-
1
-
-
45449096267
-
Tuning in to the signals: noncoding sequence conservation in vertebrate genomes.
-
Elgar G, Vavouri T. Tuning in to the signals: noncoding sequence conservation in vertebrate genomes. Trends Genet 2008, 24:344-352.
-
(2008)
Trends Genet
, vol.24
, pp. 344-352
-
-
Elgar, G.1
Vavouri, T.2
-
2
-
-
0001877802
-
The RNA world.
-
eds. Splicing of pre- cursors to mRNA by the spliceosome. New York: Cold Spring Harbor Laboratory Press
-
Moore MJ, Query CC, Sharp PA. The RNA world. In: Gestland RF, Atkins JF, eds. Splicing of pre- cursors to mRNA by the spliceosome. The RNA World. New York: Cold Spring Harbor Laboratory Press; 1993, 303-357.
-
(1993)
The RNA World.
, pp. 303-357
-
-
Moore, M.J.1
Query, C.C.2
Sharp, P.A.3
Gestland, R.F.4
Atkins, J.F.5
-
4
-
-
0344198459
-
The spliceosome: the most complex macromolecular machine in the cell?
-
Nilsen TW. The spliceosome: the most complex macromolecular machine in the cell? Bioessays 2003, 25:1147-1149.
-
(2003)
Bioessays
, vol.25
, pp. 1147-1149
-
-
Nilsen, T.W.1
-
5
-
-
77952029221
-
Deciphering the splicing code.
-
Barash Y, Calarco JA, Gao W, Pan Q, Wang X, Shai O, Blencowe BJ, Frey BJ. Deciphering the splicing code. Nature 2010, 465:53-59.
-
(2010)
Nature
, vol.465
, pp. 53-59
-
-
Barash, Y.1
Calarco, J.A.2
Gao, W.3
Pan, Q.4
Wang, X.5
Shai, O.6
Blencowe, B.J.7
Frey, B.J.8
-
8
-
-
0035147544
-
A new twist on RNA helicases: DExH/D box proteins as RNPases.
-
Schwer B. A new twist on RNA helicases: DExH/D box proteins as RNPases. Nat Struct Biol 2001, 8:113-116.
-
(2001)
Nat Struct Biol
, vol.8
, pp. 113-116
-
-
Schwer, B.1
-
9
-
-
15544379277
-
Are splicing mutations the most frequent cause of hereditary disease?
-
López-Bigas N, Audit B, Ouzounis C, Parra G, Guigó R. Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett 2005, 579:1900-1903.
-
(2005)
FEBS Lett
, vol.579
, pp. 1900-1903
-
-
López-Bigas, N.1
Audit, B.2
Ouzounis, C.3
Parra, G.4
Guigó, R.5
-
11
-
-
0024744567
-
A compensatory base change in human U2 snRNA can suppress a branch site mutation.
-
Zhuang Y, Weiner AM. A compensatory base change in human U2 snRNA can suppress a branch site mutation. Genes Dev 1989, 3:1545-1552.
-
(1989)
Genes Dev
, vol.3
, pp. 1545-1552
-
-
Zhuang, Y.1
Weiner, A.M.2
-
12
-
-
0024291370
-
An early hierarchic role of U1 small nuclear ribonucleoprotein in spliceosome assembly.
-
Ruby SW, Abelson J. An early hierarchic role of U1 small nuclear ribonucleoprotein in spliceosome assembly. Science 1988, 242:1028-1035.
-
(1988)
Science
, vol.242
, pp. 1028-1035
-
-
Ruby, S.W.1
Abelson, J.2
-
13
-
-
0024325159
-
Identification of functional U1 snRNA-pre-mRNA complexes committed to spliceosome assembly and splicing.
-
Seraphin B, Rosbash M. Identification of functional U1 snRNA-pre-mRNA complexes committed to spliceosome assembly and splicing. Cell 1989, 59:349-358.
-
(1989)
Cell
, vol.59
, pp. 349-358
-
-
Seraphin, B.1
Rosbash, M.2
-
14
-
-
21244469725
-
Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5′ss base pairing in yeast.
-
Lacadie SA, Rosbash M. Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5′ss base pairing in yeast. Mol Cell 2005, 19:65-75.
-
(2005)
Mol Cell
, vol.19
, pp. 65-75
-
-
Lacadie, S.A.1
Rosbash, M.2
-
15
-
-
59649083526
-
Recognition of atypical 5′ splice sites by shifted base-pairing to U1 snRNA.
-
Roca X, Krainer AR. Recognition of atypical 5′ splice sites by shifted base-pairing to U1 snRNA. Nat Struct Mol Biol 2009, 16:176-182.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 176-182
-
-
Roca, X.1
Krainer, A.R.2
-
16
-
-
84861159694
-
Widespread recognition of 5′ splice sites by noncanonical base-pairing to U1 snRNA involving bulged nucleotides.
-
Roca X, Akerman M, Gaus H, Berdeja A, Bennett CF, Krainer AR. Widespread recognition of 5′ splice sites by noncanonical base-pairing to U1 snRNA involving bulged nucleotides. Genes Dev 2012, 26:1098-1109.
-
(2012)
Genes Dev
, vol.26
, pp. 1098-1109
-
-
Roca, X.1
Akerman, M.2
Gaus, H.3
Berdeja, A.4
Bennett, C.F.5
Krainer, A.R.6
-
17
-
-
0022720942
-
Yeast pre-messenger RNA splicing efficiency depends on critical spacing requirements between the branch point and 3′ splice site.
