-
1
-
-
79551534130
-
Crosstalk between components of circadian and metabolic cycles in mammals
-
Asher G, Schibler U 2011 Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13:125-137
-
(2011)
Cell Metab
, vol.13
, pp. 125-137
-
-
Asher, G.1
Schibler, U.2
-
3
-
-
0037194790
-
Coordination of circadian timing in mammals
-
Reppert SM, Weaver DR 2002 Coordination of circadian timing in mammals. Nature 418:935-941
-
(2002)
Nature
, vol.418
, pp. 935-941
-
-
Reppert, S.M.1
Weaver, D.R.2
-
6
-
-
25444527943
-
Nocturnal hormones and clinical rhythms in rheumatoid arthritis
-
Cutolo M, Otsa K, Aakre O, Sulli A 2005 Nocturnal hormones and clinical rhythms in rheumatoid arthritis. Ann NY Acad Sci 1051: 372-381
-
(2005)
Ann NY Acad Sci
, vol.1051
, pp. 372-381
-
-
Cutolo, M.1
Otsa, K.2
Aakre, O.3
Sulli, A.4
-
7
-
-
0037711399
-
The circadian clock: Pacemaker and tumour suppressor
-
Fu L, Lee CC 2003 The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer 3:350-361
-
(2003)
Nat Rev Cancer
, vol.3
, pp. 350-361
-
-
Fu, L.1
Lee, C.C.2
-
8
-
-
0032872087
-
Familial advanced sleepphase syndrome: A short-period circadian rhythm variant in humans
-
Jones CR, Campbell SS, Zone SE, Cooper F, DeSano A, Murphy PJ, Jones B, Czajkowski L, Ptácek LJ 1999 Familial advanced sleepphase syndrome: a short-period circadian rhythm variant in humans. Nat Med 5:1062-1065
-
(1999)
Nat Med
, vol.5
, pp. 1062-1065
-
-
Jones, C.R.1
Campbell, S.S.2
Zone, S.E.3
Cooper, F.4
Desano, A.5
Murphy, P.J.6
Jones, B.7
Czajkowski, L.8
Ptácek, L.J.9
-
11
-
-
20844461135
-
Obesity and metabolic syndrome in circadian Clock mutant mice
-
Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J 2005 Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043-1045
-
(2005)
Science
, vol.308
, pp. 1043-1045
-
-
Turek, F.W.1
Joshu, C.2
Kohsaka, A.3
Lin, E.4
Ivanova, G.5
McDearmon, E.6
Laposky, A.7
Losee-Olson, S.8
Easton, A.9
Jensen, D.R.10
Eckel, R.H.11
Takahashi, J.S.12
Bass, J.13
-
12
-
-
54449085416
-
Physiological significance of a peripheral tissue circadian clock
-
Lamia KA, Storch KF, Weitz CJ 2008 Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci USA 105: 15172-15177
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 15172-15177
-
-
Lamia, K.A.1
Storch, K.F.2
Weitz, C.J.3
-
13
-
-
77954848215
-
Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
-
Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass J 2010 Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627-631
-
(2010)
Nature
, vol.466
, pp. 627-631
-
-
Marcheva, B.1
Ramsey, K.M.2
Buhr, E.D.3
Kobayashi, Y.4
Su, H.5
Ko, C.H.6
Ivanova, G.7
Omura, C.8
Mo, S.9
Vitaterna, M.H.10
Lopez, J.P.11
Philipson, L.H.12
Bradfield, C.A.13
Crosby, S.D.14
Jebailey, L.15
Wang, X.16
Takahashi, J.S.17
Bass, J.18
-
14
-
-
14044264801
-
BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis
-
Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, Fitzgerald GA 2004 BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2:e377
-
(2004)
PLoS Biol
, vol.2
-
-
Rudic, R.D.1
McNamara, P.2
Curtis, A.M.3
Boston, R.C.4
Panda, S.5
Hogenesch, J.B.6
Fitzgerald, G.A.7
-
15
-
-
79953323827
-
An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice
-
Sadacca LA, Lamia KA, deLemos AS, Blum B, Weitz CJ 2011 An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia 54: 120-124
-
(2011)
Diabetologia
, vol.54
, pp. 120-124
-
-
Sadacca, L.A.1
