-
1
-
-
0035843993
-
Commensal host-bacterial relationships in the gut
-
Hooper, L. V. and Gordon, J. I. 2001. Commensal host-bacterial relationships in the gut. Science 292:1115.
-
(2001)
Science
, vol.292
, pp. 1115
-
-
Hooper, L.V.1
Gordon, J.I.2
-
2
-
-
0037425743
-
Gut flora in health and disease
-
Guarner, F. and Malagelada, J. R. 2003. Gut flora in health and disease. Lancet 361:512.
-
(2003)
Lancet
, vol.361
, pp. 512
-
-
Guarner, F.1
Malagelada, J.R.2
-
3
-
-
34547176642
-
Unravelling the pathogenesis of inflammatory bowel disease
-
Xavier, R. J. and Podolsky, D. K. 2007. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427.
-
(2007)
Nature
, vol.448
, pp. 427
-
-
Xavier, R.J.1
Podolsky, D.K.2
-
4
-
-
38649115342
-
Microbial influences in inflammatory bowel diseases
-
Sartor, R. B. 2008. Microbial influences in inflammatory bowel diseases. Gastroenterology 134:577.
-
(2008)
Gastroenterology
, vol.134
, pp. 577
-
-
Sartor, R.B.1
-
5
-
-
70949107842
-
Inflammatory bowel disease
-
Abraham, C. and Cho, J. H. 2009. Inflammatory bowel disease. N. Engl. J. Med. 361:2066.
-
(2009)
N. Engl. J. Med.
, vol.361
, pp. 2066
-
-
Abraham, C.1
Cho, J.H.2
-
6
-
-
33749266363
-
Microbial induction of CARD15 expression in intestinal epithelial cells via toll-like receptor 5 triggers an antibacterial response loop
-
Begue, B., Dumant, C., Bambou, J. C. et al. 2006. Microbial induction of CARD15 expression in intestinal epithelial cells via toll-like receptor 5 triggers an antibacterial response loop. J. Cell. Physiol. 209:241.
-
(2006)
J. Cell. Physiol.
, vol.209
, pp. 241
-
-
Begue, B.1
Dumant, C.2
Bambou, J.C.3
-
7
-
-
77649086402
-
Immune adaptations that maintain homeostasis with the intestinal microbiota
-
Hooper, L. V. and Macpherson, A. J. 2010. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10:159.
-
(2010)
Nat. Rev. Immunol.
, vol.10
, pp. 159
-
-
Hooper, L.V.1
Macpherson, A.J.2
-
8
-
-
84861978076
-
Host-gut microbiota metabolic interactions
-
Nicholson, J. K., Holmes, E., Kinross, J. et al. 2012. Host-gut microbiota metabolic interactions. Science 336:1262.
-
(2012)
Science
, vol.336
, pp. 1262
-
-
Nicholson, J.K.1
Holmes, E.2
Kinross, J.3
-
9
-
-
84862286169
-
A framework for human microbiome research
-
The Human Microbiome Project Consortium
-
The Human Microbiome Project Consortium. 2012. A framework for human microbiome research. Nature 486:215.
-
(2012)
Nature
, vol.486
, pp. 215
-
-
-
10
-
-
84862276328
-
Structure, function and diversity of the healthy human microbiome
-
The Human Microbiome Project Consortium
-
The Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207.
-
(2012)
Nature
, vol.486
, pp. 207
-
-
-
11
-
-
84861980130
-
Interactions between the microbiota and the immune system
-
Hooper, L. V., Littman, D. R. and Macpherson, A. J. 2012. Interactions between the microbiota and the immune system. Science 336:1268.
-
(2012)
Science
, vol.336
, pp. 1268
-
-
Hooper, L.V.1
Littman, D.R.2
Macpherson, A.J.3
-
12
-
-
14544293467
-
Compartmentalization of the mucosal immune responses to commensal intestinal bacteria
-
Macpherson, A. J. and Uhr, T. 2004. Compartmentalization of the mucosal immune responses to commensal intestinal bacteria. Ann. N. Y. Acad. Sci. 1029:36.
