메뉴 건너뛰기




Volumn 3, Issue 5, 2012, Pages 707-717

Intronic features that determine the selection of the 3′ splice site

Author keywords

[No Author keywords available]

Indexed keywords

ADENINE; DINUCLEOTIDE; GUANINE;

EID: 84867598877     PISSN: 17577004     EISSN: 17577012     Source Type: Journal    
DOI: 10.1002/wrna.1131     Document Type: Review
Times cited : (8)

References (103)
  • 1
    • 45449096267 scopus 로고    scopus 로고
    • Tuning in to the signals: noncoding sequence conservation in vertebrate genomes.
    • Elgar G, Vavouri T. Tuning in to the signals: noncoding sequence conservation in vertebrate genomes. Trends Genet 2008, 24:344-352.
    • (2008) Trends Genet , vol.24 , pp. 344-352
    • Elgar, G.1    Vavouri, T.2
  • 2
    • 0001877802 scopus 로고
    • The RNA world.
    • eds. Splicing of pre- cursors to mRNA by the spliceosome. New York: Cold Spring Harbor Laboratory Press
    • Moore MJ, Query CC, Sharp PA. The RNA world. In: Gestland RF, Atkins JF, eds. Splicing of pre- cursors to mRNA by the spliceosome. The RNA World. New York: Cold Spring Harbor Laboratory Press; 1993, 303-357.
    • (1993) The RNA World. , pp. 303-357
    • Moore, M.J.1    Query, C.C.2    Sharp, P.A.3    Gestland, R.F.4    Atkins, J.F.5
  • 4
    • 0344198459 scopus 로고    scopus 로고
    • The spliceosome: the most complex macromolecular machine in the cell?
    • Nilsen TW. The spliceosome: the most complex macromolecular machine in the cell? Bioessays 2003, 25:1147-1149.
    • (2003) Bioessays , vol.25 , pp. 1147-1149
    • Nilsen, T.W.1
  • 8
    • 0035147544 scopus 로고    scopus 로고
    • A new twist on RNA helicases: DExH/D box proteins as RNPases.
    • Schwer B. A new twist on RNA helicases: DExH/D box proteins as RNPases. Nat Struct Biol 2001, 8:113-116.
    • (2001) Nat Struct Biol , vol.8 , pp. 113-116
    • Schwer, B.1
  • 9
    • 15544379277 scopus 로고    scopus 로고
    • Are splicing mutations the most frequent cause of hereditary disease?
    • López-Bigas N, Audit B, Ouzounis C, Parra G, Guigó R. Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett 2005, 579:1900-1903.
    • (2005) FEBS Lett , vol.579 , pp. 1900-1903
    • López-Bigas, N.1    Audit, B.2    Ouzounis, C.3    Parra, G.4    Guigó, R.5
  • 11
    • 0024744567 scopus 로고
    • A compensatory base change in human U2 snRNA can suppress a branch site mutation.
    • Zhuang Y, Weiner AM. A compensatory base change in human U2 snRNA can suppress a branch site mutation. Genes Dev 1989, 3:1545-1552.
    • (1989) Genes Dev , vol.3 , pp. 1545-1552
    • Zhuang, Y.1    Weiner, A.M.2
  • 12
    • 0024291370 scopus 로고
    • An early hierarchic role of U1 small nuclear ribonucleoprotein in spliceosome assembly.
    • Ruby SW, Abelson J. An early hierarchic role of U1 small nuclear ribonucleoprotein in spliceosome assembly. Science 1988, 242:1028-1035.
    • (1988) Science , vol.242 , pp. 1028-1035
    • Ruby, S.W.1    Abelson, J.2
  • 13
    • 0024325159 scopus 로고
    • Identification of functional U1 snRNA-pre-mRNA complexes committed to spliceosome assembly and splicing.
    • Seraphin B, Rosbash M. Identification of functional U1 snRNA-pre-mRNA complexes committed to spliceosome assembly and splicing. Cell 1989, 59:349-358.
    • (1989) Cell , vol.59 , pp. 349-358
    • Seraphin, B.1    Rosbash, M.2
  • 14
    • 21244469725 scopus 로고    scopus 로고
    • Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5′ss base pairing in yeast.
    • Lacadie SA, Rosbash M. Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5′ss base pairing in yeast. Mol Cell 2005, 19:65-75.
    • (2005) Mol Cell , vol.19 , pp. 65-75
    • Lacadie, S.A.1    Rosbash, M.2
  • 15
    • 59649083526 scopus 로고    scopus 로고
    • Recognition of atypical 5′ splice sites by shifted base-pairing to U1 snRNA.
    • Roca X, Krainer AR. Recognition of atypical 5′ splice sites by shifted base-pairing to U1 snRNA. Nat Struct Mol Biol 2009, 16:176-182.
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 176-182
    • Roca, X.1    Krainer, A.R.2
  • 16
    • 84861159694 scopus 로고    scopus 로고
    • Widespread recognition of 5′ splice sites by noncanonical base-pairing to U1 snRNA involving bulged nucleotides.
    • Roca X, Akerman M, Gaus H, Berdeja A, Bennett CF, Krainer AR. Widespread recognition of 5′ splice sites by noncanonical base-pairing to U1 snRNA involving bulged nucleotides. Genes Dev 2012, 26:1098-1109.