Lamia, K.A.2
Delemos, A.S.3
Blum, B.4
Weitz, C.J.5
-
16
-
-
33847632469
-
Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation
-
Miller BH, McDearmon EL, Panda S, Hayes KR, Zhang J, Andrews JL, Antoch MP, Walker JR, Esser KA, Hogenesch JB, Takahashi JS 2007 Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci USA 104: 3342-3347
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 3342-3347
-
-
Miller, B.H.1
McDearmon, E.L.2
Panda, S.3
Hayes, K.R.4
Zhang, J.5
Andrews, J.L.6
Antoch, M.P.7
Walker, J.R.8
Esser, K.A.9
Hogenesch, J.B.10
Takahashi, J.S.11
-
17
-
-
18444414586
-
Coordinated transcription of key pathways in the mouse by the circadian clock
-
Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB 2002 Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307-320
-
(2002)
Cell
, vol.109
, pp. 307-320
-
-
Panda, S.1
Antoch, M.P.2
Miller, B.H.3
Su, A.I.4
Schook, A.B.5
Straume, M.6
Schultz, P.G.7
Kay, S.A.8
Takahashi, J.S.9
Hogenesch, J.B.10
-
18
-
-
0037007625
-
Extensive and divergent circadian gene expression in liver and heart
-
Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ 2002 Extensive and divergent circadian gene expression in liver and heart. Nature 417:78-83
-
(2002)
Nature
, vol.417
, pp. 78-83
-
-
Storch, K.F.1
Lipan, O.2
Leykin, I.3
Viswanathan, N.4
Davis, F.C.5
Wong, W.H.6
Weitz, C.J.7
-
19
-
-
0036682099
-
A transcription factor response element for gene expression during circadian night
-
Ueda HR, Chen W, Adachi A, Wakamatsu H, Hayashi S, Takasugi T, Nagano M, Nakahama K, Suzuki Y, Sugano S, Iino M, Shigeyoshi Y, Hashimoto S 2002 A transcription factor response element for gene expression during circadian night. Nature 418:534-539
-
(2002)
Nature
, vol.418
, pp. 534-539
-
-
Ueda, H.R.1
Chen, W.2
Adachi, A.3
Wakamatsu, H.4
Hayashi, S.5
Takasugi, T.6
Nagano, M.7
Nakahama, K.8
Suzuki, Y.9
Sugano, S.10
Iino, M.11
Shigeyoshi, Y.12
Hashimoto, S.13
-
20
-
-
33645790960
-
Characterization of peripheral circadian clocks in adipose tissues
-
Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, Wu X, Goh BC, Mynatt RL, Gimble JM 2006 Characterization of peripheral circadian clocks in adipose tissues. Diabetes 55:962-970
-
(2006)
Diabetes
, vol.55
, pp. 962-970
-
-
Zvonic, S.1
Ptitsyn, A.A.2
Conrad, S.A.3
Scott, L.K.4
Floyd, Z.E.5
Kilroy, G.6
Wu, X.7
Goh, B.C.8
Mynatt, R.L.9
Gimble, J.M.10
-
21
-
-
77955983063
-
Circadian control of global gene expression patterns
-
Doherty CJ, Kay SA 2010 Circadian control of global gene expression patterns. Annu Rev Genet 44:419-444
-
(2010)
Annu Rev Genet
, vol.44
, pp. 419-444
-
-
Doherty, C.J.1
Kay, S.A.2
-
22
-
-
0034501106
-
Genetics of the mammalian circadian system: Photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation
-
Lowrey PL, Takahashi JS 2000 Genetics of the mammalian circadian system: Photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. Annu Rev Genet 34:533-562
-
(2000)
Annu Rev Genet
, vol.34
, pp. 533-562
-
-
Lowrey, P.L.1
Takahashi, J.S.2
-
23
-
-
0035047945
-
Molecular analysis of mammalian circadian rhythms
-
Reppert SM, Weaver DR 2001 Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 63:647-676
-
(2001)
Annu Rev Physiol
, vol.63
, pp. 647-676
-
-
Reppert, S.M.1
Weaver, D.R.2
-
24
-
-
33847779219
-
Post-translational modifications regulate the ticking of the circadian clock
-
Gallego M, Virshup DM 2007 Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 8:139-148