-
Cellini A, Felder E, Rossi JJ. Yeast pre-messenger RNA splicing efficiency depends on critical spacing requirements between the branch point and 3′ splice site. EMBO J. 1986, 5:1023-1030.
-
(1986)
EMBO J.
, vol.5
, pp. 1023-1030
-
-
Cellini, A.1
Felder, E.2
Rossi, J.J.3
-
18
-
-
1842330298
-
The role of branchpoint-3′ splice site spacing and interaction between intron terminal nucleotides in 3′ splice site selection in Saccharomyces cerevisiae.
-
Luukkonen BG, Seraphin B. The role of branchpoint-3′ splice site spacing and interaction between intron terminal nucleotides in 3′ splice site selection in Saccharomyces cerevisiae. EMBO J 1997, 16:779-792.
-
(1997)
EMBO J
, vol.16
, pp. 779-792
-
-
Luukkonen, B.G.1
Seraphin, B.2
-
19
-
-
0026030643
-
A U-rich tract enhances usage of an alternative 3′ splice site in yeast.
-
Patterson B, Guthrie C. A U-rich tract enhances usage of an alternative 3′ splice site in yeast. Cell 1991, 64:181-187.
-
(1991)
Cell
, vol.64
, pp. 181-187
-
-
Patterson, B.1
Guthrie, C.2
-
20
-
-
0035674482
-
Genetic interactions between the 5′ and 3′ splice site consensus sequences and U6 snRNA during the second catalytic step of pre-mRNA splicing.
-
Collins CA, Guthrie C. Genetic interactions between the 5′ and 3′ splice site consensus sequences and U6 snRNA during the second catalytic step of pre-mRNA splicing. RNA 2001, 7:1845-1854.
-
(2001)
RNA
, vol.7
, pp. 1845-1854
-
-
Collins, C.A.1
Guthrie, C.2
-
21
-
-
69049102132
-
Modulation of alternative splicing by long-range RNA structures in Drosophila.
-
Raker VA, Mironov AA, Gelfand MS, Pervouchine DD. Modulation of alternative splicing by long-range RNA structures in Drosophila. Nucleic Acids Res 2009, 37:4533-4544.
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 4533-4544
-
-
Raker, V.A.1
Mironov, A.A.2
Gelfand, M.S.3
Pervouchine, D.D.4
-
22
-
-
73149094070
-
Exon sequences at the splice junctions affect splicing fidelity and alternative splicing.
-
Crotti LB, Horowitz DS. Exon sequences at the splice junctions affect splicing fidelity and alternative splicing. Proc Natl Acad Sci U S A 2009, 106:18954-18959.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 18954-18959
-
-
Crotti, L.B.1
Horowitz, D.S.2
-
23
-
-
80053008165
-
Deciphering 3′ss selection in the yeast genome reveals an RNA thermosensor that mediates alternative splicing.
-
Meyer M, Plass M, Perez-Valle J, Eyras E, Vilardell J. Deciphering 3′ss selection in the yeast genome reveals an RNA thermosensor that mediates alternative splicing. Mol Cell 2011, 43:1033-1039.
-
(2011)
Mol Cell
, vol.43
, pp. 1033-1039
-
-
Meyer, M.1
Plass, M.2
Perez-Valle, J.3
Eyras, E.4
Vilardell, J.5
-
24
-
-
83755172783
-
Secondary structure is required for 3′ splice site recognition in yeast.
-
Gahura O, Hammann C, Valentova A, Puta F, Folk P. Secondary structure is required for 3′ splice site recognition in yeast. Nucleic Acids Res 2011, 39: 9759-9767.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 9759-9767
-
-
Gahura, O.1
Hammann, C.2
Valentova, A.3
Puta, F.4
Folk, P.5
-
25
-
-
58249093940
-
The SR protein family of splicing factors: master regulators of gene expression.
-
Long JC, Caceres JF. The SR protein family of splicing factors: master regulators of gene expression. Biochem J 2009, 417:15-27.
-
(2009)
Biochem J
, vol.417
, pp. 15-27
-
-
Long, J.C.1
Caceres, J.F.2
-
26
-
-
77956687928
-
Functional diversity of the hnRNPs: past, present and perspectives.
-
Han SP, Tang YH, Smith R. Functional diversity of the hnRNPs: past, present and perspectives. Biochem J 2010, 430:379-392.
-
(2010)
Biochem J
, vol.430
, pp. 379-392
-
-
Han, S.P.1
Tang, Y.H.2
Smith, R.3
-
27
-
-
42449129287
-
Searching for splicing motifs.
-
Chasin LA. Searching for splicing motifs. Adv Exp Med Biol 2007, 623:85-106.
-
(2007)
Adv Exp Med Biol
, vol.623
, pp. 85-106
-
-
Chasin, L.A.1
-
28
-
-
0028895417
-
Exon recognition in vertebrate splicing.
-
Berget SM. Exon recognition in vertebrate splicing. J Biol Chem 1995, 270:2411-2414.
-
(1995)
J Biol Chem
, vol.270
, pp. 2411-2414
-
-
Berget, S.M.1
-
29
-
-
77951120000
-
Alternative splicing and evolution: diversification, exon definition and function.
-
Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 2010, 11:345-355.
-
(2010)
Nat Rev Genet
, vol.11
, pp. 345-355
-
-
Keren, H.1
Lev-Maor, G.2
Ast, G.3
-
30
-
-
38449089093
-
Alternative splicing of U12-type introns.
