033978633
-
Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells
-
Petiot A., et al. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 2000, 275:992-998.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 992-998
-
-
Petiot, A.1
-
95
-
-
38749136302
-
Regulation of macroautophagy by mTOR and Beclin 1 complexes
-
Pattingre S., et al. Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 2008, 90:313-323.
-
(2008)
Biochimie
, vol.90
, pp. 313-323
-
-
Pattingre, S.1
-
96
-
-
0025925091
-
+-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells
-
+-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J. Biol. Chem. 1991, 266:17707-17712.
-
(1991)
J. Biol. Chem.
, vol.266
, pp. 17707-17712
-
-
Yoshimori, T.1
-
97
-
-
75749122303
-
Methods in mammalian autophagy research
-
Mizushima N., et al. Methods in mammalian autophagy research. Cell 2010, 140:313-326.
-
(2010)
Cell
, vol.140
, pp. 313-326
-
-
Mizushima, N.1
-
98
-
-
1542283812
-
In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
-
Mizushima N., et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 2004, 15:1101-1111.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 1101-1111
-
-
Mizushima, N.1
-
99
-
-
79956126271
-
Oxidative stress stimulates autophagic flux during ischemia/reperfusion
-
Hariharan N., et al. Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid. Redox Signal. 2011, 14:2179-2190.
-
(2011)
Antioxid. Redox Signal.
, vol.14
, pp. 2179-2190
-
-
Hariharan, N.1
-
100
-
-
0043208904
-
A transgenic mouse model of the ubiquitin/proteasome system
-
Lindsten K., et al. A transgenic mouse model of the ubiquitin/proteasome system. Nat. Biotechnol. 2003, 21:897-902.
-
(2003)
Nat. Biotechnol.
, vol.21
, pp. 897-902
-
-
Lindsten, K.1
-
101
-
-
27944439915
-
A novel transgenic mouse model reveals deregulation of the ubiquitin-proteasome system in the heart by doxorubicin
-
Kumarapeli A.R., et al. A novel transgenic mouse model reveals deregulation of the ubiquitin-proteasome system in the heart by doxorubicin. FASEB J. 2005, 19:2051-2053.
-
(2005)
FASEB J.
, vol.19
, pp. 2051-2053
-
-
Kumarapeli, A.R.1
-
102
-
-
0034959450
-
Analysis of ubiquitination in vivo using a transgenic mouse model
-
Tsirigotis M., et al. Analysis of ubiquitination in vivo using a transgenic mouse model. Biotechniques 2001, 31:120-126. 128, 130.
-
(2001)
Biotechniques
, vol.31
-
-
Tsirigotis, M.1
-
103
-
-
80052386730
-
Enhancement of proteasomal function protects against cardiac proteinopathy and ischemia/reperfusion injury in mice
-
Li J., et al. Enhancement of proteasomal function protects against cardiac proteinopathy and ischemia/reperfusion injury in mice. J. Clin. Invest. 2011, 121:3689-3700.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 3689-3700
-
-
Li, J.1
-
104
-
-
84865497050
-
Genetically induced moderate inhibition of the proteasome in cardiomyocytes exacerbates myocardial ischemia-reperfusion injury in mice
-
Tian Z., et al. Genetically induced moderate inhibition of the proteasome in cardiomyocytes exacerbates myocardial ischemia-reperfusion injury in mice. Circ. Res. 2012, 111:532-542.
-
(2012)
Circ. Res.
, vol.111
, pp. 532-542
-
-
Tian, Z.1
-
105
-
-
39149097822
-
Proteasome inhibition promotes regression of left ventricular hypertrophy
-
Stansfield W.E., et al. Proteasome inhibition promotes regression of left ventricular hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 2008, 294:H645-H650.
-
(2008)
Am. J. Physiol. Heart Circ. Physiol.
, vol.294
-
-
Stansfield, W.E.1
-
106
-
-
70449686555
-
Cardiac amyloidosis responding to bortezomib: case report and review of literature
-
Charaf E., et al. Cardiac amyloidosis responding to bortezomib: case report and review of literature. Curr. Cardiol. Rev. 2009, 5:228-236.