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 139-148
-
-
Gallego, M.1
Virshup, D.M.2
-
25
-
-
0034697099
-
Positional syntenic cloning and functional characterization of the mammalian circadian mutationτ
-
Lowrey PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD, Ralph MR, Menaker M, Takahashi JS 2000 Positional syntenic cloning and functional characterization of the mammalian circadian mutationτ. Science 288:483-492
-
(2000)
Science
, vol.288
, pp. 483-492
-
-
Lowrey, P.L.1
Shimomura, K.2
Antoch, M.P.3
Yamazaki, S.4
Zemenides, P.D.5
Ralph, M.R.6
Menaker, M.7
Takahashi, J.S.8
-
26
-
-
0023764577
-
A mutation of the circadian system in golden hamsters
-
Ralph MR, Menaker M 1988 A mutation of the circadian system in golden hamsters. Science 241:1225-1227
-
(1988)
Science
, vol.241
, pp. 1225-1227
-
-
Ralph, M.R.1
Menaker, M.2
-
27
-
-
15844420887
-
Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome
-
Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, Saigoh K, Ptácek LJ, Fu YH 2005 Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature 434:640-644
-
(2005)
Nature
, vol.434
, pp. 640-644
-
-
Xu, Y.1
Padiath, Q.S.2
Shapiro, R.E.3
Jones, C.R.4
Wu, S.C.5
Saigoh, N.6
Saigoh, K.7
Ptácek, L.J.8
Fu, Y.H.9
-
28
-
-
41549142176
-
Setting clock speed in mammals: the CK1ετ mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins
-
Meng QJ, Logunova L, Maywood ES, Gallego M, Lebiecki J, Brown TM, Sládek M, Semikhodskii AS, Glossop NR, Piggins HD, Chesham JE, Bechtold DA, Yoo SH, Takahashi JS, Virshup DM, Boot-Handford RP, Hastings MH, Loudon AS 2008 Setting clock speed in mammals: the CK1ετ mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58:78-88
-
Neuron
, vol.58
, pp. 78-88
-
-
Meng, Q.J.1
Logunova, L.2
Maywood, E.S.3
Gallego, M.4
Lebiecki, J.5
Brown, T.M.6
Sládek, M.7
Semikhodskii, A.S.8
Glossop, N.R.9
Piggins, H.D.10
Chesham, J.E.11
Bechtold, D.A.12
Yoo, S.H.13
Takahashi, J.S.14
Virshup, D.M.15
Boot-Handford, R.P.16
Hastings, M.H.17
Loudon, A.S.18
-
29
-
-
33846005528
-
Modeling of a human circadian mutation yields insights into clock regulation by PER2
-
Xu Y, Toh KL, Jones CR, Shin JY, Fu YH, Ptácek LJ 2007 Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 128:59-70
-
(2007)
Cell
, vol.128
, pp. 59-70
-
-
Xu, Y.1
Toh, K.L.2
Jones, C.R.3
Shin, J.Y.4
Fu, Y.H.5
Ptácek, L.J.6
-
30
-
-
0035966317
-
Posttranslational mechanisms regulate the mammalian circadian clock
-
Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM 2001 Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107:855-867
-
(2001)
Cell
, vol.107
, pp. 855-867
-
-
Lee, C.1
Etchegaray, J.P.2
Cagampang, F.R.3
Loudon, A.S.4
Reppert, S.M.5
-
31
-
-
0035136677
-
An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome
-
Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, Ptácek LJ, Fu YH 2001 An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040-1043
-
(2001)
Science
, vol.291
, pp. 1040-1043
-
-
Toh, K.L.1
Jones, C.R.2
He, Y.3
Eide, E.J.4
Hinz, W.A.5
Virshup, D.M.6
Ptácek, L.J.7
Fu, Y.H.8
-
32
-
-
33644660537
-
PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease
-
Finck BN, Kelly DP 2006 PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116:615-622
-
(2006)
J Clin Invest
, vol.116
, pp. 615-622
-
-
Finck, B.N.1
Kelly, D.P.2
-
33
-
-
67651159365
-
Transcriptional control of mitochondrial biogenesis and function