    • (2012) Genes Dev , vol.26 , pp. 1098-1109
    • Roca, X.1    Akerman, M.2    Gaus, H.3    Berdeja, A.4    Bennett, C.F.5    Krainer, A.R.6
  • 17
    • 0022720942 scopus 로고
    • Yeast pre-messenger RNA splicing efficiency depends on critical spacing requirements between the branch point and 3′ splice site.
    • Cellini A, Felder E, Rossi JJ. Yeast pre-messenger RNA splicing efficiency depends on critical spacing requirements between the branch point and 3′ splice site. EMBO J. 1986, 5:1023-1030.
    • (1986) EMBO J. , vol.5 , pp. 1023-1030
    • Cellini, A.1    Felder, E.2    Rossi, J.J.3
  • 18
    • 1842330298 scopus 로고    scopus 로고
    • The role of branchpoint-3′ splice site spacing and interaction between intron terminal nucleotides in 3′ splice site selection in Saccharomyces cerevisiae.
    • Luukkonen BG, Seraphin B. The role of branchpoint-3′ splice site spacing and interaction between intron terminal nucleotides in 3′ splice site selection in Saccharomyces cerevisiae. EMBO J 1997, 16:779-792.
    • (1997) EMBO J , vol.16 , pp. 779-792
    • Luukkonen, B.G.1    Seraphin, B.2
  • 19
    • 0026030643 scopus 로고
    • A U-rich tract enhances usage of an alternative 3′ splice site in yeast.
    • Patterson B, Guthrie C. A U-rich tract enhances usage of an alternative 3′ splice site in yeast. Cell 1991, 64:181-187.
    • (1991) Cell , vol.64 , pp. 181-187
    • Patterson, B.1    Guthrie, C.2
  • 20
    • 0035674482 scopus 로고    scopus 로고
    • Genetic interactions between the 5′ and 3′ splice site consensus sequences and U6 snRNA during the second catalytic step of pre-mRNA splicing.
    • Collins CA, Guthrie C. Genetic interactions between the 5′ and 3′ splice site consensus sequences and U6 snRNA during the second catalytic step of pre-mRNA splicing. RNA 2001, 7:1845-1854.
    • (2001) RNA , vol.7 , pp. 1845-1854
    • Collins, C.A.1    Guthrie, C.2
  • 21
    • 69049102132 scopus 로고    scopus 로고
    • Modulation of alternative splicing by long-range RNA structures in Drosophila.
    • Raker VA, Mironov AA, Gelfand MS, Pervouchine DD. Modulation of alternative splicing by long-range RNA structures in Drosophila. Nucleic Acids Res 2009, 37:4533-4544.
    • (2009) Nucleic Acids Res , vol.37 , pp. 4533-4544
    • Raker, V.A.1    Mironov, A.A.2    Gelfand, M.S.3    Pervouchine, D.D.4
  • 22
    • 73149094070 scopus 로고    scopus 로고
    • Exon sequences at the splice junctions affect splicing fidelity and alternative splicing.
    • Crotti LB, Horowitz DS. Exon sequences at the splice junctions affect splicing fidelity and alternative splicing. Proc Natl Acad Sci U S A 2009, 106:18954-18959.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 18954-18959
    • Crotti, L.B.1    Horowitz, D.S.2
  • 23
    • 80053008165 scopus 로고    scopus 로고
    • Deciphering 3′ss selection in the yeast genome reveals an RNA thermosensor that mediates alternative splicing.
    • Meyer M, Plass M, Perez-Valle J, Eyras E, Vilardell J. Deciphering 3′ss selection in the yeast genome reveals an RNA thermosensor that mediates alternative splicing. Mol Cell 2011, 43:1033-1039.
    • (2011) Mol Cell , vol.43 , pp. 1033-1039
    • Meyer, M.1    Plass, M.2    Perez-Valle, J.3    Eyras, E.4    Vilardell, J.5
  • 24
    • 83755172783 scopus 로고    scopus 로고
    • Secondary structure is required for 3′ splice site recognition in yeast.
    • Gahura O, Hammann C, Valentova A, Puta F, Folk P. Secondary structure is required for 3′ splice site recognition in yeast. Nucleic Acids Res 2011, 39: 9759-9767.
    • (2011) Nucleic Acids Res , vol.39 , pp. 9759-9767
    • Gahura, O.1    Hammann, C.2    Valentova, A.3    Puta, F.4    Folk, P.5
  • 25
    • 58249093940 scopus 로고    scopus 로고
    • The SR protein family of splicing factors: master regulators of gene expression.
    • Long JC, Caceres JF. The SR protein family of splicing factors: master regulators of gene expression. Biochem J 2009, 417:15-27.
    • (2009) Biochem J , vol.417 , pp. 15-27
    • Long, J.C.1    Caceres, J.F.2
  • 26
    • 77956687928 scopus 로고    scopus 로고
    • Functional diversity of the hnRNPs: past, present and perspectives.
    • Han SP, Tang YH, Smith R. Functional diversity of the hnRNPs: past, present and perspectives. Biochem J 2010, 430:379-392.
    • (2010) Biochem J , vol.430 , pp. 379-392
    • Han, S.P.1    Tang, Y.H.2    Smith, R.3
  • 27
    • 42449129287 scopus 로고    scopus 로고
    • Searching for splicing motifs.