-
(2004)
Ann. N. Y. Acad. Sci.
, vol.1029
, pp. 36
-
-
Macpherson, A.J.1
Uhr, T.2
-
13
-
-
79952748335
-
The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions
-
Johansson, M. E., Larsson, J. M. and Hansson, G. C. 2011. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc. Natl. Acad. Sci. U.S.A. 108(Suppl. 1):4659.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, Issue.SUPPL. 1
, pp. 4659
-
-
Johansson, M.E.1
Larsson, J.M.2
Hansson, G.C.3
-
14
-
-
80054093941
-
Microbiology. Keeping bacteria at a distance
-
Johansson, M. E. and Hansson, G. C. 2011. Microbiology. Keeping bacteria at a distance. Science 334:182.
-
(2011)
Science
, vol.334
, pp. 182
-
-
Johansson, M.E.1
Hansson, G.C.2
-
15
-
-
84862862332
-
Epithelial antimicrobial defence of the skin and intestine
-
Gallo, R. L. and Hooper, L. V. 2012. Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol. 12:503.
-
(2012)
Nat. Rev. Immunol.
, vol.12
, pp. 503
-
-
Gallo, R.L.1
Hooper, L.V.2
-
16
-
-
74049122536
-
Enteric defensins are essential regulators of intestinal microbial ecology
-
Salzman, N. H., Hung, K., Haribhai, D. et al. 2010. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol. 11:76.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 76
-
-
Salzman, N.H.1
Hung, K.2
Haribhai, D.3
-
17
-
-
0037417311
-
Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin
-
Salzman, N. H., Ghosh, D., Huttner, K. M., Paterson, Y. and Bevins, C. L. 2003. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422:522.
-
(2003)
Nature
, vol.422
, pp. 522
-
-
Salzman, N.H.1
Ghosh, D.2
Huttner, K.M.3
Paterson, Y.4
Bevins, C.L.5
-
18
-
-
84864335926
-
Human a-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets
-
Chu, H., Pazgier, M., Jung, G. et al. 2012. Human a-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science 337:477.
-
(2012)
Science
, vol.337
, pp. 477
-
-
Chu, H.1
Pazgier, M.2
Jung, G.3
-
19
-
-
40449140937
-
The NLR gene family: a standard nomenclature
-
Ting, J. P., Lovering, R. C., Alnemri, E. S. et al. 2008. The NLR gene family: a standard nomenclature. Immunity 28:285.
-
(2008)
Immunity
, vol.28
, pp. 285
-
-
Ting, J.P.1
Lovering, R.C.2
Alnemri, E.S.3
-
20
-
-
38149113537
-
NLR proteins: integral members of innate immunity and mediators of inflammatory diseases
-
Wilmanski, J. M., Petnicki-Ocwieja, T. and Kobayashi, K. S. 2008. NLR proteins: integral members of innate immunity and mediators of inflammatory diseases. J. Leukoc. Biol. 83:13.
-
(2008)
J. Leukoc. Biol.
, vol.83
, pp. 13
-
-
Wilmanski, J.M.1
Petnicki-Ocwieja, T.2
Kobayashi, K.S.3
-
21
-
-
79956303498
-
Regulation of the antimicrobial response by NLR proteins
-
Elinav, E., Strowig, T., Henao-Mejia, J. and Flavell, R. A. 2011. Regulation of the antimicrobial response by NLR proteins. Immunity 34:665.
-
(2011)
Immunity
, vol.34
, pp. 665
-
-
Elinav, E.1
Strowig, T.2
Henao-Mejia, J.3
Flavell, R.A.4
-
22
-
-
0036671894
-
The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta
-
Martinon, F., Burns, K. and Tschopp, J. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10:417.
-
(2002)
Mol. Cell
, vol.10
, pp. 417
-
-
Martinon, F.1
Burns, K.2
Tschopp, J.3
-
23
-
-
58049202273
-
Inflammasomes: guardians of cytosolic sanctity
-
Lamkanfi, M. and Dixit, V. M. 2009. Inflammasomes: guardians of cytosolic sanctity. Immunol. Rev. 227:95.
