메뉴 건너뛰기




Volumn 5, Issue 8, 2013, Pages

DNA replication timing

Author keywords

[No Author keywords available]

Indexed keywords

CHROMATIN;

EID: 84874691174     PISSN: None     EISSN: 19430264     Source Type: Journal    
DOI: 10.1101/cshperspect.a010132     Document Type: Article
Times cited : (232)

References (164)
  • 1
    • 84857216671 scopus 로고    scopus 로고
    • The mutational profile of the yeast genome is shaped by replication
    • Agier N, Fischer G. 2012. The mutational profile of the yeast genome is shaped by replication. Mol Biol Evol 29: 905-913.
    • (2012) Mol Biol Evol , vol.29 , pp. 905-913
    • Agier, N.1    Fischer, G.2
  • 4
    • 0042743766 scopus 로고    scopus 로고
    • Dynamics of DNA replication in mammalian somatic cells: Nucleotide pool modulates origin choice and interorigin spacing
    • Anglana M, Apiou F, Bensimon A, Debatisse M. 2003. Dynamics of DNA replication in mammalian somatic cells: Nucleotide pool modulates origin choice and interorigin spacing. Cell 114: 385-394.
    • (2003) Cell , vol.114 , pp. 385-394
    • Anglana, M.1    Apiou, F.2    Bensimon, A.3    Debatisse, M.4
  • 5
    • 2442660397 scopus 로고    scopus 로고
    • The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomy-ces cerevisiae
    • Aparicio JG, Viggiani CJ, Gibson DG, Aparicio OM. 2004. The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomy-ces cerevisiae. Mol Cell Biol 24: 4769-4780.
    • (2004) Mol Cell Biol , vol.24 , pp. 4769-4780
    • Aparicio, J.G.1    Viggiani, C.J.2    Gibson, D.G.3    Aparicio, O.M.4
  • 8
    • 0034008103 scopus 로고    scopus 로고
    • Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci
    • Berezney R, Dubey DD, Huberman JA. 2000. Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma 108: 471-484.
    • (2000) Chromosoma , vol.108 , pp. 471-484
    • Berezney, R.1    Dubey, D.D.2    Huberman, J.A.3
  • 9
    • 33847791924 scopus 로고    scopus 로고
    • CTCF regulates asynchronous replication of the imprinted H19/Igf2 domain
    • Bergstrom R, Whitehead J, Kurukuti S, Ohlsson R. 2007. CTCF regulates asynchronous replication of the imprinted H19/Igf2 domain. Cell Cycle 6: 450-454.
    • (2007) Cell Cycle , vol.6 , pp. 450-454
    • Bergstrom, R.1    Whitehead, J.2    Kurukuti, S.3    Ohlsson, R.4
  • 11
    • 79961170861 scopus 로고    scopus 로고
    • How dormant origins promote complete genome replication
    • Blow JJ, Ge XQ, Jackson DA. 2011. How dormant origins promote complete genome replication. Trends Biochem Sci 36: 405-414.
    • (2011) Trends Biochem Sci , vol.36 , pp. 405-414
    • Blow, J.J.1    Ge, X.Q.2    Jackson, D.A.3
  • 18
    • 65549134856 scopus 로고    scopus 로고
    • The evolution of isochore patterns in vertebrate genomes
    • Costantini M, Cammarano R, Bernardi G. 2009. The evolution of isochore patterns in vertebrate genomes. BMC Genomics 10: 146.
    • (2009) BMC Genomics , vol.10 , pp. 146
    • Costantini, M.1    Cammarano, R.2    Bernardi, G.3
  • 20
    • 52949092763 scopus 로고    scopus 로고
    • Replication fork movement sets chromatin loop size and origin choice in mammalian cells
    • Courbet S, Gay S, Arnoult N, Wronka G, Anglana M, Brison O, Debatisse M. 2008. Replication fork movement sets chromatin loop size and origin choice in mammalian cells. Nature 455: 557-560.
    • (2008) Nature , vol.455 , pp. 557-560
    • Courbet, S.1    Gay, S.2    Arnoult, N.3    Wronka, G.4    Anglana, M.5    Brison, O.6    Debatisse, M.7
  • 21
    • 78549290265 scopus 로고    scopus 로고
    • Analysis ofreplication profiles reveals key role of RFC-Ctf18 in yeast replication stress response
    • Crabbe L, Thomas A, Pantesco V, De Vos J, Pasero P, LengronneA.2010. Analysis ofreplication profiles reveals key role of RFC-Ctf18 in yeast replication stress response. Nat Struct Mol Biol 17: 1391-1397.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 1391-1397
    • Crabbe, L.1    Thomas, A.2    Pantesco, V.3    de Vos, J.4    Pasero, P.5
  • 22
    • 77950346675 scopus 로고    scopus 로고
    • Analysis of replication factories in human cells by super-resolution light microscopy
    • Cseresnyes Z, Schwarz U, Green CM. 2009. Analysis of replication factories in human cells by super-resolution light microscopy. BMC Cell Biol 10: 88.
    • (2009) BMC Cell Biol , vol.10 , pp. 88
    • Cseresnyes, Z.1    Schwarz, U.2    Green, C.M.3
  • 23
    • 36348988518 scopus 로고    scopus 로고
    • DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI
    • Czajkowsky DM, Liu J, Hamlin JL, Shao Z. 2008. DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI. J Mol Biol 375: 12-19.
    • (2008) J Mol Biol , vol.375 , pp. 12-19
    • Czajkowsky, D.M.1    Liu, J.2    Hamlin, J.L.3    Shao, Z.4
  • 28
    • 3042738308 scopus 로고    scopus 로고
    • Self-regulating model for control of replication origin firing in budding yeast
    • Diaz-Martinez L, Clarke DJ. 2003. Self-regulating model for control of replication origin firing in budding yeast. Cell Cycle 2: 576-578.