    • Chasin LA. Searching for splicing motifs. Adv Exp Med Biol 2007, 623:85-106.
    • (2007) Adv Exp Med Biol , vol.623 , pp. 85-106
    • Chasin, L.A.1
  • 28
    • 0028895417 scopus 로고
    • Exon recognition in vertebrate splicing.
    • Berget SM. Exon recognition in vertebrate splicing. J Biol Chem 1995, 270:2411-2414.
    • (1995) J Biol Chem , vol.270 , pp. 2411-2414
    • Berget, S.M.1
  • 29
    • 77951120000 scopus 로고    scopus 로고
    • Alternative splicing and evolution: diversification, exon definition and function.
    • Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 2010, 11:345-355.
    • (2010) Nat Rev Genet , vol.11 , pp. 345-355
    • Keren, H.1    Lev-Maor, G.2    Ast, G.3
  • 30
    • 38449089093 scopus 로고    scopus 로고
    • Alternative splicing of U12-type introns.
    • Chang WC, Chen HH, Tarn WY. Alternative splicing of U12-type introns. Front Biosci 2008, 13:1681-1690.
    • (2008) Front Biosci , vol.13 , pp. 1681-1690
    • Chang, W.C.1    Chen, H.H.2    Tarn, W.Y.3
  • 31
    • 26844431946 scopus 로고    scopus 로고
    • Splicing of a rare class of introns by the U12-dependent spliceosome.
    • Will CL, Luhrmann R. Splicing of a rare class of introns by the U12-dependent spliceosome. Biol Chem 2005, 386:713-724.
    • (2005) Biol Chem , vol.386 , pp. 713-724
    • Will, C.L.1    Luhrmann, R.2
  • 32
    • 84861389921 scopus 로고    scopus 로고
    • The mechanism of the second step of pre-mRNA splicing.
    • Horowitz DS. The mechanism of the second step of pre-mRNA splicing. Wiley Interdiscip Rev RNA 2012, 3:331-350.
    • (2012) Wiley Interdiscip Rev RNA , vol.3 , pp. 331-350
    • Horowitz, D.S.1
  • 33
    • 32444443532 scopus 로고    scopus 로고
    • Repositioning of the reaction intermediate within the catalytic center of the spliceosome.
    • Konarska MM, Vilardell J, Query CC. Repositioning of the reaction intermediate within the catalytic center of the spliceosome. Mol Cell 2006, 21:543-553.
    • (2006) Mol Cell , vol.21 , pp. 543-553
    • Konarska, M.M.1    Vilardell, J.2    Query, C.C.3
  • 34
    • 84861563099 scopus 로고    scopus 로고
    • Structure-function analysis and genetic interactions of the yeast branchpoint binding protein Msl5.
    • Chang J, Schwer B, Shuman S. Structure-function analysis and genetic interactions of the yeast branchpoint binding protein Msl5. Nucleic Acids Res 2012, 1-14.
    • (2012) Nucleic Acids Res , pp. 1-14
    • Chang, J.1    Schwer, B.2    Shuman, S.3
  • 35
    • 0029933504 scopus 로고    scopus 로고
    • Initial splice-site recognition and pairing during pre-mRNA splicing.
    • Reed R. Initial splice-site recognition and pairing during pre-mRNA splicing. Curr Opin Genet Dev 1996, 6:215-220.
    • (1996) Curr Opin Genet Dev , vol.6 , pp. 215-220
    • Reed, R.1
  • 36
    • 0022376562 scopus 로고
    • Trans splicing of mRNA precursors in vitro.
    • Konarska MM, Padgett RA, Sharp PA. Trans splicing of mRNA precursors in vitro. Cell 1985, 42:165-171.
    • (1985) Cell , vol.42 , pp. 165-171
    • Konarska, M.M.1    Padgett, R.A.2    Sharp, P.A.3
  • 37
    • 0030953474 scopus 로고    scopus 로고
    • A minimal spliceosomal complex A recognizes the branch site and polypyrimidine tract.
    • Query CC, McCaw PS, Sharp PA. A minimal spliceosomal complex A recognizes the branch site and polypyrimidine tract. Mol Cell Biol 1997, 17:2944-2953.
    • (1997) Mol Cell Biol , vol.17 , pp. 2944-2953
    • Query, C.C.1    McCaw, P.S.2    Sharp, P.A.3
  • 38
    • 0028824995 scopus 로고
    • Trans-splicing: an update.
    • Nilsen TW. Trans-splicing: an update. Mol Biochem Parasitol 1995, 73:1-6.
    • (1995) Mol Biochem Parasitol , vol.73 , pp. 1-6
    • Nilsen, T.W.1
  • 39
    • 0033576626 scopus 로고    scopus 로고
    • Functional recognition of the 3′ splice site AG by the splicing factor U2AF35.
    • Wu S, Romfo CM, Nilsen TW, Green MR. Functional recognition of the 3′ splice site AG by the splicing factor U2AF35. Nature 1999, 402:832-835.
    • (1999) Nature , vol.402 , pp. 832-835
    • Wu, S.1    Romfo, C.M.2    Nilsen, T.W.3    Green, M.R.4
  • 40
    • 0024808994 scopus 로고
    • The organization of 3′ splice-site sequences in mammalian introns.