-
(2009)
Immunol. Rev.
, vol.227
, pp. 95
-
-
Lamkanfi, M.1
Dixit, V.M.2
-
24
-
-
31744441475
-
Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin
-
Boyden, E. D. and Dietrich, W. F. 2006. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat. Genet. 38:240.
-
(2006)
Nat. Genet.
, vol.38
, pp. 240
-
-
Boyden, E.D.1
Dietrich, W.F.2
-
25
-
-
69949105157
-
The NLRP3 inflammasome: a sensor of immune danger signals
-
Cassel, S. L., Joly, S. and Sutterwala, F. S. 2009. The NLRP3 inflammasome: a sensor of immune danger signals. Semin. Immunol. 21:194.
-
(2009)
Semin. Immunol.
, vol.21
, pp. 194
-
-
Cassel, S.L.1
Joly, S.2
Sutterwala, F.S.3
-
26
-
-
33744493091
-
Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf
-
Miao, E. A., Alpuche-Aranda, C. M., Dors, M. et al. 2006. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat. Immunol. 7:569.
-
(2006)
Nat. Immunol.
, vol.7
, pp. 569
-
-
Miao, E.A.1
Alpuche-Aranda, C.M.2
Dors, M.3
-
27
-
-
33744464740
-
Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages
-
Franchi, L., Amer, A., Body-Malapel, M. et al. 2006. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat. Immunol. 7:576.
-
(2006)
Nat. Immunol.
, vol.7
, pp. 576
-
-
Franchi, L.1
Amer, A.2
Body-Malapel, M.3
-
28
-
-
77649241461
-
Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome
-
Miao, E. A., Mao, D. P., Yudkovsky, N. et al. 2010. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc. Natl. Acad. Sci. U.S.A. 107:3076.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 3076
-
-
Miao, E.A.1
Mao, D.P.2
Yudkovsky, N.3
-
29
-
-
78449269290
-
Caspase-1- induced pyroptosis is an innate immune effector mechanism against intracellular bacteria
-
Miao, E. A., Leaf, I. A., Treuting, P. M. et al. 2010. Caspase-1- induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11:1136.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 1136
-
-
Miao, E.A.1
Leaf, I.A.2
Treuting, P.M.3
-
30
-
-
0033532091
-
Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-kappaB
-
Bertin, J., Nir, W. J., Fischer, C. M. et al. 1999. Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-kappaB. J. Biol. Chem. 274:12955.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 12955
-
-
Bertin, J.1
Nir, W.J.2
Fischer, C.M.3
-
31
-
-
0033591330
-
Nod1, an Apaf- 1-like activator of caspase-9 and nuclear factor-kappaB
-
Inohara, N., Koseki, T., del Peso, L. et al. 1999. Nod1, an Apaf- 1-like activator of caspase-9 and nuclear factor-kappaB. J. Biol. Chem. 274:14560.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 14560
-
-
Inohara, N.1
Koseki, T.2
del Peso, L.3
-
32
-
-
0035895992
-
Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB
-
Ogura, Y., Inohara, N., Benito, A., Chen, F. F., Yamaoka, S. and Nunez, G. 2001. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J. Biol. Chem. 276:4812.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 4812
-
-
Ogura, Y.1
Inohara, N.2
Benito, A.3
Chen, F.F.4
Yamaoka, S.5
Nunez, G.6
-
33
-
-
28444471235
-
Synergistic effect of Nod1 and Nod2 agonists with toll-like receptor agonists on human dendritic cells to generate interleukin-12 and T helper type 1 cells
-
Tada, H., Aiba, S., Shibata, K., Ohteki, T. and Takada, H. 2005. Synergistic effect of Nod1 and Nod2 agonists with toll-like receptor agonists on human dendritic cells to generate interleukin-12 and T helper type 1 cells. Infect. Immun. 73:7967.