    • (2003) Cell Cycle , vol.2 , pp. 576-578
    • Diaz-Martinez, L.1    Clarke, D.J.2
  • 29
    • 0033369515 scopus 로고    scopus 로고
    • The spatial position and replication timing of chromosomal domains are both established in early G1 phase
    • Dimitrova DS, Gilbert DM. 1999. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell 4: 983-993.
    • (1999) Mol Cell , vol.4 , pp. 983-993
    • Dimitrova, D.S.1    Gilbert, D.M.2
  • 31
    • 70350511281 scopus 로고    scopus 로고
    • Temporal order of DNA replication
    • ed. DePamphilis ML, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
    • Donaldson AD, Schildkraut CL. 2006. Temporal order of DNA replication. In DNA replication and human disease (ed. DePamphilis ML), pp. 197-216. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    • (2006) DNA Replication and Human Disease , pp. 197-216
    • Donaldson, A.D.1    Schildkraut, C.L.2
  • 36
    • 39049096818 scopus 로고    scopus 로고
    • Global profilingof DNA replication timing and efficiency reveals that efficient replication/firing occurs late during S-phase in S. pombe
    • Eshaghi M, Karuturi RK, Li J, Chu Z, Liu ET, Liu J. 2007. Global profilingof DNA replication timing and efficiency reveals that efficient replication/firing occurs late during S-phase in S. pombe. PLoS ONE 2: e722.
    • (2007) PLoS ONE , vol.722 , pp. 2
    • Eshaghi, M.1    Karuturi, R.K.2    Li, J.3    Chu, Z.4    Liu, E.T.5    Liu, J.6
  • 37
    • 77649231571 scopus 로고    scopus 로고
    • Genome-wide analysis of the replication program in mammals
    • Farkash-Amar S, Simon I. 2010. Genome-wide analysis of the replication program in mammals. Chromosome Res 18: 115-125.
    • (2010) Chromosome Res , vol.18 , pp. 115-125
    • Farkash-Amar, S.1    Simon, I.2
  • 40
    • 0026571672 scopus 로고
    • A position effect on the time of replication origin activation in yeast
    • Ferguson BM, Fangman WL. 1992. A position effect on the time of replication origin activation in yeast. Cell 68: 333-339.
    • (1992) Cell , vol.68 , pp. 333-339
    • Ferguson, B.M.1    Fangman, W.L.2
  • 41
    • 0029781449 scopus 로고    scopus 로고
    • Multiple determinants controlling activation of yeast replication origins late in S phase
    • Friedman KL, FergusonBM NylandSV Brewer BJ Fangman WL. 1996. Multiple determinants controlling activation of yeast replication origins late in S phase. Genes Dev 10: 1595-1607.
    • (1996) Genes Dev , vol.10 , pp. 1595-1607
    • Friedman, K.L.1
  • 42
    • 0031265756 scopus 로고    scopus 로고
    • Replication profile of Saccharomyces cerevisiae chromosome VI
    • Friedman KL, Brewer BJ, Fangman WL. 1997. Replication profile of Saccharomyces cerevisiae chromosome VI. Genes Cells 2: 667-678.
    • (1997) Genes Cells , vol.2 , pp. 667-678
    • Friedman, K.L.1    Brewer, B.J.2    Fangman, W.L.3
  • 43
    • 70349912086 scopus 로고    scopus 로고
    • Temporal differences in DNA replication during the S phase using single fiber analysis of normal human fibroblasts and glioblastoma T98G cells
    • Frum RA, Khondker ZS, Kaufman DG. 2009. Temporal differences in DNA replication during the S phase using single fiber analysis of normal human fibroblasts and glioblastoma T98G cells. Cell Cycle 8: 3133-3148.
    • (2009) Cell Cycle , vol.8 , pp. 3133-3148
    • Frum, R.A.1    Khondker, Z.S.2    Kaufman, D.G.3
  • 44
    • 65549146426 scopus 로고    scopus 로고
    • Control of DNA replication by anomalous reaction-diffusion kinetics
    • Gauthier MG, Bechhoefer J. 2009. Control of DNA replication by anomalous reaction-diffusion kinetics. Phys Rev Lett 102: 104-158.
    • (2009) Phys Rev Lett , vol.102 , pp. 104-158
    • Gauthier, M.G.1    Bechhoefer, J.2
  • 45
    • 84857846907 scopus 로고    scopus 로고
    • Modeling inhomogeneous DNA replication kinetics
    • Gauthier MG, Norio P, Bechhoefer J. 2012. Modeling inhomogeneous DNA replication kinetics. PLoS ONE 7: e32053.
    • (2012) PLoS ONE , vol.7 , pp. 320-353
    • Gauthier, M.G.1    Norio, P.2    Bechhoefer, J.3
  • 46
    • 0036591890 scopus 로고    scopus 로고
    • Replication timing and transcriptional control: Beyond cause and effect
    • Gilbert DM. 2002. Replication timing and transcriptional control: Beyond cause and effect. Curr Opin Cell Biol 14: 377-383.
    • (2002) Curr Opin Cell Biol , vol.14 , pp. 377-383
    • Gilbert, D.M.1
  • 47
    • 54949102567 scopus 로고    scopus 로고
    • Nuclear structure and DNA replication
    • (ed. DePamphilis ML, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
    • Gilbert DM, Gasser SM. 2006. Nuclear structure and DNA replication. In DNA replication and human disease (ed. DePamphilis ML), pp. 175-196. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    • (2006) DNA Replication and Human Disease , pp. 175-196
    • Gilbert, D.M.1    Gasser, S.M.2
  • 48
    • 4444258534 scopus 로고    scopus 로고
    • Chromatin architecture of the human genome: Gene-rich domains are enriched in open chromatin fibers
    • Gilbert N, Boyle S, Fiegler H, Woodfine K, Carter NP, Bickmore WA. 2004. Chromatin architecture of the human genome: Gene-rich domains are enriched in open chromatin fibers. Cell 118: 555-566.