-
Chang WC, Chen HH, Tarn WY. Alternative splicing of U12-type introns. Front Biosci 2008, 13:1681-1690.
-
(2008)
Front Biosci
, vol.13
, pp. 1681-1690
-
-
Chang, W.C.1
Chen, H.H.2
Tarn, W.Y.3
-
31
-
-
26844431946
-
Splicing of a rare class of introns by the U12-dependent spliceosome.
-
Will CL, Luhrmann R. Splicing of a rare class of introns by the U12-dependent spliceosome. Biol Chem 2005, 386:713-724.
-
(2005)
Biol Chem
, vol.386
, pp. 713-724
-
-
Will, C.L.1
Luhrmann, R.2
-
32
-
-
84861389921
-
The mechanism of the second step of pre-mRNA splicing.
-
Horowitz DS. The mechanism of the second step of pre-mRNA splicing. Wiley Interdiscip Rev RNA 2012, 3:331-350.
-
(2012)
Wiley Interdiscip Rev RNA
, vol.3
, pp. 331-350
-
-
Horowitz, D.S.1
-
33
-
-
32444443532
-
Repositioning of the reaction intermediate within the catalytic center of the spliceosome.
-
Konarska MM, Vilardell J, Query CC. Repositioning of the reaction intermediate within the catalytic center of the spliceosome. Mol Cell 2006, 21:543-553.
-
(2006)
Mol Cell
, vol.21
, pp. 543-553
-
-
Konarska, M.M.1
Vilardell, J.2
Query, C.C.3
-
34
-
-
84861563099
-
Structure-function analysis and genetic interactions of the yeast branchpoint binding protein Msl5.
-
Chang J, Schwer B, Shuman S. Structure-function analysis and genetic interactions of the yeast branchpoint binding protein Msl5. Nucleic Acids Res 2012, 1-14.
-
(2012)
Nucleic Acids Res
, pp. 1-14
-
-
Chang, J.1
Schwer, B.2
Shuman, S.3
-
35
-
-
0029933504
-
Initial splice-site recognition and pairing during pre-mRNA splicing.
-
Reed R. Initial splice-site recognition and pairing during pre-mRNA splicing. Curr Opin Genet Dev 1996, 6:215-220.
-
(1996)
Curr Opin Genet Dev
, vol.6
, pp. 215-220
-
-
Reed, R.1
-
36
-
-
0022376562
-
Trans splicing of mRNA precursors in vitro.
-
Konarska MM, Padgett RA, Sharp PA. Trans splicing of mRNA precursors in vitro. Cell 1985, 42:165-171.
-
(1985)
Cell
, vol.42
, pp. 165-171
-
-
Konarska, M.M.1
Padgett, R.A.2
Sharp, P.A.3
-
37
-
-
0030953474
-
A minimal spliceosomal complex A recognizes the branch site and polypyrimidine tract.
-
Query CC, McCaw PS, Sharp PA. A minimal spliceosomal complex A recognizes the branch site and polypyrimidine tract. Mol Cell Biol 1997, 17:2944-2953.
-
(1997)
Mol Cell Biol
, vol.17
, pp. 2944-2953
-
-
Query, C.C.1
McCaw, P.S.2
Sharp, P.A.3
-
38
-
-
0028824995
-
Trans-splicing: an update.
-
Nilsen TW. Trans-splicing: an update. Mol Biochem Parasitol 1995, 73:1-6.
-
(1995)
Mol Biochem Parasitol
, vol.73
, pp. 1-6
-
-
Nilsen, T.W.1
-
39
-
-
0033576626
-
Functional recognition of the 3′ splice site AG by the splicing factor U2AF35.
-
Wu S, Romfo CM, Nilsen TW, Green MR. Functional recognition of the 3′ splice site AG by the splicing factor U2AF35. Nature 1999, 402:832-835.
-
(1999)
Nature
, vol.402
, pp. 832-835
-
-
Wu, S.1
Romfo, C.M.2
Nilsen, T.W.3
Green, M.R.4
-
40
-
-
0024808994
-
The organization of 3′ splice-site sequences in mammalian introns.
-
Reed R. The organization of 3′ splice-site sequences in mammalian introns. Genes Dev 1989, 3:2113-2123.
-
(1989)
Genes Dev
, vol.3
, pp. 2113-2123
-
-
Reed, R.1
-
41
-
-
79960646885
-
Multi-domain conformational selection underlies pre-mRNA splicing regulation by U2AF.
-
Mackereth CD, Madl T, Bonnal S, Simon B, Zanier K, Gasch A, Rybin V, Valcarcel J, Sattler M. Multi-domain conformational selection underlies pre-mRNA splicing regulation by U2AF. Nature 2011, 475:408-411.
-
(2011)
Nature
, vol.475
, pp. 408-411
-
-
Mackereth, C.D.1
Madl, T.2
Bonnal, S.3
Simon, B.4
Zanier, K.5
Gasch, A.6
Rybin, V.7
Valcarcel, J.8
Sattler, M.9
-
42
-
-
0023446833
-
Yeast pre-mRNA splicing requires a minimum distance between the 5′ splice site and the internal branch acceptor site.
-
Thompson-Jager S, Domdey H. Yeast pre-mRNA splicing requires a minimum distance between the 5′ splice site and the internal branch acceptor site. Mol Cell Biol 1987, 7:4010-4016.