    • Reed R. The organization of 3′ splice-site sequences in mammalian introns. Genes Dev 1989, 3:2113-2123.
    • (1989) Genes Dev , vol.3 , pp. 2113-2123
    • Reed, R.1
  • 42
    • 0023446833 scopus 로고
    • Yeast pre-mRNA splicing requires a minimum distance between the 5′ splice site and the internal branch acceptor site.
    • Thompson-Jager S, Domdey H. Yeast pre-mRNA splicing requires a minimum distance between the 5′ splice site and the internal branch acceptor site. Mol Cell Biol 1987, 7:4010-4016.
    • (1987) Mol Cell Biol , vol.7 , pp. 4010-4016
    • Thompson-Jager, S.1    Domdey, H.2
  • 43
    • 0023834880 scopus 로고
    • A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly.
    • Ruskin B, Zamore PD, Green MR. A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly. Cell 1988, 52:207-219.
    • (1988) Cell , vol.52 , pp. 207-219
    • Ruskin, B.1    Zamore, P.D.2    Green, M.R.3
  • 45
    • 50849088978 scopus 로고    scopus 로고
    • Evolutionary convergence on highly-conserved 3′ intron structures in intron-poor eukaryotes and insights into the ancestral eukaryotic genome.
    • Irimia M, Roy SW. Evolutionary convergence on highly-conserved 3′ intron structures in intron-poor eukaryotes and insights into the ancestral eukaryotic genome. PLoS Genet 2008, 4:e1000148.
    • (2008) PLoS Genet , vol.4
    • Irimia, M.1    Roy, S.W.2
  • 46
    • 37848998742 scopus 로고    scopus 로고
    • Alternative modes of binding by U2AF65 at the polypyrimidine tract.
    • Henscheid KL, Voelker RB, Berglund JA. Alternative modes of binding by U2AF65 at the polypyrimidine tract. Biochemistry 2008, 47:449-459.
    • (2008) Biochemistry , vol.47 , pp. 449-459
    • Henscheid, K.L.1    Voelker, R.B.2    Berglund, J.A.3
  • 47
    • 0033034668 scopus 로고    scopus 로고
    • Genome-wide bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae.
    • Spingola M, Grate L, Haussler D, Ares M Jr. Genome-wide bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae. RNA 1999, 5:221-234.
    • (1999) RNA , vol.5 , pp. 221-234
    • Spingola, M.1    Grate, L.2    Haussler, D.3    Ares Jr., M.4
  • 48
    • 56349150399 scopus 로고    scopus 로고
    • Co-evolution of the branch site and SR proteins in eukaryotes.
    • Plass M, Agirre E, Reyes D, Camara F, Eyras E. Co-evolution of the branch site and SR proteins in eukaryotes. Trends Genet 2008, 24:590-594.
    • (2008) Trends Genet , vol.24 , pp. 590-594
    • Plass, M.1    Agirre, E.2    Reyes, D.3    Camara, F.4    Eyras, E.5
  • 49
    • 0034529379 scopus 로고    scopus 로고
    • Kinetic role for mammalian SF1/BBP in spliceosome assembly and function after polypyrimidine tract recognition by U2AF.
    • Guth S, Valcarcel J. Kinetic role for mammalian SF1/BBP in spliceosome assembly and function after polypyrimidine tract recognition by U2AF. J Biol Chem 2000, 275:38059-38066.
    • (2000) J Biol Chem , vol.275 , pp. 38059-38066
    • Guth, S.1    Valcarcel, J.2
  • 50
    • 0345593813 scopus 로고    scopus 로고
    • Transient interaction of BBP/ScSF1 and Mud2 with the splicing machinery affects the kinetics of spliceosome assembly
    • Rutz B, Seraphin B. Transient interaction of BBP/ScSF1 and Mud2 with the splicing machinery affects the kinetics of spliceosome assembly. RNA 1999, 5:819-831.
    • (1999) RNA , vol.5 , pp. 819-831
    • Rutz, B.1    Seraphin, B.2
  • 51
    • 79953157487 scopus 로고    scopus 로고
    • Analysis of in situ pre-mRNA targets of human splicing factor SF1 reveals a function in alternative splicing.
    • Corioni M, Antih N, Tanackovic G, Zavolan M, Kramer A. Analysis of in situ pre-mRNA targets of human splicing factor SF1 reveals a function in alternative splicing. Nucleic Acids Res 2011, 39:1868-1879.
    • (2011) Nucleic Acids Res , vol.39 , pp. 1868-1879
    • Corioni, M.1    Antih, N.2    Tanackovic, G.3    Zavolan, M.4    Kramer, A.5
  • 52
    • 0030750730 scopus 로고    scopus 로고
    • Evidence that U5 snRNP recognizes the 3′ splice site for catalytic step II in mammals.
    • Chiara MD, Palandjian L, Feld KR, Reed R. Evidence that U5 snRNP recognizes the 3′ splice site for catalytic step II in mammals. EMBO J. 1997, 16:4746-4759.
    • (1997) EMBO J. , vol.16 , pp. 4746-4759
    • Chiara, M.D.1    Palandjian, L.2    Feld, K.R.3    Reed, R.4
  • 53
    • 0027214101 scopus 로고
    • Scanning and competition between AGs are involved in 3′ splice site selection in mammalian introns.