    • (2004) Cell , vol.118 , pp. 555-566
    • Gilbert, N.1    Boyle, S.2    Fiegler, H.3    Woodfine, K.4    Carter, N.P.5    Bickmore, W.A.6
  • 49
    • 51449101224 scopus 로고    scopus 로고
    • A dynamic stochastic model for DNA replication initiation in early embryos
    • Goldar A, Labit H, Marheineke K, Hyrien O. 2008. A dynamic stochastic model for DNA replication initiation in early embryos. PLoS ONE 3: e2919.
    • (2008) PLoS ONE , vol.3
    • Goldar, A.1    Labit, H.2    Marheineke, K.3    Hyrien, O.4
  • 50
    • 67651241789 scopus 로고    scopus 로고
    • Universal temporal profile of replication origin activation in eu-karyotes
    • Goldar A, Marsolier-Kergoat MC, Hyrien O.2009. Universal temporal profile of replication origin activation in eu-karyotes. PLoS ONE 4: e5899.
    • (2009) PLoS ONE , vol.4
    • Goldar, A.1    Marsolier-Kergoat, M.C.2    Hyrien, O.3
  • 51
    • 44149084708 scopus 로고    scopus 로고
    • DNA replication timing of the human b-globin domain is controlled by histone modification at the origin
    • Goren A, Tabib A, Hecht M, Cedar H. 2008. DNA replication timing of the human b-globin domain is controlled by histone modification at the origin. Genes Dev 22: 1319-1324.
    • (2008) Genes Dev , vol.22 , pp. 1319-1324
    • Goren, A.1    Tabib, A.2    Hecht, M.3    Cedar, H.4
  • 52
    • 0013945962 scopus 로고
    • The regulation of DNA synthesis and mitosis in multinucleate frog eggs
    • Graham CF. 1966. The regulation of DNA synthesis and mitosis in multinucleate frog eggs. J Cell Sci 1: 363-374.
    • (1966) J Cell Sci , vol.1 , pp. 363-374
    • Graham, C.F.1
  • 57
    • 79958075422 scopus 로고    scopus 로고
    • Mrc1 marks early-firing origins and coordinates timing and efficiency of initiation in fission yeast
    • Hayano M, Kanoh Y, Matsumoto S, Masai H. 2011. Mrc1 marks early-firing origins and coordinates timing and efficiency of initiation in fission yeast. Mol Cell Biol 31: 2380-2391.
    • (2011) Mol Cell Biol , vol.31 , pp. 2380-2391
    • Hayano, M.1    Kanoh, Y.2    Matsumoto, S.3    Masai, H.4
  • 60
    • 61849184077 scopus 로고    scopus 로고
    • The heterochromatin protein Swi6/ HP1 activates replication origins at the pericentromeric region and silent mating-type locus
    • Hayashi MT, Takahashi TS, Nakagawa T, Nakayama J, Masukata H. 2009. The heterochromatin protein Swi6/ HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nat Cell Biol 11: 357-362.
    • (2009) Nat Cell Biol , vol.11 , pp. 357-362
    • Hayashi, M.T.1    Takahashi, T.S.2    Nakagawa, T.3    Nakayama, J.4    Masukata, H.5
  • 61
    • 33750438774 scopus 로고    scopus 로고
    • Genome-wide characterization of fission yeast DNA replication origins
    • Heichinger C, Penkett CJ, Bahler J, Nurse P. 2006. Genome-wide characterization of fission yeast DNA replication origins. EMBO J 25: 5171-5179.
    • (2006) EMBO J , vol.25 , pp. 5171-5179
    • Heichinger, C.1    Penkett, C.J.2    Bahler, J.3    Nurse, P.4
  • 62
    • 0034725550 scopus 로고    scopus 로고
    • Replication fork density increases during DNA synthesis in X. laevis egg extracts
    • Herrick J, Stanislawski P, Hyrien O, Bensimon A. 2000. Replication fork density increases during DNA synthesis in X. laevis egg extracts. J Mol Biol 300: 1133-1142.
    • (2000) J Mol Biol , vol.300 , pp. 1133-1142
    • Herrick, J.1    Stanislawski, P.2    Hyrien, O.3    Bensimon, A.4
  • 63
    • 0035931758 scopus 로고    scopus 로고
    • The positioning and dynamics of origins of replication in the budding yeast nucleus
    • Heun P, Laroche T, Raghuraman MK, Gasser SM. 2001. The positioning and dynamics of origins of replication in the budding yeast nucleus. J Cell Biol 152: 385-400.
    • (2001) J Cell Biol , vol.152 , pp. 385-400
    • Heun, P.1    Laroche, T.2    Raghuraman, M.K.3    Gasser, S.M.4
  • 64
    • 33645739139 scopus 로고    scopus 로고
    • The Ctf18 RFC-like complex positions yeast telomeres but does not specify their replication time
    • Hiraga S, Robertson ED, Donaldson AD. 2006. The Ctf18 RFC-like complex positions yeast telomeres but does not specify their replication time. EMBO J 25: 1505-1514.
    • (2006) EMBO J , vol.25 , pp. 1505-1514
    • Hiraga, S.1    Robertson, E.D.2    Donaldson, A.D.3
  • 65
    • 79959752287 scopus 로고    scopus 로고
    • Autosomal lyonization of replication domains during early mammalian development
    • Hiratani I, Gilbert DM. 2010. Autosomal lyonization of replication domains during early mammalian development. Adv Exp Med Biol 695: 41-58.
    • (2010) Adv Exp Med Biol , vol.695 , pp. 41-58
    • Hiratani, I.1    Gilbert, D.M.2
  • 67
    • 65449142884 scopus 로고    scopus 로고
    • Replication timing and transcriptional control: Beyond cause and effect-part II
    • Hiratani I, Takebayashi SI, Lu J, Gilbert DM. 2009. Replication timing and transcriptional control: Beyond cause and effect-part II. Curr Opin Genet Dev 19: 142-149.
    • (2009) Curr Opin Genet Dev , vol.19 , pp. 142-149
    • Hiratani, I.1    Takebayashi, S.I.2    Lu, J.3    Gilbert, D.M.4
  • 70
    • 77649231526 scopus 로고    scopus 로고
    • Mathematical modelling of eu-karyotic DNA replication
    • Hyrien O, Goldar A. 2010. Mathematical modelling of eu-karyotic DNA replication. Chromosome Res 18: 147-161.