-
(1987)
Mol Cell Biol
, vol.7
, pp. 4010-4016
-
-
Thompson-Jager, S.1
Domdey, H.2
-
43
-
-
0023834880
-
A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly.
-
Ruskin B, Zamore PD, Green MR. A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly. Cell 1988, 52:207-219.
-
(1988)
Cell
, vol.52
, pp. 207-219
-
-
Ruskin, B.1
Zamore, P.D.2
Green, M.R.3
-
44
-
-
33748581324
-
Comprehensive splice-site analysis using comparative genomics.
-
Sheth N, Roca X, Hastings ML, Roeder T, Krainer AR, Sachidanandam R. Comprehensive splice-site analysis using comparative genomics. Nucleic Acids Res 2006, 34:3955-3967.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 3955-3967
-
-
Sheth, N.1
Roca, X.2
Hastings, M.L.3
Roeder, T.4
Krainer, A.R.5
Sachidanandam, R.6
-
45
-
-
50849088978
-
Evolutionary convergence on highly-conserved 3′ intron structures in intron-poor eukaryotes and insights into the ancestral eukaryotic genome.
-
Irimia M, Roy SW. Evolutionary convergence on highly-conserved 3′ intron structures in intron-poor eukaryotes and insights into the ancestral eukaryotic genome. PLoS Genet 2008, 4:e1000148.
-
(2008)
PLoS Genet
, vol.4
-
-
Irimia, M.1
Roy, S.W.2
-
46
-
-
37848998742
-
Alternative modes of binding by U2AF65 at the polypyrimidine tract.
-
Henscheid KL, Voelker RB, Berglund JA. Alternative modes of binding by U2AF65 at the polypyrimidine tract. Biochemistry 2008, 47:449-459.
-
(2008)
Biochemistry
, vol.47
, pp. 449-459
-
-
Henscheid, K.L.1
Voelker, R.B.2
Berglund, J.A.3
-
47
-
-
0033034668
-
Genome-wide bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae.
-
Spingola M, Grate L, Haussler D, Ares M Jr. Genome-wide bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae. RNA 1999, 5:221-234.
-
(1999)
RNA
, vol.5
, pp. 221-234
-
-
Spingola, M.1
Grate, L.2
Haussler, D.3
Ares Jr., M.4
-
48
-
-
56349150399
-
Co-evolution of the branch site and SR proteins in eukaryotes.
-
Plass M, Agirre E, Reyes D, Camara F, Eyras E. Co-evolution of the branch site and SR proteins in eukaryotes. Trends Genet 2008, 24:590-594.
-
(2008)
Trends Genet
, vol.24
, pp. 590-594
-
-
Plass, M.1
Agirre, E.2
Reyes, D.3
Camara, F.4
Eyras, E.5
-
49
-
-
0034529379
-
Kinetic role for mammalian SF1/BBP in spliceosome assembly and function after polypyrimidine tract recognition by U2AF.
-
Guth S, Valcarcel J. Kinetic role for mammalian SF1/BBP in spliceosome assembly and function after polypyrimidine tract recognition by U2AF. J Biol Chem 2000, 275:38059-38066.
-
(2000)
J Biol Chem
, vol.275
, pp. 38059-38066
-
-
Guth, S.1
Valcarcel, J.2
-
50
-
-
0345593813
-
Transient interaction of BBP/ScSF1 and Mud2 with the splicing machinery affects the kinetics of spliceosome assembly
-
Rutz B, Seraphin B. Transient interaction of BBP/ScSF1 and Mud2 with the splicing machinery affects the kinetics of spliceosome assembly. RNA 1999, 5:819-831.
-
(1999)
RNA
, vol.5
, pp. 819-831
-
-
Rutz, B.1
Seraphin, B.2
-
51
-
-
79953157487
-
Analysis of in situ pre-mRNA targets of human splicing factor SF1 reveals a function in alternative splicing.
-
Corioni M, Antih N, Tanackovic G, Zavolan M, Kramer A. Analysis of in situ pre-mRNA targets of human splicing factor SF1 reveals a function in alternative splicing. Nucleic Acids Res 2011, 39:1868-1879.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 1868-1879
-
-
Corioni, M.1
Antih, N.2
Tanackovic, G.3
Zavolan, M.4
Kramer, A.5
-
52
-
-
0030750730
-
Evidence that U5 snRNP recognizes the 3′ splice site for catalytic step II in mammals.
-
Chiara MD, Palandjian L, Feld KR, Reed R. Evidence that U5 snRNP recognizes the 3′ splice site for catalytic step II in mammals. EMBO J. 1997, 16:4746-4759.
-
(1997)
EMBO J.
, vol.16
, pp. 4746-4759
-
-
Chiara, M.D.1
Palandjian, L.2
Feld, K.R.3
Reed, R.4
-
53
-
-
0027214101
-
Scanning and competition between AGs are involved in 3′ splice site selection in mammalian introns.
-
Smith CW, Chu TT, Nadal-Ginard B. Scanning and competition between AGs are involved in 3′ splice site selection in mammalian introns. Mol Cell Biol 1993, 13:4939-4952.
-
(1993)
Mol Cell Biol
, vol.13
, pp. 4939-4952
-
-
Smith, C.W.1
Chu, T.T.2
Nadal-Ginard, B.3
-
54
-
-
0034755256
-
Dual function for U2AF35 in AG-dependent pre-mRNA splicing.