-
(2005)
Infect. Immun.
, vol.73
, pp. 7967
-
-
Tada, H.1
Aiba, S.2
Shibata, K.3
Ohteki, T.4
Takada, H.5
-
34
-
-
0037380969
-
CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells
-
Hisamatsu, T., Suzuki, M., Reinecker, H. C., Nadeau, W. J., McCormick, B. A. and Podolsky, D. K. 2003. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124:993.
-
(2003)
Gastroenterology
, vol.124
, pp. 993
-
-
Hisamatsu, T.1
Suzuki, M.2
Reinecker, H.C.3
Nadeau, W.J.4
McCormick, B.A.5
Podolsky, D.K.6
-
35
-
-
34247239745
-
Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines
-
Uehara, A., Fujimoto, Y., Fukase, K. and Takada, H. 2007. Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol. Immunol. 44:3100.
-
(2007)
Mol. Immunol.
, vol.44
, pp. 3100
-
-
Uehara, A.1
Fujimoto, Y.2
Fukase, K.3
Takada, H.4
-
36
-
-
20244387428
-
Chemically synthesized pathogen-associated molecular patterns increase the expression of peptidoglycan recognition proteins via toll-like receptors, NOD1 and NOD2 in human oral epithelial cells
-
Uehara, A., Sugawara, Y., Kurata, S. et al. 2005. Chemically synthesized pathogen-associated molecular patterns increase the expression of peptidoglycan recognition proteins via toll-like receptors, NOD1 and NOD2 in human oral epithelial cells. Cell. Microbiol. 7:675.
-
(2005)
Cell. Microbiol.
, vol.7
, pp. 675
-
-
Uehara, A.1
Sugawara, Y.2
Kurata, S.3
-
37
-
-
33644849605
-
NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2
-
Voss, E., Wehkamp, J., Wehkamp, K., Stange, E. F., Schröder, J. M. and Harder, J. 2006. NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J. Biol. Chem. 281:2005.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 2005
-
-
Voss, E.1
Wehkamp, J.2
Wehkamp, K.3
Stange, E.F.4
Schröder, J.M.5
Harder, J.6
-
38
-
-
0036828844
-
Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-kappa B activation
-
Gutierrez, O., Pipaon, C., Inohara, N. et al. 2002. Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-kappa B activation. J. Biol. Chem. 277:41701.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 41701
-
-
Gutierrez, O.1
Pipaon, C.2
Inohara, N.3
-
39
-
-
82255194176
-
Intrinsic expression of Nod2 in CD4+ T lymphocytes is not necessary for the development of cell-mediated immunity and host resistance to Toxoplasma gondii
-
Caetano, B. C., Biswas, A., Lima, D. S., Jr et al. 2011. Intrinsic expression of Nod2 in CD4+ T lymphocytes is not necessary for the development of cell-mediated immunity and host resistance to Toxoplasma gondii. Eur. J. Immunol. 41:3627.
-
(2011)
Eur. J. Immunol.
, vol.41
, pp. 3627
-
-
Caetano, B.C.1
Biswas, A.2
Lima Jr., D.S.3
-
40
-
-
0012722659
-
Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection
-
Girardin, S. E., Boneca, I. G., Viala, J. et al. 2003. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278:8869.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 8869
-
-
Girardin, S.E.1
Boneca, I.G.2
Viala, J.3
-
41
-
-
0037458665
-
Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease
-
Inohara, N., Ogura, Y., Fontalba, A. et al. 2003. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J. Biol. Chem. 278:5509.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 5509
-
-
Inohara, N.1
Ogura, Y.2
Fontalba, A.3
-
42
-
-
0034623225
-
An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways
-
Inohara, N., Koseki, T., Lin, J. et al. 2000. An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. J. Biol. Chem. 275:27823.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 27823
-
-
Inohara, N.1
Koseki, T.2
Lin, J.3
-
43
-
-
11144289688
-
The Crohn's disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO
-
Abbott, D. W., Wilkins, A., Asara, J. M. and Cantley, L. C. 2004. The Crohn's disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr. Biol. 14:2217.