    • (2010) Chromosome Res , vol.18 , pp. 147-161
    • Hyrien, O.1    Goldar, A.2
  • 71
    • 0037319618 scopus 로고    scopus 로고
    • Paradoxes of eu-karyotic DNA replication: MCM proteins and the random completion problem
    • Hyrien O, Marheineke K, Goldar A. 2003. Paradoxes of eu-karyotic DNA replication: MCM proteins and the random completion problem. Bioessays 25: 116-125.
    • (2003) Bioessays , vol.25 , pp. 116-125
    • Hyrien, O.1    Marheineke, K.2    Goldar, A.3
  • 73
    • 34250327950 scopus 로고    scopus 로고
    • Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas
    • Karnani N, Taylor C, Malhotra A, Dutta A. 2007. Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas. Genome Res 17: 865-876.
    • (2007) Genome Res , vol.17 , pp. 865-876
    • Karnani, N.1    Taylor, C.2    Malhotra, A.3    Dutta, A.4
  • 75
  • 76
    • 33745239698 scopus 로고    scopus 로고
    • Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories
    • Kitamura E, Blow JJ, Tanaka TU. 2006. Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories. Cell 125: 1297-1308.
    • (2006) Cell , vol.125 , pp. 1297-1308
    • Kitamura, E.1    Blow, J.J.2    Tanaka, T.U.3
  • 77
    • 65449160972 scopus 로고    scopus 로고
    • Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae
    • Knott SR, Viggiani CJ, Tavare S, Aparicio OM. 2009. Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev 23: 1077-1090.
    • (2009) Genes Dev , vol.23 , pp. 1077-1090
    • Knott, S.R.1    Viggiani, C.J.2    Tavare, S.3    Aparicio, O.M.4
  • 79
    • 77953011587 scopus 로고    scopus 로고
    • MRC1-dependent scaling of the budding yeast DNA replication timing program
    • Koren A, Soifer I, Barkai N. 2010. MRC1-dependent scaling of the budding yeast DNA replication timing program. Genome Res 20: 781-790.
    • (2010) Genome Res , vol.20 , pp. 781-790
    • Koren, A.1    Soifer, I.2    Barkai, N.3
  • 80
    • 40949152974 scopus 로고    scopus 로고
    • Cdk1 and Cdk2 activity levels determine the efficiency of replication origin firing in Xenopus
    • Krasinska L, Besnard E, Cot E, Dohet C, Mechali M, Lemaitre JM, Fisher D. 2008. Cdk1 and Cdk2 activity levels determine the efficiency of replication origin firing in Xenopus. EMBO J 27: 758-769.
    • (2008) EMBO J , vol.27 , pp. 758-769
    • Krasinska, L.1    Besnard, E.2    Cot, E.3    Dohet, C.4    Mechali, M.5    Lemaitre, J.M.6    Fisher, D.7
  • 82
    • 77955079173 scopus 로고    scopus 로고
    • Highly mutagenic and severely imbalanced dNTP pools can escape detection by the S-phase checkpoint
    • Kuma D, Viberg J, Nilsson AK, Chabes A. 2010. Highly mutagenic and severely imbalanced dNTP pools can escape detection by the S-phase checkpoint. Nucleic Acids Res 38: 3975-3983.
    • (2010) Nucleic Acids Res , vol.38 , pp. 3975-3983
    • Kuma, D.1    Viberg, J.2    Nilsson, A.K.3    Chabes, A.4
  • 83
    • 58249107984 scopus 로고    scopus 로고
    • Checkpoint-dependent regulation of origin firing and replication fork movement in response to DNA damage in fission yeast
    • Kumar S, Huberman JA. 2009. Checkpoint-dependent regulation of origin firing and replication fork movement in response to DNA damage in fission yeast. Mol Cell Biol 29: 602-611.
    • (2009) Mol Cell Biol , vol.29 , pp. 602-611
    • Kumar, S.1    Huberman, J.A.2
  • 84
    • 77955079173 scopus 로고    scopus 로고
    • Highly mutagenic and severely imbalanced dNTP pools can escape detection by the S-phase checkpoint
    • Kumar D, Viberg J, Nilsson AK, Chabes A. 2010. Highly mutagenic and severely imbalanced dNTP pools can escape detection by the S-phase checkpoint. Nucleic Acids Res 38: 3975-3983.
    • (2010) Nucleic Acids Res , vol.38 , pp. 3975-3983
    • Kumar, D.1    Viberg, J.2    Nilsson, A.K.3    Chabes, A.4
  • 85
    • 55249092105 scopus 로고    scopus 로고
    • DNA replication timing is deterministic at the level of chromosomal domains but stochastic at the level of replicons in Xenopus egg extracts
    • Labit H, Perewoska I, Germe T, Hyrien O, Marheineke K. 2008. DNA replication timing is deterministic at the level of chromosomal domains but stochastic at the level of replicons in Xenopus egg extracts. Nucleic Acids Res 36: 5623-5634.
    • (2008) Nucleic Acids Res , vol.36 , pp. 5623-5634
    • Labit, H.1    Perewoska, I.2    Germe, T.3    Hyrien, O.4    Marheineke, K.5
  • 86
    • 67649126836 scopus 로고    scopus 로고
    • Shifts in replication timing actively affect histone acetylation during nucleo-some reassembly
    • Lande-Diner L, Zhang J, CedarH. 2009. Shifts in replication timing actively affect histone acetylation during nucleo-some reassembly. Mol Cell 34: 767-774.
    • (2009) Mol Cell , vol.34 , pp. 767-774
    • Lande-Diner, L.1    Zhang, J.2
  • 87
    • 80052919408 scopus 로고    scopus 로고
    • Mutation rates across budding yeast chromosome VI are correlated with replication timing
    • Lang GI, Murray AW. 2011. Mutation rates across budding yeast chromosome VI are correlated with replication timing. Genome Biol Evol 3: 799-811.