-
Hock MB, Kralli A 2009 Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol 71:177-203
-
(2009)
Annu Rev Physiol
, vol.71
, pp. 177-203
-
-
Hock, M.B.1
Kralli, A.2
-
34
-
-
24144463983
-
Metabolic control through the PGC-1 family of transcription coactivators
-
Lin J, Handschin C, Spiegelman BM 2005 Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361-370
-
(2005)
Cell Metab
, vol.1
, pp. 361-370
-
-
Lin, J.1
Handschin, C.2
Spiegelman, B.M.3
-
35
-
-
0034596268
-
cDNA Cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats
-
Goto M, Terada S, Kato M, Katoh M, Yokozeki T, Tabata I, Shimokawa T 2000 cDNA Cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats. Biochem Biophys Res Commun 274:350-354
-
(2000)
Biochem Biophys Res Commun
, vol.274
, pp. 350-354
-
-
Goto, M.1
Terada, S.2
Kato, M.3
Katoh, M.4
Yokozeki, T.5
Tabata, I.6
Shimokawa, T.7
-
36
-
-
0032549811
-
A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
-
Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM 1998 A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829-839
-
(1998)
Cell
, vol.92
, pp. 829-839
-
-
Puigserver, P.1
Wu, Z.2
Park, C.W.3
Graves, R.4
Wright, M.5
Spiegelman, B.M.6
-
37
-
-
0035855858
-
Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1
-
Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM 2001 Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131-138
-
(2001)
Nature
, vol.413
, pp. 131-138
-
-
Yoon, J.C.1
Puigserver, P.2
Chen, G.3
Donovan, J.4
Wu, Z.5
Rhee, J.6
Adelmant, G.7
Stafford, J.8
Kahn, C.R.9
Granner, D.K.10
Newgard, C.B.11
Spiegelman, B.M.12
-
38
-
-
23944476164
-
Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1α
-
Handschin C, Lin J, Rhee J, Peyer AK, Chin S, Wu PH, Meyer UA, Spiegelman BM 2005 Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1α. Cell 122:505-515
-
(2005)
Cell
, vol.122
, pp. 505-515
-
-
Handschin, C.1
Lin, J.2
Rhee, J.3
Peyer, A.K.4
Chin, S.5
Wu, P.H.6
Meyer, U.A.7
Spiegelman, B.M.8
-
39
-
-
0037102256
-
Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres
-
Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM 2002 Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418:797-801
-
(2002)
Nature
, vol.418
, pp. 797-801
-
-
Lin, J.1
Wu, H.2
Tarr, P.T.3
Zhang, C.Y.4
Wu, Z.5
Boss, O.6
Michael, L.F.7
Puigserver, P.8
Isotani, E.9
Olson, E.N.10
Lowell, B.B.11
Bassel-Duby, R.12
Spiegelman, B.M.13
-
40
-
-
0033977890
-
The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptorα in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
-
Vega RB, Huss JM, Kelly DP 2000 The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptorα in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20:1868-1876
-
(2000)
Mol Cell Biol
, vol.20
, pp. 1868-1876
-
-
Vega, R.B.1
Huss, J.M.2
Kelly, D.P.3
-
41
-
-
0033538473
-
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
-
Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM 1999 Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115-124
-
(1999)
Cell
, vol.98
, pp. 115-124
-
-
Wu, Z.1
Puigserver, P.2
Andersson, U.3
Zhang, C.4
Adelmant, G.5
Mootha, V.6
Troy, A.7
Cinti, S.8
Lowell, B.9
Scarpulla, R.C.10
Spiegelman, B.M.11
-
42
-
-
34249275727
-
Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism
-
Liu C, Li S, Liu T, Borjigin J, Lin JD 2007 Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism. Nature 447:477-481
-