-
(2004)
Curr. Biol.
, vol.14
, pp. 2217
-
-
Abbott, D.W.1
Wilkins, A.2
Asara, J.M.3
Cantley, L.C.4
-
44
-
-
13244292161
-
Nod2- dependent regulation of innate and adaptive immunity in the intestinal tract
-
Kobayashi, K. S., Chamaillard, M., Ogura, Y. et al. 2005. Nod2- dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307:731.
-
(2005)
Science
, vol.307
, pp. 731
-
-
Kobayashi, K.S.1
Chamaillard, M.2
Ogura, Y.3
-
45
-
-
70349468054
-
Nod2 is required for the regulation of commensal microbiota in the intestine
-
Petnicki-Ocwieja, T., Hrncir, T., Liu, Y. J. et al. 2009. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc. Natl. Acad. Sci. U.S.A. 106:15813.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 15813
-
-
Petnicki-Ocwieja, T.1
Hrncir, T.2
Liu, Y.J.3
-
46
-
-
80052580369
-
Nod2 is essential for temporal development of intestinal microbial communities
-
Rehman, A., Sina, C., Gavrilova, O. et al. 2011. Nod2 is essential for temporal development of intestinal microbial communities. Gut 60:1354.
-
(2011)
Gut
, vol.60
, pp. 1354
-
-
Rehman, A.1
Sina, C.2
Gavrilova, O.3
-
47
-
-
84857798453
-
Altered gut microbiota composition in immune-impaired Nod2(-/-) mice
-
Mondot, S., Barreau, F., Al Nabhani, Z. et al. 2012. Altered gut microbiota composition in immune-impaired Nod2(-/-) mice. Gut 61:634.
-
(2012)
Gut
, vol.61
, pp. 634
-
-
Mondot, S.1
Barreau, F.2
Al Nabhani, Z.3
-
48
-
-
10744222688
-
Expression of NOD2 in Paneth cells: a possible link to Crohn's ileitis
-
Ogura, Y., Lala, S., Xin, W. et al. 2003. Expression of NOD2 in Paneth cells: a possible link to Crohn's ileitis. Gut 52:1591.
-
(2003)
Gut
, vol.52
, pp. 1591
-
-
Ogura, Y.1
Lala, S.2
Xin, W.3
-
49
-
-
0038109983
-
Crohn's disease and the NOD2 gene: a role for Paneth cells
-
Lala, S., Ogura, Y., Osborne, C. et al. 2003. Crohn's disease and the NOD2 gene: a role for Paneth cells. Gastroenterology 125:47.
-
(2003)
Gastroenterology
, vol.125
, pp. 47
-
-
Lala, S.1
Ogura, Y.2
Osborne, C.3
-
50
-
-
0037043658
-
Inflammatory bowel disease
-
Podolsky, D. K. 2002. Inflammatory bowel disease. N. Engl. J. Med. 347:417.
-
(2002)
N. Engl. J. Med.
, vol.347
, pp. 417
-
-
Podolsky, D.K.1
-
51
-
-
0035978651
-
Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease
-
Hugot, J. P., Chamaillard, M., Zouali, H. et al. 2001. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411:599.
-
(2001)
Nature
, vol.411
, pp. 599
-
-
Hugot, J.P.1
Chamaillard, M.2
Zouali, H.3
-
52
-
-
0035978533
-
A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease
-
Ogura, Y., Bonen, D. K., Inohara, N. et al. 2001. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411:603.
-
(2001)
Nature
, vol.411
, pp. 603
-
-
Ogura, Y.1
Bonen, D.K.2
Inohara, N.3
-
53
-
-
0036201577
-
CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease
-
Lesage, S., Zouali, H., Cézard, J. P. et al. 2002. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am. J. Hum. Genet. 70:845.
-
(2002)
Am. J. Hum. Genet.