    • (2011) Genome Biol Evol , vol.3 , pp. 799-811
    • Lang, G.I.1    Murray, A.W.2
  • 88
    • 33845405316 scopus 로고    scopus 로고
    • DNA replication origin interference increases the spacing between initiation events in human cells
    • Lebofsky R, Heilig R, Sonnleitner M, Weissenbach J, Ben-simon A. 2006. DNA replication origin interference increases the spacing between initiation events in human cells. Mol Biol Cell 17: 5337-5345.
    • (2006) Mol Biol Cell , vol.17 , pp. 5337-5345
    • Lebofsky, R.1    Heilig, R.2    Sonnleitner, M.3    Weissenbach, J.4    Ben-Simon, A.5
  • 92
    • 13244277994 scopus 로고    scopus 로고
    • The chromatin remodeling complex NoRC controls replication timing of rRNA genes
    • Li J, Santoro R, Koberna K, Grummt I. 2005. The chromatin remodeling complex NoRC controls replication timing of rRNA genes. EMBO J 24: 120-127.
    • (2005) EMBO J , vol.24 , pp. 120-127
    • Li, J.1    Santoro, R.2    Koberna, K.3    Grummt, I.4
  • 93
    • 77953208022 scopus 로고    scopus 로고
    • A comprehensive genome-wide map of autonomously replicating sequences in a naive genome
    • Liachko I, Bhaskar A, Lee C, Chung SC, Tye BK, Keich U. 2010. A comprehensive genome-wide map of autonomously replicating sequences in a naive genome. PLoS Genet 6: e1000946.
    • (2010) PLoS Genet , vol.6
    • Liachko, I.1    Bhaskar, A.2    Lee, C.3    Chung, S.C.4    Tye, B.K.5    Keich, U.6
  • 98
  • 100
    • 77953969988 scopus 로고    scopus 로고
    • Genome-wide estimation of firing efficiencies of origins of DNA replication from time-course copy number variation data
    • Luo H, Li J, Eshaghi M, Liu J, Karuturi RK. 2010. Genome-wide estimation of firing efficiencies of origins of DNA replication from time-course copy number variation data. BMC Bioinformatics 11: 247.
    • (2010) BMC Bioinformatics , vol.11 , pp. 247
    • Luo, H.1    Li, J.2    Eshaghi, M.3    Liu, J.4    Karuturi, R.K.5
  • 102
    • 10644297436 scopus 로고    scopus 로고
    • Coordination of replication and transcription along a Drosophila chromosome
    • MacAlpine DM, Rodriguez HK, Bell SP. 2004. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev 18: 3094-3105.
    • (2004) Genes Dev , vol.18 , pp. 3094-3105
    • Macalpine, D.M.1    Rodriguez, H.K.2    Bell, S.P.3
  • 103
    • 75649109712 scopus 로고    scopus 로고
    • Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading
    • MacAlpine HK, Gordan R, Powell SK, Hartemink AJ, MacAlpine DM. 2010. Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res 20: 201-211.
    • (2010) Genome Res , vol.20 , pp. 201-211
    • Macalpine, H.K.1    Gordan, R.2    Powell, S.K.3    Hartemink, A.J.4    Macalpine, D.M.5
  • 104
    • 82455164158 scopus 로고    scopus 로고
    • Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast
    • Mantiero D, Mackenzie A, Donaldson A, Zegerman P. 2011. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J 30: 4805-4814.
    • (2011) EMBO J , vol.30 , pp. 4805-4814
    • Mantiero, D.1    Mackenzie, A.2    Donaldson, A.3    Zegerman, P.4
  • 105
    • 84857198915 scopus 로고    scopus 로고
    • DNA replication induces compositional biases in yeast
    • Marsolier-Kergoat MC, Goldar A. 2012. DNA replication induces compositional biases in yeast. Mol Biol Evol 29: 893-904.
    • (2012) Mol Biol Evol , vol.29 , pp. 893-904
    • Marsolier-Kergoat, M.C.1    Goldar, A.2
  • 106
    • 77952343862 scopus 로고    scopus 로고
    • S phase progression in human cells is dictated by the genetic continuity of DNA foci
    • Maya-Mendoza A, Olivares-Chauvet P, Shaw A, Jackson DA. 2010. S phase progression in human cells is dictated by the genetic continuity of DNA foci. PLoS Genet 6: e1000900.
    • (2010) PLoS Genet , vol.6
    • Maya-Mendoza, A.1    Olivares-Chauvet, P.2    Shaw, A.3    Jackson, D.A.4
  • 108
    • 0038505671 scopus 로고    scopus 로고
    • Epigenomic replication: Linking epigenetics to DNA replication
    • McNairn AJ, Gilbert DM. 2003. Epigenomic replication: Linking epigenetics to DNA replication. Bioessays 25: 647-656.
    • (2003) Bioessays , vol.25 , pp. 647-656
    • McNairn, A.J.1    Gilbert, D.M.2
  • 109
    • 33947099546 scopus 로고    scopus 로고
    • Replication foci dynamics: Replication patterns are modulated by S-phase checkpoint kinases in fission yeast
    • Meister P, Taddei A, Ponti A, Baldacci G, Gasser SM. 2007. Replication foci dynamics: Replication patterns are modulated by S-phase checkpoint kinases in fission yeast. EMBO J 26: 1315-1326.
    • (2007) EMBO J , vol.26 , pp. 1315-1326
    • Meister, P.1    Taddei, A.2    Ponti, A.3    Baldacci, G.4    Gasser, S.M.5
  • 110
    • 2442582392 scopus 로고    scopus 로고
    • Visualization of altered replication dynamics after DNA damage in human cells
    • Merrick CJ, Jackson D, Diffley JF. 2004. Visualization of altered replication dynamics after DNA damage in human cells. J Biol Chem 279: 20067-20075.