(2007)
Nature
, vol.447
, pp. 477-481
-
-
Liu, C.1
Li, S.2
Liu, T.3
Borjigin, J.4
Lin, J.D.5
-
43
-
-
0035855905
-
CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
-
Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M 2001 CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179-183
-
(2001)
Nature
, vol.413
, pp. 179-183
-
-
Herzig, S.1
Long, F.2
Jhala, U.S.3
Hedrick, S.4
Quinn, R.5
Bauer, A.6
Rudolph, D.7
Schutz, G.8
Yoon, C.9
Puigserver, P.10
Spiegelman, B.11
Montminy, M.12
-
44
-
-
27144506185
-
The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
-
Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P, Takemori H, Montminy M 2005 The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437:1109-1111
-
(2005)
Nature
, vol.437
, pp. 1109-1111
-
-
Koo, S.H.1
Flechner, L.2
Qi, L.3
Zhang, X.4
Screaton, R.A.5
Jeffries, S.6
Hedrick, S.7
Xu, W.8
Boussouar, F.9
Brindle, P.10
Takemori, H.11
Montminy, M.12
-
45
-
-
20644460348
-
Factors that control the tissue-specific transcription of the gene for phosphoenolpyruvate carboxykinase-C
-
Chakravarty K, Cassuto H, Reshef L, Hanson RW 2005 Factors that control the tissue-specific transcription of the gene for phosphoenolpyruvate carboxykinase-C. Crit Rev Biochem Mol Biol 40: 129-154
-
(2005)
Crit Rev Biochem Mol Biol
, vol.40
, pp. 129-154
-
-
Chakravarty, K.1
Cassuto, H.2
Reshef, L.3
Hanson, R.W.4
-
46
-
-
70350366754
-
Glucose-6-phosphatase catalytic subunit gene family
-
Hutton JC, O'Brien RM 2009 Glucose-6-phosphatase catalytic subunit gene family. J Biol Chem 284:29241-29245
-
(2009)
J Biol Chem
, vol.284
, pp. 29241-29245
-
-
Hutton, J.C.1
O'Brien, R.M.2
-
47
-
-
57149089662
-
Absence of the SRC-2 coactivator results in a glycogenopathy resembling Von Gierke's disease
-
Chopra AR, Louet JF, Saha P, An J, Demayo F, Xu J, York B, Karpen S, Finegold M, Moore D, Chan L, Newgard CB, O'Malley BW 2008 Absence of the SRC-2 coactivator results in a glycogenopathy resembling Von Gierke's disease. Science 322:1395-1399
-
(2008)
Science
, vol.322
, pp. 1395-1399
-
-
Chopra, A.R.1
Louet, J.F.2
Saha, P.3
An, J.4
Demayo, F.5
Xu, J.6
York, B.7
Karpen, S.8
Finegold, M.9
Moore, D.10
Chan, L.11
Newgard, C.B.12
O'Malley, B.W.13
-
48
-
-
0038187621
-
Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction
-
Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM 2003 Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature 423:550-555
-
(2003)
Nature
, vol.423
, pp. 550-555
-
-
Puigserver, P.1
Rhee, J.2
Donovan, J.3
Walkey, C.J.4
Yoon, J.C.5
Oriente, F.6
Kitamura, Y.7
Altomonte, J.8
Dong, H.9
Accili, D.10
Spiegelman, B.M.11
-
49
-
-
1242276189
-
D4476, a cell-permeant inhibitor of CK1, suppresses the site-specific phosphorylation and nuclear exclusion of FOXO1a
-
Rena G, Bain J, Elliott M, Cohen P 2004 D4476, a cell-permeant inhibitor of CK1, suppresses the site-specific phosphorylation and nuclear exclusion of FOXO1a. EMBO Rep 5:60-65
-
(2004)
EMBO Rep
, vol.5
, pp. 60-65
-
-
Rena, G.1
Bain, J.2
Elliott, M.3
Cohen, P.4
-
50
-
-
0030670332
-
p53 is phosphorylated in vitro and in vivo by theδ and epsilon isoforms of casein kinase 1 and enhances the level of casein kinase 1δ in response to topoisomerasedirected drugs
-
Knippschild U, Milne DM, Campbell LE, DeMaggio AJ, Christenson E, Hoekstra MF, Meek DW 1997 p53 is phosphorylated in vitro and in vivo by theδ and epsilon isoforms of casein kinase 1 and enhances the level of casein kinase 1δ in response to topoisomerasedirected drugs. Oncogene 15:1727-1736