-
(2009)
Curr. Cardiol. Rev.
, vol.5
, pp. 228-236
-
-
Charaf, E.1
-
107
-
-
53149091626
-
A phase I pharmacodynamic trial of bortezomib in combination with doxorubicin in patients with advanced cancer
-
LoConte N.K., et al. A phase I pharmacodynamic trial of bortezomib in combination with doxorubicin in patients with advanced cancer. Cancer Chemother. Pharmacol. 2008, 63:109-115.
-
(2008)
Cancer Chemother. Pharmacol.
, vol.63
, pp. 109-115
-
-
LoConte, N.K.1
-
108
-
-
0034682799
-
Regulation of connexin degradation as a mechanism to increase gap junction assembly and function
-
Musil L.S., et al. Regulation of connexin degradation as a mechanism to increase gap junction assembly and function. J. Biol. Chem. 2000, 275:25207-25215.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 25207-25215
-
-
Musil, L.S.1
-
109
-
-
33744909144
-
Severe reversible cardiac failure after bortezomib treatment combined with chemotherapy in a non-small cell lung cancer patient: a case report
-
Voortman J., Giaccone G. Severe reversible cardiac failure after bortezomib treatment combined with chemotherapy in a non-small cell lung cancer patient: a case report. BMC Cancer 2006, 6:129.
-
(2006)
BMC Cancer
, vol.6
, pp. 129
-
-
Voortman, J.1
Giaccone, G.2
-
110
-
-
33845779553
-
Proteomic expression analysis of cardiomyocytes subjected to proteasome inhibition
-
Doll D., et al. Proteomic expression analysis of cardiomyocytes subjected to proteasome inhibition. Biochem. Biophys. Res. Commun. 2007, 353:436-442.
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.353
, pp. 436-442
-
-
Doll, D.1
-
111
-
-
4043076224
-
Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis
-
Okada K., et al. Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation 2004, 110:705-712.
-
(2004)
Circulation
, vol.110
, pp. 705-712
-
-
Okada, K.1
-
112
-
-
33646523185
-
The ubiquitin-proteasome system: focus on the heart
-
Zolk O., et al. The ubiquitin-proteasome system: focus on the heart. Cardiovasc. Res. 2006, 70:410-421.
-
(2006)
Cardiovasc. Res.
, vol.70
, pp. 410-421
-
-
Zolk, O.1
-
113
-
-
34249714158
-
The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
-
Nakai A., et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 2007, 13:619-624.
-
(2007)
Nat. Med.
, vol.13
, pp. 619-624
-
-
Nakai, A.1
-
114
-
-
79952775153
-
Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy
-
Cao D.J., et al. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:4123-4128.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 4123-4128
-
-
Cao, D.J.1
-
115
-
-
33745173485
-
Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy
-
Kong Y., et al. Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation 2006, 113:2579-2588.
-
(2006)
Circulation
, vol.113
, pp. 2579-2588
-
-
Kong, Y.1
-
116
-
-
84861917512
-
Autophagy and cardiovascular aging: lesson learned from rapamycin
-
Nair S., Ren J. Autophagy and cardiovascular aging: lesson learned from rapamycin. Cell Cycle 2012, 11:2092-2099.
-
(2012)
Cell Cycle
, vol.11
, pp. 2092-2099
-
-
Nair, S.1
Ren, J.2
-
117
-
-
0023553740
-
Short-term stimulation by propranolol and verapamil of cardiac cellular autophagy
-
Bahro M., Pfeifer U. Short-term stimulation by propranolol and verapamil of cardiac cellular autophagy. J. Mol. Cell. Cardiol. 1987, 19:1169-1178.
-
(1987)
J. Mol. Cell. Cardiol.
, vol.19
, pp. 1169-1178
-
-
Bahro, M.1
Pfeifer, U.2
-
118
-
-
77957370173
-
Role of autophagy in myocardial reperfusion injury
-
Jin Y., et al. Role of autophagy in myocardial reperfusion injury. Front. Biosci. (Elite Ed.) 2010, 2:1147-1153.
-
(2010)
Front. Biosci. (Elite Ed.)
, vol.2
, pp. 1147-1153
-
-
Jin, Y.1
|