    • (2004) J Biol Chem , vol.279 , pp. 20067-20075
    • Merrick, C.J.1    Jackson, D.2    Diffley, J.F.3
  • 111
    • 40549124612 scopus 로고    scopus 로고
    • Checkpoint effects and telomere amplification during DNA re-replication in fission yeast
    • Mickle KL, Oliva A, Huberman JA, Leatherwood J. 2007a. Checkpoint effects and telomere amplification during DNA re-replication in fission yeast. BMC Mol Biol 8: 119.
    • (2007) BMC Mol Biol , vol.8 , pp. 119
    • Mickle, K.L.1    Oliva, A.2    Huberman, J.A.3    Leatherwood, J.4
  • 113
    • 84867182048 scopus 로고    scopus 로고
    • Conservation of replication timing reveals global and local regulation of replication origin activity
    • Muller CA, Nieduszynski CA. 2012. Conservation of replication timing reveals global and local regulation of replication origin activity. Genome Res 22: 1953-1962.
    • (2012) Genome Res , vol.22 , pp. 1953-1962
    • Muller, C.A.1    Nieduszynski, C.A.2
  • 114
    • 79953065005 scopus 로고    scopus 로고
    • Genome organization in and around the nucleolus
    • Nemeth A, Langst G. 2011. Genome organization in and around the nucleolus. Trends Genet 27: 149-156.
    • (2011) Trends Genet , vol.27 , pp. 149-156
    • Nemeth, A.1    Langst, G.2
  • 115
    • 27944452746 scopus 로고    scopus 로고
    • Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development
    • Norio P, Kosiyatrakul S, Yang Q, Guan Z, Brown NM, Thomas S, Riblet R, Schildkraut CL. 2005. Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol Cell 20: 575-587.
    • (2005) Mol Cell , vol.20 , pp. 575-587
    • Norio, P.1    Kosiyatrakul, S.2    Yang, Q.3    Guan, Z.4    Brown, N.M.5    Thomas, S.6    Riblet, R.7    Schildkraut, C.L.8
  • 118
    • 77649236302 scopus 로고    scopus 로고
    • Domain-wide regulation of DNA replication timing during mammalian development
    • Pope BD, Hiratani I, Gilbert DM. 2010. Domain-wide regulation of DNA replication timing during mammalian development. Chromosome Res 18: 127-136.
    • (2010) Chromosome Res , vol.18 , pp. 127-136
    • Pope, B.D.1    Hiratani, I.2    Gilbert, D.M.3
  • 119
    • 80855157444 scopus 로고    scopus 로고
    • DNA replication timing is maintained genome-wide in primary human myo-blasts independent ofD4Z4 contraction in FSH muscular dystrophy
    • Pope BD, Tsumagari K, Battaglia D, Ryba T, Hiratani I, Ehrlich M, Gilbert DM. 2011. DNA replication timing is maintained genome-wide in primary human myo-blasts independent ofD4Z4 contraction in FSH muscular dystrophy. PLoS ONE 6: e27413.
    • (2011) PLoS ONE , vol.6
    • Pope, B.D.1    Tsumagari, K.2    Battaglia, D.3    Ryba, T.4    Hiratani, I.5    Ehrlich, M.6    Gilbert, D.M.7
  • 121
    • 77649233017 scopus 로고    scopus 로고
    • Molecular analysis of the replication program in unicellular model organisms
    • Raghuraman MK, Brewer BJ. 2010. Molecular analysis of the replication program in unicellular model organisms. Chromosome Res 18: 19-34.
    • (2010) Chromosome Res , vol.18 , pp. 19-34
    • Raghuraman, M.K.1    Brewer, B.J.2
  • 124
    • 33751520767 scopus 로고    scopus 로고
    • DNA replication timing: Random thoughts about origin firing
    • Rhind N. 2006. DNA replication timing: Random thoughts about origin firing. Nat Cell Biol 8: 1313-1316.
    • (2006) Nat Cell Biol , vol.8 , pp. 1313-1316
    • Rhind, N.1
  • 125
    • 77649233258 scopus 로고    scopus 로고
    • Reconciling stochastic origin firing with defined replication timing
    • Rhind N, Yang SC, Bechhoefer J. 2010. Reconciling stochastic origin firing with defined replication timing. Chromosome Res 18: 35-43.
    • (2010) Chromosome Res , vol.18 , pp. 35-43
    • Rhind, N.1    Yang, S.C.2    Bechhoefer, J.3
  • 126
    • 77952994784 scopus 로고    scopus 로고
    • Evo-lutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types
    • Ryba T, Hiratani I, Lu J, Itoh M, Kulik M, Zhang J, Schulz TC, Robins AJ, Dalton S, Gilbert DM. 2010. Evo-lutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res 20: 761-770.
    • (2010) Genome Res , vol.20 , pp. 761-770
    • Ryba, T.1    Hiratani, I.2    Lu, J.3    Itoh, M.4    Kulik, M.5    Zhang, J.6    Schulz, T.C.7    Robins, A.J.8    Dalton, S.9    Gilbert, D.M.10
  • 127
    • 79958158210 scopus 로고    scopus 로고
    • Genome-scale analysis of replication timing: From bench to bioinformatics
    • Ryba T, Battaglia D, Pope BD, Hiratani I, Gilbert DM. 2011. Genome-scale analysis of replication timing: From bench to bioinformatics. Nat Protoc 6: 870-895.
    • (2011) Nat Protoc , vol.6 , pp. 870-895
    • Ryba, T.1    Battaglia, D.2    Pope, B.D.3    Hiratani, I.4    Gilbert, D.M.5
  • 129
    • 9444269829 scopus 로고    scopus 로고
    • Stable chromosomal units determine the spatial and temporal organization of DNA replication
    • Sadoni N, Cardoso MC, Stelzer EH, Leonhardt H, Zink D. 2004. Stable chromosomal units determine the spatial and temporal organization of DNA replication. J Cell Sci 117: 5353-5365.