-
Guth S, Tange TO, Kellenberger E, Valcárcel J. Dual function for U2AF35 in AG-dependent pre-mRNA splicing. Mol Cell Biol 2001, 21:7673-7681.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 7673-7681
-
-
Guth, S.1
Tange, T.O.2
Kellenberger, E.3
Valcárcel, J.4
-
55
-
-
35148880587
-
A conditional role of U2AF in splicing of introns with unconventional polypyrimidine tracts.
-
Sridharan V, Singh R. A conditional role of U2AF in splicing of introns with unconventional polypyrimidine tracts. Mol Cell Biol 2007, 27:7334-7344.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 7334-7344
-
-
Sridharan, V.1
Singh, R.2
-
56
-
-
77950231039
-
Four exons of the serotonin receptor 4 gene are associated with multiple distant branch points.
-
Hallegger M, Sobala A, Smith CW. Four exons of the serotonin receptor 4 gene are associated with multiple distant branch points. RNA 2010, 16:839-851.
-
(2010)
RNA
, vol.16
, pp. 839-851
-
-
Hallegger, M.1
Sobala, A.2
Smith, C.W.3
-
57
-
-
0030696675
-
The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC.
-
Berglund JA, Chua K, Abovich N, Reed R, Rosbash M. The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC. Cell 1997, 89:781-787.
-
(1997)
Cell
, vol.89
, pp. 781-787
-
-
Berglund, J.A.1
Chua, K.2
Abovich, N.3
Reed, R.4
Rosbash, M.5
-
58
-
-
79952198199
-
The branchpoint binding protein: in and out of the spliceosome cycle.
-
Rymond BC. The branchpoint binding protein: in and out of the spliceosome cycle. Adv Exp Med Biol 2010, 693:123-141.
-
(2010)
Adv Exp Med Biol
, vol.693
, pp. 123-141
-
-
Rymond, B.C.1
-
59
-
-
0028273768
-
The yeast MUD2 protein: an interaction with PRP11 defines a bridge between commitment complexes and U2 snRNP addition.
-
Abovich N, Liao XC, Rosbash M. The yeast MUD2 protein: an interaction with PRP11 defines a bridge between commitment complexes and U2 snRNP addition. Genes Dev 1994, 8:843-854.
-
(1994)
Genes Dev
, vol.8
, pp. 843-854
-
-
Abovich, N.1
Liao, X.C.2
Rosbash, M.3
-
60
-
-
65549090941
-
Insights into branch nucleophile positioning and activation from an orthogonal pre-mRNA splicing system in yeast.
-
Smith DJ, Konarska MM, Query CC. Insights into branch nucleophile positioning and activation from an orthogonal pre-mRNA splicing system in yeast. Mol Cell 2009, 34:333-343.
-
(2009)
Mol Cell
, vol.34
, pp. 333-343
-
-
Smith, D.J.1
Konarska, M.M.2
Query, C.C.3
-
61
-
-
84860513145
-
The spliceosome: a flexible, reversible macromolecular machine.
-
Hoskins AA, Moore MJ. The spliceosome: a flexible, reversible macromolecular machine. Trends Biochem Sci 2012, 37:179-188.
-
(2012)
Trends Biochem Sci
, vol.37
, pp. 179-188
-
-
Hoskins, A.A.1
Moore, M.J.2
-
62
-
-
0028960809
-
A novel role for a U5 snRNP protein in 3′ splice site selection.
-
Umen JG, Guthrie C. A novel role for a U5 snRNP protein in 3′ splice site selection. Genes Dev 1995, 9:855-868.
-
(1995)
Genes Dev
, vol.9
, pp. 855-868
-
-
Umen, J.G.1
Guthrie, C.2
-
63
-
-
0037013146
-
Splicing regulation at the second catalytic step by Sex-lethal involves 3′ splice site recognition by SPF45.
-
Lallena MJ, Chalmers KJ, Llamazares S, Lamond AI, Valcarcel J. Splicing regulation at the second catalytic step by Sex-lethal involves 3′ splice site recognition by SPF45. Cell 2002, 109:285-296.
-
(2002)
Cell
, vol.109
, pp. 285-296
-
-
Lallena, M.J.1
Chalmers, K.J.2
Llamazares, S.3
Lamond, A.I.4
Valcarcel, J.5
-
64
-
-
0028878235
-
Effects of secondary structure on pre-mRNA splicing: hairpins sequestering the 5′ but not the 3′ splice site inhibit intron processing in Nicotiana plumbaginifolia.
-
Liu HX, Goodall GJ, Kole R, Filipowicz W. Effects of secondary structure on pre-mRNA splicing: hairpins sequestering the 5′ but not the 3′ splice site inhibit intron processing in Nicotiana plumbaginifolia. EMBO J 1995, 14:377-388.
-
(1995)
EMBO J
, vol.14
, pp. 377-388
-
-
Liu, H.X.1
Goodall, G.J.2
Kole, R.3
Filipowicz, W.4
-
65
-
-
0038701605
-
The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons.
-
Lev-Maor G, Sorek R, Shomron N, Ast G. The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons. Science 2003, 300:1288-1291.
-
(2003)
Science
, vol.300
, pp. 1288-1291
-
-
Lev-Maor, G.1
Sorek, R.2
Shomron, N.3
Ast, G.4
-
66
-
-
36749080450
-
Competition between the ATPase Prp5 and branch region-U2 snRNA pairing modulates the fidelity of spliceosome assembly.
-
Xu YZ, Query CC. Competition between the ATPase Prp5 and branch region-U2 snRNA pairing modulates the fidelity of spliceosome assembly. Mol Cell 2007, 28:838-849.