    • Smith CW, Chu TT, Nadal-Ginard B. Scanning and competition between AGs are involved in 3′ splice site selection in mammalian introns. Mol Cell Biol 1993, 13:4939-4952.
    • (1993) Mol Cell Biol , vol.13 , pp. 4939-4952
    • Smith, C.W.1    Chu, T.T.2    Nadal-Ginard, B.3
  • 54
  • 55
    • 35148880587 scopus 로고    scopus 로고
    • A conditional role of U2AF in splicing of introns with unconventional polypyrimidine tracts.
    • Sridharan V, Singh R. A conditional role of U2AF in splicing of introns with unconventional polypyrimidine tracts. Mol Cell Biol 2007, 27:7334-7344.
    • (2007) Mol Cell Biol , vol.27 , pp. 7334-7344
    • Sridharan, V.1    Singh, R.2
  • 56
    • 77950231039 scopus 로고    scopus 로고
    • Four exons of the serotonin receptor 4 gene are associated with multiple distant branch points.
    • Hallegger M, Sobala A, Smith CW. Four exons of the serotonin receptor 4 gene are associated with multiple distant branch points. RNA 2010, 16:839-851.
    • (2010) RNA , vol.16 , pp. 839-851
    • Hallegger, M.1    Sobala, A.2    Smith, C.W.3
  • 57
    • 0030696675 scopus 로고    scopus 로고
    • The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC.
    • Berglund JA, Chua K, Abovich N, Reed R, Rosbash M. The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC. Cell 1997, 89:781-787.
    • (1997) Cell , vol.89 , pp. 781-787
    • Berglund, J.A.1    Chua, K.2    Abovich, N.3    Reed, R.4    Rosbash, M.5
  • 58
    • 79952198199 scopus 로고    scopus 로고
    • The branchpoint binding protein: in and out of the spliceosome cycle.
    • Rymond BC. The branchpoint binding protein: in and out of the spliceosome cycle. Adv Exp Med Biol 2010, 693:123-141.
    • (2010) Adv Exp Med Biol , vol.693 , pp. 123-141
    • Rymond, B.C.1
  • 59
    • 0028273768 scopus 로고
    • The yeast MUD2 protein: an interaction with PRP11 defines a bridge between commitment complexes and U2 snRNP addition.
    • Abovich N, Liao XC, Rosbash M. The yeast MUD2 protein: an interaction with PRP11 defines a bridge between commitment complexes and U2 snRNP addition. Genes Dev 1994, 8:843-854.
    • (1994) Genes Dev , vol.8 , pp. 843-854
    • Abovich, N.1    Liao, X.C.2    Rosbash, M.3
  • 60
    • 65549090941 scopus 로고    scopus 로고
    • Insights into branch nucleophile positioning and activation from an orthogonal pre-mRNA splicing system in yeast.
    • Smith DJ, Konarska MM, Query CC. Insights into branch nucleophile positioning and activation from an orthogonal pre-mRNA splicing system in yeast. Mol Cell 2009, 34:333-343.
    • (2009) Mol Cell , vol.34 , pp. 333-343
    • Smith, D.J.1    Konarska, M.M.2    Query, C.C.3
  • 61
    • 84860513145 scopus 로고    scopus 로고
    • The spliceosome: a flexible, reversible macromolecular machine.
    • Hoskins AA, Moore MJ. The spliceosome: a flexible, reversible macromolecular machine. Trends Biochem Sci 2012, 37:179-188.
    • (2012) Trends Biochem Sci , vol.37 , pp. 179-188
    • Hoskins, A.A.1    Moore, M.J.2
  • 62
    • 0028960809 scopus 로고
    • A novel role for a U5 snRNP protein in 3′ splice site selection.
    • Umen JG, Guthrie C. A novel role for a U5 snRNP protein in 3′ splice site selection. Genes Dev 1995, 9:855-868.
    • (1995) Genes Dev , vol.9 , pp. 855-868
    • Umen, J.G.1    Guthrie, C.2
  • 63
    • 0037013146 scopus 로고    scopus 로고
    • Splicing regulation at the second catalytic step by Sex-lethal involves 3′ splice site recognition by SPF45.
    • Lallena MJ, Chalmers KJ, Llamazares S, Lamond AI, Valcarcel J. Splicing regulation at the second catalytic step by Sex-lethal involves 3′ splice site recognition by SPF45. Cell 2002, 109:285-296.
    • (2002) Cell , vol.109 , pp. 285-296
    • Lallena, M.J.1    Chalmers, K.J.2    Llamazares, S.3    Lamond, A.I.4    Valcarcel, J.5
  • 64
    • 0028878235 scopus 로고
    • Effects of secondary structure on pre-mRNA splicing: hairpins sequestering the 5′ but not the 3′ splice site inhibit intron processing in Nicotiana plumbaginifolia.
    • Liu HX, Goodall GJ, Kole R, Filipowicz W. Effects of secondary structure on pre-mRNA splicing: hairpins sequestering the 5′ but not the 3′ splice site inhibit intron processing in Nicotiana plumbaginifolia. EMBO J 1995, 14:377-388.
    • (1995) EMBO J , vol.14 , pp. 377-388
    • Liu, H.X.1    Goodall, G.J.2    Kole, R.3    Filipowicz, W.4
  • 65
    • 0038701605 scopus 로고    scopus 로고
    • The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons.