, vol.70
, pp. 845
-
-
Lesage, S.1
Zouali, H.2
Cézard, J.P.3
-
54
-
-
44349124113
-
The genetics and immunopathogenesis of inflammatory bowel disease
-
Cho, J. H. 2008. The genetics and immunopathogenesis of inflammatory bowel disease. Nat. Rev. Immunol. 8:458.
-
(2008)
Nat. Rev. Immunol.
, vol.8
, pp. 458
-
-
Cho, J.H.1
-
55
-
-
84857365925
-
Nod2: a key regulator linking microbiota to intestinal mucosal immunity
-
Biswas, A., Petnicki-Ocwieja, T. and Kobayashi, K. S. 2012. Nod2: a key regulator linking microbiota to intestinal mucosal immunity. J. Mol. Med. 90:15.
-
(2012)
J. Mol. Med.
, vol.90
, pp. 15
-
-
Biswas, A.1
Petnicki-Ocwieja, T.2
Kobayashi, K.S.3
-
56
-
-
29144483937
-
Reduced Paneth cell alpha-defensins in ileal Crohn's disease
-
Wehkamp, J., Salzman, N. H., Porter, E. et al. 2005. Reduced Paneth cell alpha-defensins in ileal Crohn's disease. Proc. Natl. Acad. Sci. U.S.A. 102:18129.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 18129
-
-
Wehkamp, J.1
Salzman, N.H.2
Porter, E.3
-
57
-
-
46349102893
-
Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn's disease
-
Simms, L. A., Doecke, J. D., Walsh, M. D., Huang, N., Fowler, E. V. and Radford-Smith, G. L. 2008. Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn's disease. Gut 57:903.
-
(2008)
Gut
, vol.57
, pp. 903
-
-
Simms, L.A.1
Doecke, J.D.2
Walsh, M.D.3
Huang, N.4
Fowler, E.V.5
Radford-Smith, G.L.6
-
58
-
-
76349098016
-
Defective Paneth cell-mediated host defense in pediatric ileal Crohn's disease
-
Perminow, G., Beisner, J., Koslowski, M. et al. 2010. Defective Paneth cell-mediated host defense in pediatric ileal Crohn's disease. Am. J. Gastroenterol. 105:452.
-
(2010)
Am. J. Gastroenterol.
, vol.105
, pp. 452
-
-
Perminow, G.1
Beisner, J.2
Koslowski, M.3
-
59
-
-
77957047689
-
Induction and rescue of Nod2-dependent Th1-driven granulomatous inflammation of the ileum
-
Biswas, A., Liu, Y. J., Hao, L. et al. 2010. Induction and rescue of Nod2-dependent Th1-driven granulomatous inflammation of the ileum. Proc. Natl. Acad. Sci. U.S.A. 107:14739.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 14739
-
-
Biswas, A.1
Liu, Y.J.2
Hao, L.3
-
60
-
-
56249135538
-
A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells
-
Cadwell, K., Liu, J. Y., Brown, S. L. et al. 2008. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456:259.
-
(2008)
Nature
, vol.456
, pp. 259
-
-
Cadwell, K.1
Liu, J.Y.2
Brown, S.L.3
-
61
-
-
50249086073
-
XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease
-
Kaser, A., Lee, A. H., Franke, A. et al. 2008. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134:743.
-
(2008)
Cell
, vol.134
, pp. 743
-
-
Kaser, A.1
Lee, A.H.2
Franke, A.3
-
62
-
-
73849151394
-
NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation
-
Cooney, R., Baker, J., Brain, O. et al. 2010. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 16:90.
-
(2010)
Nat. Med.
, vol.16
, pp. 90
-
-
Cooney, R.1
Baker, J.2
Brain, O.3
-
63
-
-
77957682295
-
ATG16L1 and NOD2 interact in an autophagydependent antibacterial pathway implicated in Crohn's disease pathogenesis
-
Homer, C. R., Richmond, A. L., Rebert, N. A., Achkar, J. P. and McDonald, C. 2010. ATG16L1 and NOD2 interact in an autophagydependent antibacterial pathway implicated in Crohn's disease pathogenesis. Gastroenterology 139:1630.