-
(2007)
Mol Cell
, vol.28
, pp. 838-849
-
-
Xu, Y.Z.1
Query, C.C.2
-
67
-
-
33745608726
-
Intron removal requires proofreading of U2AF/3′ splice site recognition by DEK.
-
Soares LM, Zanier K, Mackereth C, Sattler M, Valcarcel J. Intron removal requires proofreading of U2AF/3′ splice site recognition by DEK. Science 2006, 312:1961-1965.
-
(2006)
Science
, vol.312
, pp. 1961-1965
-
-
Soares, L.M.1
Zanier, K.2
Mackereth, C.3
Sattler, M.4
Valcarcel, J.5
-
68
-
-
0033178886
-
Intron-exon structures of eukaryotic model organisms.
-
Michael D, Manyuan L. Intron-exon structures of eukaryotic model organisms. Nucleic Acids Res 1999, 27:3219-3228.
-
(1999)
Nucleic Acids Res
, vol.27
, pp. 3219-3228
-
-
Michael, D.1
Manyuan, L.2
-
69
-
-
0028287567
-
Extremely short 20-33 nucleotide introns are the standard length in Paramecium tetraurelia.
-
Russell CB, Fraga D, Hinrichsen RD. Extremely short 20-33 nucleotide introns are the standard length in Paramecium tetraurelia. Nucleic Acids Res 1994, 22:1221-1225.
-
(1994)
Nucleic Acids Res
, vol.22
, pp. 1221-1225
-
-
Russell, C.B.1
Fraga, D.2
Hinrichsen, R.D.3
-
70
-
-
0031842450
-
A role for SRp54 during intron bridging of small introns with pyrimidine tracts upstream of the branch point.
-
Kennedy CF, Krämer A, Berget SM. A role for SRp54 during intron bridging of small introns with pyrimidine tracts upstream of the branch point. Mol Cell Biol 1998, 18:5425-5434.
-
(1998)
Mol Cell Biol
, vol.18
, pp. 5425-5434
-
-
Kennedy, C.F.1
Krämer, A.2
Berget, S.M.3
-
71
-
-
0029959408
-
Intramolecular structure in yeast introns aids the early steps of in vitro spliceosome assembly.
-
Charpentier B, Rosbash M. Intramolecular structure in yeast introns aids the early steps of in vitro spliceosome assembly. RNA 1996, 2:509-522.
-
(1996)
RNA
, vol.2
, pp. 509-522
-
-
Charpentier, B.1
Rosbash, M.2
-
72
-
-
0030773773
-
Intron self-complementarity enforces exon inclusion in a yeast pre-mRNA.
-
Howe KJ, Ares M Jr. Intron self-complementarity enforces exon inclusion in a yeast pre-mRNA. Proc Natl Acad Sci U S A 1997, 94:12467-12472.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 12467-12472
-
-
Howe, K.J.1
Ares Jr., M.2
-
73
-
-
34548706497
-
Does distance matter? Variations in alternative 3′ splicing regulation.
-
Akerman M, Mandel-Gutfreund Y. Does distance matter? Variations in alternative 3′ splicing regulation. Nucleic Acids Res 2007, 35:5487-5498.
-
(2007)
Nucleic Acids Res
, vol.35
, pp. 5487-5498
-
-
Akerman, M.1
Mandel-Gutfreund, Y.2
-
74
-
-
0020531931
-
Evidence for an intron-contained sequence required for the splicing of yeast RNA polymerase II transcripts.
-
Langford CJ, Gallwitz D. Evidence for an intron-contained sequence required for the splicing of yeast RNA polymerase II transcripts. Cell 1983, 33: 519-527.
-
(1983)
Cell
, vol.33
, pp. 519-527
-
-
Langford, C.J.1
Gallwitz, D.2
-
75
-
-
0030694848
-
Crosslinking of the U5 snRNP-specific 116-kDa protein to RNA hairpins that block step 2 of splicing.
-
Liu ZR, Laggerbauer B, Luhrmann R, Smith CW. Crosslinking of the U5 snRNP-specific 116-kDa protein to RNA hairpins that block step 2 of splicing. RNA 1997, 3:1207-1219.
-
(1997)
RNA
, vol.3
, pp. 1207-1219
-
-
Liu, Z.R.1
Laggerbauer, B.2
Luhrmann, R.3
Smith, C.W.4
-
76
-
-
0034681194
-
Evidence for a linear search in bimolecular 3′ splice site AG selection.
-
Chen S, Anderson K, Moore MJ. Evidence for a linear search in bimolecular 3′ splice site AG selection. Proc Natl Acad Sci U S A 2000, 97:593-598.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, pp. 593-598
-
-
Chen, S.1
Anderson, K.2
Moore, M.J.3
-
77
-
-
33745048938
-
A class of human exons with predicted distant branch points revealed by analysis of AG dinucleotide exclusion zones.
-
Gooding C, Clark F, Wollerton MC, Grellscheid SN, Groom H, Smith CW. A class of human exons with predicted distant branch points revealed by analysis of AG dinucleotide exclusion zones. Genome Biol 2006, 7:R1.
-
(2006)
Genome Biol
, vol.7
-
-
Gooding, C.1
Clark, F.2
Wollerton, M.C.3
Grellscheid, S.N.4
Groom, H.5
Smith, C.W.6
-
78
-
-
77649158879
-
Role of RNA structure in regulating pre-mRNA splicing.