    • (2004) J Cell Sci , vol.117 , pp. 5353-5365
    • Sadoni, N.1    Cardoso, M.C.2    Stelzer, E.H.3    Leonhardt, H.4    Zink, D.5
  • 130
    • 0024437947 scopus 로고
    • The extreme mutatoreffect of Escherichia coli mutD5 results from saturation of mismatch repair by excessive DNA replication errors
    • Schaaper RM, Radman M.1989. The extreme mutatoreffect of Escherichia coli mutD5 results from saturation of mismatch repair by excessive DNA replication errors. EMBO J 8: 3511-3516.
    • (1989) EMBO J , vol.8 , pp. 3511-3516
    • Schaaper, R.M.1    Radman, M.2
  • 132
    • 77956672597 scopus 로고    scopus 로고
    • Single-molecule analysis reveals changes in the DNA replication program for the POU5F1 locus upon human embryonic stem cell differentiation
    • Schultz SS, Desbordes SC, Du Z, Kosiyatrakul S, Lipchina I, Studer L, Schildkraut CL. 2010. Single-molecule analysis reveals changes in the DNA replication program for the POU5F1 locus upon human embryonic stem cell differentiation. Mol Cell Biol 30: 4521-4534.
    • (2010) Mol Cell Biol , vol.30 , pp. 4521-4534
    • Schultz, S.S.1    Desbordes, S.C.2    Du, Z.3    Kosiyatrakul, S.4    Lipchina, I.5    Studer, L.6    Schildkraut, C.L.7
  • 133
    • 61849177618 scopus 로고    scopus 로고
    • Chromatin state marks cell-type-and gender-specific replication of the Drosophila genome
    • Schwaiger M, Stadler MB, Bell O, Kohler H, Oakeley EJ, Schubeler D. 2009. Chromatin state marks cell-type-and gender-specific replication of the Drosophila genome. Genes Dev 23: 589-601.
    • (2009) Genes Dev , vol.23 , pp. 589-601
    • Schwaiger, M.1    Stadler, M.B.2    Bell, O.3    Kohler, H.4    Oakeley, E.J.5    Schubeler, D.6
  • 134
    • 77953004689 scopus 로고    scopus 로고
    • Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome
    • Schwaiger M, Kohler H, Oakeley EJ, Stadler MB, Schu-beler D. 2010. Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome. Genome Res 20: 771-780.
    • (2010) Genome Res , vol.20 , pp. 771-780
    • Schwaiger, M.1    Kohler, H.2    Oakeley, E.J.3    Stadler, M.B.4    Schu-Beler, D.5
  • 137
    • 3543064379 scopus 로고    scopus 로고
    • Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-phase checkpoint
    • Silverman J, Takai H, Buonomo SB, Eisenhaber F, de Lange T. 2004. Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-phase checkpoint. Genes Dev 18: 2108-2119.
    • (2004) Genes Dev , vol.18 , pp. 2108-2119
    • Silverman, J.1    Takai, H.2    Buonomo, S.B.3    Eisenhaber, F.4    de Lange, T.5
  • 138
    • 0036929125 scopus 로고    scopus 로고
    • DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters
    • Sporbert A, Gahl A, Ankerhold R, Leonhardt H, Cardoso MC. 2002. DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters. Mol Cell 10: 1355-1365.
    • (2002) Mol Cell , vol.10 , pp. 1355-1365
    • Sporbert, A.1    Gahl, A.2    Ankerhold, R.3    Leonhardt, H.4    Cardoso, M.C.5
  • 140
    • 84860201732 scopus 로고    scopus 로고
    • The inner nuclear membrane proteins Man1 and Ima1 link to two different types of chromatin at the nuclear periphery in S. pombe
    • Steglich B, Filion G, van Steensel B, Ekwall K. 2012. The inner nuclear membrane proteins Man1 and Ima1 link to two different types of chromatin at the nuclear periphery in S. pombe. Nucleus 3: 77-87.
    • (2012) Nucleus , vol.3 , pp. 77-87
    • Steglich, B.1    Filion, G.2    van Steensel, B.3    Ekwall, K.4
  • 141
    • 0033556028 scopus 로고    scopus 로고
    • Telomeric chromatin modulates replication timing near chromosome ends
    • Stevenson JB, Gottschling DE. 1999. Telomeric chromatin modulates replication timing near chromosome ends. Genes Dev 13: 146-151.
    • (1999) Genes Dev , vol.13 , pp. 146-151
    • Stevenson, J.B.1    Gottschling, D.E.2
  • 142
    • 13544249776 scopus 로고    scopus 로고
    • Regulation of replication at the R/G chromosomal band boundary and pericen-tromeric heterochromatin of mammalian cells
    • Takebayashi S, Sugimura K, Saito T, Sato C, Fukushima Y, Taguchi H, Okumura K. 2005. Regulation of replication at the R/G chromosomal band boundary and pericen-tromeric heterochromatin of mammalian cells. Exp Cell Res 304: 162-174.
    • (2005) Exp Cell Res , vol.304 , pp. 162-174
    • Takebayashi, S.1    Sugimura, K.2    Saito, T.3    Sato, C.4    Fukushima, Y.5    Taguchi, H.6    Okumura, K.7
  • 143
    • 84864527294 scopus 로고    scopus 로고
    • Chromatin-interaction compartment switch at de-velopmentally regulated chromosomal domains reveals an unusual principle of chromatin folding
    • Takebayashi S, Dileep V, Ryba T, Dennis JH, Gilbert DM. 2012. Chromatin-interaction compartment switch at de-velopmentally regulated chromosomal domains reveals an unusual principle of chromatin folding. Proc Natl Acad Sci 109: 12574-12579.
    • (2012) Proc Natl Acad Sci , vol.109 , pp. 12574-12579
    • Takebayashi, S.1    Dileep, V.2    Ryba, T.3    Dennis, J.H.4    Gilbert, D.M.5
  • 144
    • 84155171119 scopus 로고    scopus 로고
    • Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing
    • Tanaka S, Nakato R, Katou Y, Shirahige K, Araki H. 2011. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr Biol 21: 2055-2063.