-
(2010)
Gastroenterology
, vol.139
, pp. 1630
-
-
Homer, C.R.1
Richmond, A.L.2
Rebert, N.A.3
Achkar, J.P.4
McDonald, C.5
-
64
-
-
73849121209
-
Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
-
Travassos, L. H., Carneiro, L. A., Ramjeet, M. et al. 2010. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11:55.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 55
-
-
Travassos, L.H.1
Carneiro, L.A.2
Ramjeet, M.3
-
65
-
-
80051550866
-
Crohn's disease- associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2
-
Plantinga, T. S., Crisan, T. O., Oosting, M. et al. 2011. Crohn's disease- associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2. Gut 60:1229.
-
(2011)
Gut
, vol.60
, pp. 1229
-
-
Plantinga, T.S.1
Crisan, T.O.2
Oosting, M.3
-
66
-
-
84887212530
-
Genetic variants of Wnt transcription factor TCF-4 (TCF7L2) putative promoter region are associated with small intestinal Crohn's disease
-
Koslowski, M. J., Kübler, I., Chamaillard, M. et al. 2009. Genetic variants of Wnt transcription factor TCF-4 (TCF7L2) putative promoter region are associated with small intestinal Crohn's disease. PLoS ONE 4:e4496.
-
(2009)
PLoS ONE
, vol.4
-
-
Koslowski, M.J.1
Kübler, I.2
Chamaillard, M.3
-
67
-
-
79959540809
-
A functional role for Nlrp6 in intestinal inflammation and tumorigenesis
-
Chen, G. Y., Liu, M., Wang, F., Bertin, J. and Núñez, G. 2011. A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J. Immunol. 186:7187.
-
(2011)
J. Immunol.
, vol.186
, pp. 7187
-
-
Chen, G.Y.1
Liu, M.2
Wang, F.3
Bertin, J.4
Núñez, G.5
-
68
-
-
79957576718
-
NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis
-
Elinav, E., Strowig, T., Kau, A. L. et al. 2011. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745.
-
(2011)
Cell
, vol.145
, pp. 745
-
-
Elinav, E.1
Strowig, T.2
Kau, A.L.3
-
69
-
-
79959369355
-
Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury
-
Normand, S., Delanoye-Crespin, A., Bressenot, A. et al. 2011. Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc. Natl. Acad. Sci. U.S.A. 108:9601.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 9601
-
-
Normand, S.1
Delanoye-Crespin, A.2
Bressenot, A.3
-
70
-
-
79251558406
-
Developmental control of the Nlrp6 inflammasome and a substrate, IL-18, in mammalian intestine
-
Kempster, S. L., Belteki, G., Forhead, A. J. et al. 2011. Developmental control of the Nlrp6 inflammasome and a substrate, IL-18, in mammalian intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 300:G253.
-
(2011)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.300
-
-
Kempster, S.L.1
Belteki, G.2
Forhead, A.J.3
-
71
-
-
84856957894
-
Inflammasomemediated dysbiosis regulates progression of NAFLD and obesity
-
Henao-Mejia, J., Elinav, E., Jin, C. et al. 2012. Inflammasomemediated dysbiosis regulates progression of NAFLD and obesity. Nature 482:179.
-
(2012)
Nature
, vol.482
, pp. 179
-
-
Henao-Mejia, J.1
Elinav, E.2
Jin, C.3
-
72
-
-
56749146467
-
Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis
-
Bouskra, D., Brézillon, C., Bérard, M. et al. 2008. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456:507.
-
(2008)
Nature
, vol.456
, pp. 507
-
-
Bouskra, D.1
Brézillon, C.2
Bérard, M.3
-
73
-
-
60349087999
-
Gut immunity: a NOD to the commensals
-
Chen, G. Y. and Núñez, G. 2009. Gut immunity: a NOD to the commensals. Curr. Biol. 19:R171.
-
(2009)
Curr. Biol.
, vol.19
-
-
Chen, G.Y.1
Núñez, G.2
|