-
Warf MB, Berglund JA. Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem Sci 2010, 35:169-178.
-
(2010)
Trends Biochem Sci
, vol.35
, pp. 169-178
-
-
Warf, M.B.1
Berglund, J.A.2
-
79
-
-
79960918747
-
RNA structure and the mechanisms of alternative splicing.
-
McManus CJ, Graveley BR. RNA structure and the mechanisms of alternative splicing. Curr Opin Genet Dev 2011, 21:373-379.
-
(2011)
Curr Opin Genet Dev
, vol.21
, pp. 373-379
-
-
McManus, C.J.1
Graveley, B.R.2
-
80
-
-
0024404487
-
The 216-nucleotide intron of the E1A pre-mRNA contains a hairpin structure that permits utilization of unusually distant branch acceptors.
-
Chebli K, Gattoni R, Schmitt P, Hildwein G, Stevenin J. The 216-nucleotide intron of the E1A pre-mRNA contains a hairpin structure that permits utilization of unusually distant branch acceptors. Mol Cell Biol 1989, 9:4852-4861.
-
(1989)
Mol Cell Biol
, vol.9
, pp. 4852-4861
-
-
Chebli, K.1
Gattoni, R.2
Schmitt, P.3
Hildwein, G.4
Stevenin, J.5
-
81
-
-
0025780938
-
Unexpected point mutations activate cryptic 3′ splice sites by perturbing a natural secondary structure within a yeast intron.
-
Deshler JO, Rossi JJ. Unexpected point mutations activate cryptic 3′ splice sites by perturbing a natural secondary structure within a yeast intron. Genes Dev 1991, 5:1252-1263.
-
(1991)
Genes Dev
, vol.5
, pp. 1252-1263
-
-
Deshler, J.O.1
Rossi, J.J.2
-
83
-
-
0027178666
-
Functional characterization of the alternatively spliced, placental human growth hormone receptor.
-
Urbanek M, Russell JE, Cooke NE, Liebhaber SA. Functional characterization of the alternatively spliced, placental human growth hormone receptor. J Biol Chem 1993, 268:19025-19032.
-
(1993)
J Biol Chem
, vol.268
, pp. 19025-19032
-
-
Urbanek, M.1
Russell, J.E.2
Cooke, N.E.3
Liebhaber, S.A.4
-
84
-
-
85011940612
-
Riboswitch-mediated control of gene expression in eukaryotes.
-
Wachter A. Riboswitch-mediated control of gene expression in eukaryotes. RNA Biol 2010, 7:67-76.
-
(2010)
RNA Biol
, vol.7
, pp. 67-76
-
-
Wachter, A.1
-
85
-
-
80055073166
-
Modelling reveals kinetic advantages of co-transcriptional splicing.
-
Aitken S, Alexander RD, Beggs JD. Modelling reveals kinetic advantages of co-transcriptional splicing. PLoS Comput Biol 2011, 7:e1002215.
-
(2011)
PLoS Comput Biol
, vol.7
-
-
Aitken, S.1
Alexander, R.D.2
Beggs, J.D.3
-
86
-
-
44649196386
-
Functional integration of transcriptional and RNA processing machineries.
-
Pandit S, Wang D, Fu X-D. Functional integration of transcriptional and RNA processing machineries. Curr Opin Cell Biol 2008, 20:260-265.
-
(2008)
Curr Opin Cell Biol
, vol.20
, pp. 260-265
-
-
Pandit, S.1
Wang, D.2
Fu, X.-D.3
-
87
-
-
84855269212
-
Cotranscriptional folding kinetics of ribonucleic acid secondary structures.
-
Zhao P, Zhang W, Chen SJ. Cotranscriptional folding kinetics of ribonucleic acid secondary structures. J Chem Phys 2011, 135:245101.
-
(2011)
J Chem Phys
, vol.135
, pp. 245101
-
-
Zhao, P.1
Zhang, W.2
Chen, S.J.3
-
88
-
-
79952266577
-
Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation.
-
Ip JY, Schmidt D, Pan Q, Ramani AK, Fraser AG, Odom DT, Blencowe BJ. Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation. Genome Res 2011, 21:390-401.
-
(2011)
Genome Res
, vol.21
, pp. 390-401
-
-
Ip, J.Y.1
Schmidt, D.2
Pan, Q.3
Ramani, A.K.4
Fraser, A.G.5
Odom, D.T.6
Blencowe, B.J.7
-
89
-
-
80455176999
-
CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing.
-
Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 2011, 479:74-79.
-
(2011)
Nature
, vol.479
, pp. 74-79
-
-
Shukla, S.1
Kavak, E.2
Gregory, M.3
Imashimizu, M.4
Shutinoski, B.5
Kashlev, M.6
Oberdoerffer, P.7
Sandberg, R.8
Oberdoerffer, S.9
-
90
-
-
77951200179
-
First come, first served revisited: factors affecting the same alternative splicing event have different effects on the relative rates of intron removal.
-
de la Mata M, Lafaille C, Kornblihtt AR. First come, first served revisited: factors affecting the same alternative splicing event have different effects on the relative rates of intron removal. RNA 2010, 16:904-912.
-
(2010)
RNA
, vol.16
, pp. 904-912
-
-
de la Mata, M.1
Lafaille, C.2
Kornblihtt, A.R.3
-
91
-
-
0013394889
-
Mechanisms of alternative pre-messenger RNA splicing.
-
Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 2003, 72:291-336.