    • (2011) Curr Biol , vol.21 , pp. 2055-2063
    • Tanaka, S.1    Nakato, R.2    Katou, Y.3    Shirahige, K.4    Araki, H.5
  • 146
    • 76149140088 scopus 로고    scopus 로고
    • Replication factory activation can be decoupled from the replication timing program by modulating Cdk levels
    • Thomson AM, Gillespie PJ, Blow JJ. 2010. Replication factory activation can be decoupled from the replication timing program by modulating Cdk levels. J Cell Biol 188: 209-221.
    • (2010) J Cell Biol , vol.188 , pp. 209-221
    • Thomson, A.M.1    Gillespie, P.J.2    Blow, J.J.3
  • 148
    • 0036863542 scopus 로고    scopus 로고
    • Histone acetylation regulates the timeof replication origin firing
    • Vogelauer M, Rubbi L, Lucas I, Brewer BJ, Grunstein M. 2002. Histone acetylation regulates the timeof replication origin firing. Mol Cell 10: 1223-1233.
    • (2002) Mol Cell , vol.10 , pp. 1223-1233
    • Vogelauer, M.1    Rubbi, L.2    Lucas, I.3    Brewer, B.J.4    Grunstein, M.5
  • 151
    • 61349201535 scopus 로고    scopus 로고
    • Establishing the program of origin firing during S phase in fission yeast
    • Wu PY, Nurse P. 2009. Establishing the program of origin firing during S phase in fission yeast. Cell 136: 852-864.
    • (2009) Cell , vol.136 , pp. 852-864
    • Wu, P.Y.1    Nurse, P.2
  • 152
    • 19644381697 scopus 로고    scopus 로고
    • Differential subnuclear localization and replication timing of histone H3 lysine 9 methylation states
    • Wu R, Terry AV, Singh PB, Gilbert DM. 2005. Differential subnuclear localization and replication timing of histone H3 lysine 9 methylation states. Mol Biol Cell 16: 2872- 2881.
    • (2005) Mol Biol Cell , vol.16 , pp. 2872-2881
    • Wu, R.1    Terry, A.V.2    Singh, P.B.3    Gilbert, D.M.4
  • 153
    • 33746082480 scopus 로고    scopus 로고
    • Uncoupling global and fine-tuning replication timing determinants for mouse pericentric heterochromatin
    • Wu R, Singh PB, Gilbert DM. 2006. Uncoupling global and fine-tuning replication timing determinants for mouse pericentric heterochromatin. J Cell Biol 174: 185-194.
    • (2006) J Cell Biol , vol.174 , pp. 185-194
    • Wu, R.1    Singh, P.B.2    Gilbert, D.M.3
  • 155
    • 0036668464 scopus 로고    scopus 로고
    • Mapping of early firing origins on a replication profile of budding yeast
    • Yabuki N, Terashima H, Kitada K. 2002. Mapping of early firing origins on a replication profile of budding yeast. Genes Cells 7: 781-789.
    • (2002) Genes Cells , vol.7 , pp. 781-789
    • Yabuki, N.1    Terashima, H.2    Kitada, K.3
  • 156
    • 77957369058 scopus 로고    scopus 로고
    • Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture
    • Yaffe E, Farkash-Amar S, Polten A, Yakhini Z, Tanay A, Simon I. 2010. Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet 6: e1001011.
    • (2010) PLoS Genet , vol.6
    • Yaffe, E.1    Farkash-Amar, S.2    Polten, A.3    Yakhini, Z.4    Tanay, A.5    Simon, I.6
  • 157
    • 84866427034 scopus 로고    scopus 로고
    • Rif1 regulates the replication timing domains on the human genome
    • Yamazaki S, Ishii A, Kanoh Y, Oda M, Nishito Y, Masai H. 2012. Rif1 regulates the replication timing domains on the human genome. EMBO J 31: 3667-3677.
    • (2012) EMBO J , vol.31 , pp. 3667-3677
    • Yamazaki, S.1    Ishii, A.2    Kanoh, Y.3    Oda, M.4    Nishito, Y.5    Masai, H.6
  • 158
    • 55849108473 scopus 로고    scopus 로고
    • How Xenopus laevis embryos replicate reliably: Investigating the random-completion problem
    • Yang SC, Bechhoefer J. 2008. How Xenopus laevis embryos replicate reliably: Investigating the random-completion problem. Phys Rev E Stat Nonlin Soft Matter Phys 78: 041-917.
    • (2008) Phys Rev E Stat Nonlin Soft Matter Phys , vol.78 , pp. 041-917
    • Yang, S.C.1    Bechhoefer, J.2
  • 159
    • 77956253770 scopus 로고    scopus 로고
    • Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing
    • Yang SC, Rhind N, Bechhoefer J. 2010. Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing. Mol Syst Biol 6: 404.
    • (2010) Mol Syst Biol , vol.6 , pp. 404
    • Yang, S.C.1    Rhind, N.2    Bechhoefer, J.3
  • 162
    • 0037019025 scopus 로고    scopus 로고
    • Control of replication timing by a transcriptional silencer
    • Zappulla DC, Sternglanz R,Leatherwood J, Control of replication timing by a transcriptional silencer. Curr Biol 12: 869-875.
    • Curr Biol , vol.12 , pp. 869-875
    • Zappulla, D.C.1    Sternglanz, R.2
  • 163
    • 77957149919 scopus 로고    scopus 로고
    • Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation
    • Zegerman P, Diffley JF. 2010. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature 467: 474-478.
    • (2010) Nature , vol.467 , pp. 474-478
    • Zegerman, P.1    Diffley, J.F.2
  • 164
    • 0037078986 scopus 로고    scopus 로고
    • Establishment of transcriptional competence in early and late S phase
    • Zhang J, Xu F, Hashimshony T, Keshet I, Cedar H. 2002. Establishment of transcriptional competence in early and late S phase. Nature 420: 198-202.
    • (2002) Nature , vol.420 , pp. 198-202
    • Zhang, J.1    Xu, F.2    Hashimshony, T.3    Keshet, I.4    Cedar, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.