    • Lev-Maor G, Sorek R, Shomron N, Ast G. The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons. Science 2003, 300:1288-1291.
    • (2003) Science , vol.300 , pp. 1288-1291
    • Lev-Maor, G.1    Sorek, R.2    Shomron, N.3    Ast, G.4
  • 66
    • 36749080450 scopus 로고    scopus 로고
    • Competition between the ATPase Prp5 and branch region-U2 snRNA pairing modulates the fidelity of spliceosome assembly.
    • Xu YZ, Query CC. Competition between the ATPase Prp5 and branch region-U2 snRNA pairing modulates the fidelity of spliceosome assembly. Mol Cell 2007, 28:838-849.
    • (2007) Mol Cell , vol.28 , pp. 838-849
    • Xu, Y.Z.1    Query, C.C.2
  • 67
    • 33745608726 scopus 로고    scopus 로고
    • Intron removal requires proofreading of U2AF/3′ splice site recognition by DEK.
    • Soares LM, Zanier K, Mackereth C, Sattler M, Valcarcel J. Intron removal requires proofreading of U2AF/3′ splice site recognition by DEK. Science 2006, 312:1961-1965.
    • (2006) Science , vol.312 , pp. 1961-1965
    • Soares, L.M.1    Zanier, K.2    Mackereth, C.3    Sattler, M.4    Valcarcel, J.5
  • 68
    • 0033178886 scopus 로고    scopus 로고
    • Intron-exon structures of eukaryotic model organisms.
    • Michael D, Manyuan L. Intron-exon structures of eukaryotic model organisms. Nucleic Acids Res 1999, 27:3219-3228.
    • (1999) Nucleic Acids Res , vol.27 , pp. 3219-3228
    • Michael, D.1    Manyuan, L.2
  • 69
    • 0028287567 scopus 로고
    • Extremely short 20-33 nucleotide introns are the standard length in Paramecium tetraurelia.
    • Russell CB, Fraga D, Hinrichsen RD. Extremely short 20-33 nucleotide introns are the standard length in Paramecium tetraurelia. Nucleic Acids Res 1994, 22:1221-1225.
    • (1994) Nucleic Acids Res , vol.22 , pp. 1221-1225
    • Russell, C.B.1    Fraga, D.2    Hinrichsen, R.D.3
  • 70
    • 0031842450 scopus 로고    scopus 로고
    • A role for SRp54 during intron bridging of small introns with pyrimidine tracts upstream of the branch point.
    • Kennedy CF, Krämer A, Berget SM. A role for SRp54 during intron bridging of small introns with pyrimidine tracts upstream of the branch point. Mol Cell Biol 1998, 18:5425-5434.
    • (1998) Mol Cell Biol , vol.18 , pp. 5425-5434
    • Kennedy, C.F.1    Krämer, A.2    Berget, S.M.3
  • 71
    • 0029959408 scopus 로고    scopus 로고
    • Intramolecular structure in yeast introns aids the early steps of in vitro spliceosome assembly.
    • Charpentier B, Rosbash M. Intramolecular structure in yeast introns aids the early steps of in vitro spliceosome assembly. RNA 1996, 2:509-522.
    • (1996) RNA , vol.2 , pp. 509-522
    • Charpentier, B.1    Rosbash, M.2
  • 72
    • 0030773773 scopus 로고    scopus 로고
    • Intron self-complementarity enforces exon inclusion in a yeast pre-mRNA.
    • Howe KJ, Ares M Jr. Intron self-complementarity enforces exon inclusion in a yeast pre-mRNA. Proc Natl Acad Sci U S A 1997, 94:12467-12472.
    • (1997) Proc Natl Acad Sci U S A , vol.94 , pp. 12467-12472
    • Howe, K.J.1    Ares Jr., M.2
  • 73
    • 34548706497 scopus 로고    scopus 로고
    • Does distance matter? Variations in alternative 3′ splicing regulation.
    • Akerman M, Mandel-Gutfreund Y. Does distance matter? Variations in alternative 3′ splicing regulation. Nucleic Acids Res 2007, 35:5487-5498.
    • (2007) Nucleic Acids Res , vol.35 , pp. 5487-5498
    • Akerman, M.1    Mandel-Gutfreund, Y.2
  • 74
    • 0020531931 scopus 로고
    • Evidence for an intron-contained sequence required for the splicing of yeast RNA polymerase II transcripts.
    • Langford CJ, Gallwitz D. Evidence for an intron-contained sequence required for the splicing of yeast RNA polymerase II transcripts. Cell 1983, 33: 519-527.
    • (1983) Cell , vol.33 , pp. 519-527
    • Langford, C.J.1    Gallwitz, D.2
  • 75
    • 0030694848 scopus 로고    scopus 로고
    • Crosslinking of the U5 snRNP-specific 116-kDa protein to RNA hairpins that block step 2 of splicing.
    • Liu ZR, Laggerbauer B, Luhrmann R, Smith CW. Crosslinking of the U5 snRNP-specific 116-kDa protein to RNA hairpins that block step 2 of splicing. RNA 1997, 3:1207-1219.
    • (1997) RNA , vol.3 , pp. 1207-1219
    • Liu, Z.R.1    Laggerbauer, B.2    Luhrmann, R.3    Smith, C.W.4
  • 76
    • 0034681194 scopus 로고    scopus 로고
    • Evidence for a linear search in bimolecular 3′ splice site AG selection.