-
(2003)
Annu Rev Biochem
, vol.72
, pp. 291-336
-
-
Black, D.L.1
-
92
-
-
23744492690
-
Regulation of Fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition.
-
Izquierdo JM, Majos N, Bonnal S, Martinez C, Castelo R, Guigo R, Bilbao D, Valcarcel J. Regulation of Fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition. Mol Cell 2005, 19:475-484.
-
(2005)
Mol Cell
, vol.19
, pp. 475-484
-
-
Izquierdo, J.M.1
Majos, N.2
Bonnal, S.3
Martinez, C.4
Castelo, R.5
Guigo, R.6
Bilbao, D.7
Valcarcel, J.8
-
93
-
-
53149145051
-
RBM5/Luca-15/H37 regulates Fas alternative splice site pairing after exon definition.
-
Bonnal S, Martínez C, Förch P, Bachi A, Wilm M, Valcárcel J. RBM5/Luca-15/H37 regulates Fas alternative splice site pairing after exon definition. Mol Cell 2008, 32:81-95.
-
(2008)
Mol Cell
, vol.32
, pp. 81-95
-
-
Bonnal, S.1
Martínez, C.2
Förch, P.3
Bachi, A.4
Wilm, M.5
Valcárcel, J.6
-
94
-
-
26244435561
-
Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures.
-
Graveley BR. Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures. Cell 2005, 123:65-73.
-
(2005)
Cell
, vol.123
, pp. 65-73
-
-
Graveley, B.R.1
-
95
-
-
79951535301
-
Proofreading and spellchecking: a two-tier strategy for pre-mRNA splicing quality control.
-
Egecioglu DE, Chanfreau G. Proofreading and spellchecking: a two-tier strategy for pre-mRNA splicing quality control. RNA 2011, 17:383-389.
-
(2011)
RNA
, vol.17
, pp. 383-389
-
-
Egecioglu, D.E.1
Chanfreau, G.2
-
96
-
-
33744937919
-
Exon ligation is proofread by the DExD/H-box ATPase Prp22p.
-
Mayas RM, Maita H, Staley JP. Exon ligation is proofread by the DExD/H-box ATPase Prp22p. Nat Struct Mol Biol 2006, 13:482-490.
-
(2006)
Nat Struct Mol Biol
, vol.13
, pp. 482-490
-
-
Mayas, R.M.1
Maita, H.2
Staley, J.P.3
-
97
-
-
77953408963
-
Spliceosome discards intermediates via the DEAH box ATPase Prp43p.
-
Mayas RM, Maita H, Semlow DR, Staley JP. Spliceosome discards intermediates via the DEAH box ATPase Prp43p. Proc Natl Acad Sci U S A 2010, 107:10020-10025.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 10020-10025
-
-
Mayas, R.M.1
Maita, H.2
Semlow, D.R.3
Staley, J.P.4
-
98
-
-
77950556969
-
Spliceosomes walk the line: splicing errors and their impact on cellular function.
-
Hsu SN, Hertel KJ. Spliceosomes walk the line: splicing errors and their impact on cellular function. RNA Biol 2009, 6:526-530.
-
(2009)
RNA Biol
, vol.6
, pp. 526-530
-
-
Hsu, S.N.1
Hertel, K.J.2
-
99
-
-
84857844645
-
Quality control of MATa1 splicing and exon skipping by nuclear RNA degradation.
-
Egecioglu DE, Kawashima TR, Chanfreau GF. Quality control of MATa1 splicing and exon skipping by nuclear RNA degradation. Nucleic Acids Res 2012, 40:1787-1796.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 1787-1796
-
-
Egecioglu, D.E.1
Kawashima, T.R.2
Chanfreau, G.F.3
-
100
-
-
34548758543
-
Splicing in disease: disruption of the splicing code and the decoding machinery.
-
Wang GS, Cooper TA. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 2007, 8:749-761.
-
(2007)
Nat Rev Genet
, vol.8
, pp. 749-761
-
-
Wang, G.S.1
Cooper, T.A.2
-
101
-
-
79951528344
-
Strict 3′ splice site sequence requirements for U2 snRNP recruitment after U2AF binding underlie a genetic defect leading to autoimmune disease.
-
Corrionero A, Raker VA, Izquierdo JM, Valcarcel J. Strict 3′ splice site sequence requirements for U2 snRNP recruitment after U2AF binding underlie a genetic defect leading to autoimmune disease. RNA 2011, 17:401-411.
-
(2011)
RNA
, vol.17
, pp. 401-411
-
-
Corrionero, A.1
Raker, V.A.2
Izquierdo, J.M.3
Valcarcel, J.4
-
102
-
-
78649684957
-
Genome-wide association between branch point properties and alternative splicing.
-
Corvelo A, Hallegger M, Smith CW, Eyras E. Genome-wide association between branch point properties and alternative splicing. PLoS Comput Biol 2010, 6:e1001016.
-
(2010)
PLoS Comput Biol
, vol.6
-
-
Corvelo, A.1
Hallegger, M.2
Smith, C.W.3
Eyras, E.4
-
103
-
-
0032543684
-
Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17.
-
Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998, 393:702-705.
-
(1998)
Nature
, vol.393
, pp. 702-705
-
-
Hutton, M.1
Lendon, C.L.2
Rizzu, P.3
Baker, M.4
Froelich, S.5
Houlden, H.6
Pickering-Brown, S.7
Chakraverty, S.8
Isaacs, A.9
Grover, A.10
|