    • Chen S, Anderson K, Moore MJ. Evidence for a linear search in bimolecular 3′ splice site AG selection. Proc Natl Acad Sci U S A 2000, 97:593-598.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , pp. 593-598
    • Chen, S.1    Anderson, K.2    Moore, M.J.3
  • 77
    • 33745048938 scopus 로고    scopus 로고
    • A class of human exons with predicted distant branch points revealed by analysis of AG dinucleotide exclusion zones.
    • Gooding C, Clark F, Wollerton MC, Grellscheid SN, Groom H, Smith CW. A class of human exons with predicted distant branch points revealed by analysis of AG dinucleotide exclusion zones. Genome Biol 2006, 7:R1.
    • (2006) Genome Biol , vol.7
    • Gooding, C.1    Clark, F.2    Wollerton, M.C.3    Grellscheid, S.N.4    Groom, H.5    Smith, C.W.6
  • 78
    • 77649158879 scopus 로고    scopus 로고
    • Role of RNA structure in regulating pre-mRNA splicing.
    • Warf MB, Berglund JA. Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem Sci 2010, 35:169-178.
    • (2010) Trends Biochem Sci , vol.35 , pp. 169-178
    • Warf, M.B.1    Berglund, J.A.2
  • 79
    • 79960918747 scopus 로고    scopus 로고
    • RNA structure and the mechanisms of alternative splicing.
    • McManus CJ, Graveley BR. RNA structure and the mechanisms of alternative splicing. Curr Opin Genet Dev 2011, 21:373-379.
    • (2011) Curr Opin Genet Dev , vol.21 , pp. 373-379
    • McManus, C.J.1    Graveley, B.R.2
  • 80
    • 0024404487 scopus 로고
    • The 216-nucleotide intron of the E1A pre-mRNA contains a hairpin structure that permits utilization of unusually distant branch acceptors.
    • Chebli K, Gattoni R, Schmitt P, Hildwein G, Stevenin J. The 216-nucleotide intron of the E1A pre-mRNA contains a hairpin structure that permits utilization of unusually distant branch acceptors. Mol Cell Biol 1989, 9:4852-4861.
    • (1989) Mol Cell Biol , vol.9 , pp. 4852-4861
    • Chebli, K.1    Gattoni, R.2    Schmitt, P.3    Hildwein, G.4    Stevenin, J.5
  • 81
    • 0025780938 scopus 로고
    • Unexpected point mutations activate cryptic 3′ splice sites by perturbing a natural secondary structure within a yeast intron.
    • Deshler JO, Rossi JJ. Unexpected point mutations activate cryptic 3′ splice sites by perturbing a natural secondary structure within a yeast intron. Genes Dev 1991, 5:1252-1263.
    • (1991) Genes Dev , vol.5 , pp. 1252-1263
    • Deshler, J.O.1    Rossi, J.J.2
  • 82
    • 0023860128 scopus 로고
    • Structure of a pre-mRNA branch point/3′ splice site region.
    • Hall KB, Green MR, Redfield AG. Structure of a pre-mRNA branch point/3′ splice site region. Proc Natl Acad Sci U S A 1988, 85:704-708.
    • (1988) Proc Natl Acad Sci U S A , vol.85 , pp. 704-708
    • Hall, K.B.1    Green, M.R.2    Redfield, A.G.3
  • 83
    • 0027178666 scopus 로고
    • Functional characterization of the alternatively spliced, placental human growth hormone receptor.
    • Urbanek M, Russell JE, Cooke NE, Liebhaber SA. Functional characterization of the alternatively spliced, placental human growth hormone receptor. J Biol Chem 1993, 268:19025-19032.
    • (1993) J Biol Chem , vol.268 , pp. 19025-19032
    • Urbanek, M.1    Russell, J.E.2    Cooke, N.E.3    Liebhaber, S.A.4
  • 84
    • 85011940612 scopus 로고    scopus 로고
    • Riboswitch-mediated control of gene expression in eukaryotes.
    • Wachter A. Riboswitch-mediated control of gene expression in eukaryotes. RNA Biol 2010, 7:67-76.
    • (2010) RNA Biol , vol.7 , pp. 67-76
    • Wachter, A.1
  • 85
    • 80055073166 scopus 로고    scopus 로고
    • Modelling reveals kinetic advantages of co-transcriptional splicing.
    • Aitken S, Alexander RD, Beggs JD. Modelling reveals kinetic advantages of co-transcriptional splicing. PLoS Comput Biol 2011, 7:e1002215.
    • (2011) PLoS Comput Biol , vol.7
    • Aitken, S.1    Alexander, R.D.2    Beggs, J.D.3
  • 86
    • 44649196386 scopus 로고    scopus 로고
    • Functional integration of transcriptional and RNA processing machineries.
    • Pandit S, Wang D, Fu X-D. Functional integration of transcriptional and RNA processing machineries. Curr Opin Cell Biol 2008, 20:260-265.
    • (2008) Curr Opin Cell Biol , vol.20 , pp. 260-265
    • Pandit, S.1    Wang, D.2    Fu, X.-D.3
  • 87
    • 84855269212 scopus 로고    scopus 로고
    • Cotranscriptional folding kinetics of ribonucleic acid secondary structures.
    • Zhao P, Zhang W, Chen SJ. Cotranscriptional folding kinetics of ribonucleic acid secondary structures. J Chem Phys 2011, 135:245101.
    • (2011) J Chem Phys , vol.135 , pp. 245101
    • Zhao, P.1    Zhang, W.2    Chen, S.J.3
  • 88
  • 90
    • 77951200179 scopus 로고    scopus 로고
    • First come, first served revisited: factors affecting the same alternative splicing event have different effects on the relative rates of intron removal.
    • de la Mata M, Lafaille C, Kornblihtt AR. First come, first served revisited: factors affecting the same alternative splicing event have different effects on the relative rates of intron removal. RNA 2010, 16:904-912.
    • (2010) RNA , vol.16 , pp. 904-912
    • de la Mata, M.1    Lafaille, C.2    Kornblihtt, A.R.3
  • 91
    • 0013394889 scopus 로고    scopus 로고
    • Mechanisms of alternative pre-messenger RNA splicing.
    • Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 2003, 72:291-336.
    • (2003) Annu Rev Biochem , vol.72 , pp. 291-336
    • Black, D.L.1
  • 93
    • 53149145051 scopus 로고    scopus 로고
    • RBM5/Luca-15/H37 regulates Fas alternative splice site pairing after exon definition.
    • Bonnal S, Martínez C, Förch P, Bachi A, Wilm M, Valcárcel J. RBM5/Luca-15/H37 regulates Fas alternative splice site pairing after exon definition. Mol Cell 2008, 32:81-95.
    • (2008) Mol Cell , vol.32 , pp. 81-95
    • Bonnal, S.1    Martínez, C.2    Förch, P.3    Bachi, A.4    Wilm, M.5    Valcárcel, J.6
  • 94
    • 26244435561 scopus 로고    scopus 로고
    • Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures.
    • Graveley BR. Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures. Cell 2005, 123:65-73.
    • (2005) Cell , vol.123 , pp. 65-73
    • Graveley, B.R.1
  • 95
    • 79951535301 scopus 로고    scopus 로고
    • Proofreading and spellchecking: a two-tier strategy for pre-mRNA splicing quality control.
    • Egecioglu DE, Chanfreau G. Proofreading and spellchecking: a two-tier strategy for pre-mRNA splicing quality control. RNA 2011, 17:383-389.
    • (2011) RNA , vol.17 , pp. 383-389
    • Egecioglu, D.E.1    Chanfreau, G.2
  • 96
    • 33744937919 scopus 로고    scopus 로고
    • Exon ligation is proofread by the DExD/H-box ATPase Prp22p.
    • Mayas RM, Maita H, Staley JP. Exon ligation is proofread by the DExD/H-box ATPase Prp22p. Nat Struct Mol Biol 2006, 13:482-490.
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 482-490
    • Mayas, R.M.1    Maita, H.2    Staley, J.P.3
  • 97
  • 98
    • 77950556969 scopus 로고    scopus 로고
    • Spliceosomes walk the line: splicing errors and their impact on cellular function.
    • Hsu SN, Hertel KJ. Spliceosomes walk the line: splicing errors and their impact on cellular function. RNA Biol 2009, 6:526-530.
    • (2009) RNA Biol , vol.6 , pp. 526-530
    • Hsu, S.N.1    Hertel, K.J.2
  • 99
    • 84857844645 scopus 로고    scopus 로고
    • Quality control of MATa1 splicing and exon skipping by nuclear RNA degradation.
    • Egecioglu DE, Kawashima TR, Chanfreau GF. Quality control of MATa1 splicing and exon skipping by nuclear RNA degradation. Nucleic Acids Res 2012, 40:1787-1796.
    • (2012) Nucleic Acids Res , vol.40 , pp. 1787-1796
    • Egecioglu, D.E.1    Kawashima, T.R.2    Chanfreau, G.F.3
  • 100
    • 34548758543 scopus 로고    scopus 로고
    • Splicing in disease: disruption of the splicing code and the decoding machinery.
    • Wang GS, Cooper TA. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 2007, 8:749-761.
    • (2007) Nat Rev Genet , vol.8 , pp. 749-761
    • Wang, G.S.1    Cooper, T.A.2
  • 101
    • 79951528344 scopus 로고    scopus 로고
    • Strict 3′ splice site sequence requirements for U2 snRNP recruitment after U2AF binding underlie a genetic defect leading to autoimmune disease.
    • Corrionero A, Raker VA, Izquierdo JM, Valcarcel J. Strict 3′ splice site sequence requirements for U2 snRNP recruitment after U2AF binding underlie a genetic defect leading to autoimmune disease. RNA 2011, 17:401-411.
    • (2011) RNA , vol.17 , pp. 401-411
    • Corrionero, A.1    Raker, V.A.2    Izquierdo, J.M.3    Valcarcel, J.4
  • 102
    • 78649684957 scopus 로고    scopus 로고
    • Genome-wide association between branch point properties and alternative splicing.
    • Corvelo A, Hallegger M, Smith CW, Eyras E. Genome-wide association between branch point properties and alternative splicing. PLoS Comput Biol 2010, 6:e1001016.
    • (2010) PLoS Comput Biol , vol.6
    • Corvelo, A.1    Hallegger, M.2    Smith, C.W.3    Eyras, E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.