-
(1997)
Oncogene
, vol.15
, pp. 1727-1736
-
-
Knippschild, U.1
Milne, D.M.2
Campbell, L.E.3
Demaggio, A.J.4
Christenson, E.5
Hoekstra, M.F.6
Meek, D.W.7
-
51
-
-
0034733572
-
Crystal structure of a conformationselective casein kinase-1 inhibitor
-
Mashhoon N, DeMaggio AJ, Tereshko V, Bergmeier SC, Egli M, Hoekstra MF, Kuret J 2000 Crystal structure of a conformationselective casein kinase-1 inhibitor. J Biol Chem 275:20052-20060
-
(2000)
J Biol Chem
, vol.275
, pp. 20052-20060
-
-
Mashhoon, N.1
Demaggio, A.J.2
Tereshko, V.3
Bergmeier, S.C.4
Egli, M.5
Hoekstra, M.F.6
Kuret, J.7
-
52
-
-
0037326196
-
Peroxisome proliferator-activated receptor-alpha; coactivator 1 alpha; (PGC-1α): Transcriptional coactivator and metabolic regulator
-
Puigserver P, Spiegelman BM 2003 Peroxisome proliferator-activated receptor-alpha; coactivator 1 alpha; (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78-90
-
(2003)
Endocr Rev
, vol.24
, pp. 78-90
-
-
Puigserver, P.1
Spiegelman, B.M.2
-
53
-
-
18244399631
-
Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1
-
Puigserver P, Rhee J, Lin J, Wu Z, Yoon JC, Zhang CY, Krauss S, Mootha VK, Lowell BB, Spiegelman BM 2001 Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1. Mol Cell 8:971-982
-
(2001)
Mol Cell
, vol.8
, pp. 971-982
-
-
Puigserver, P.1
Rhee, J.2
Lin, J.3
Wu, Z.4
Yoon, J.C.5
Zhang, C.Y.6
Krauss, S.7
Mootha, V.K.8
Lowell, B.B.9
Spiegelman, B.M.10
-
54
-
-
34548512239
-
Intramolecular control of protein stability, subnuclear compartmentalization, and coactivator function of peroxisome proliferator-activated receptorγ coactivator 1alpha;
-
Sano M, Tokudome S, Shimizu N, Yoshikawa N, Ogawa C, Shirakawa K, Endo J, Katayama T, Yuasa S, Ieda M, Makino S, Hattori F, Tanaka H, Fukuda K 2007 Intramolecular control of protein stability, subnuclear compartmentalization, and coactivator function of peroxisome proliferator-activated receptorγ coactivator 1alpha;. J Biol Chem 282:25970-25980
-
(2007)
J Biol Chem
, vol.282
, pp. 25970-25980
-
-
Sano, M.1
Tokudome, S.2
Shimizu, N.3
Yoshikawa, N.4
Ogawa, C.5
Shirakawa, K.6
Endo, J.7
Katayama, T.8
Yuasa, S.9
Ieda, M.10
Makino, S.11
Hattori, F.12
Tanaka, H.13
Fukuda, K.14
-
55
-
-
0025074778
-
Phosphate groups as substrate determinants for casein kinase I action
-
Flotow H, Graves PR, Wang AQ, Fiol CJ, Roeske RW, Roach PJ 1990 Phosphate groups as substrate determinants for casein kinase I action. J Biol Chem 265:14264-14269
-
(1990)
J Biol Chem
, vol.265
, pp. 14264-14269
-
-
Flotow, H.1
Graves, P.R.2
Wang, A.Q.3
Fiol, C.J.4
Roeske, R.W.5
Roach, P.J.6
-
56
-
-
0024327694
-
Synergistic phosphorylation of rabbit muscle glycogen synthase by cyclic AMP-dependent protein kinase and casein kinase I. Implications for hormonal regulation of glycogen synthase
-
Flotow H, Roach PJ 1989 Synergistic phosphorylation of rabbit muscle glycogen synthase by cyclic AMP-dependent protein kinase and casein kinase I. Implications for hormonal regulation of glycogen synthase. J Biol Chem 264:9126-9128
-
(1989)
J Biol Chem
, vol.264
, pp. 9126-9128
-
-
Flotow, H.1
Roach, P.J.2
-
57
-
-
38849101462
-
A novel consensus phosphorylation motif in sulfatide- and cholesterol-3-sulfate-binding protein substrates for CK1 in vitro
-
Kawakami F, Suzuki K, Ohtsuki K 2008 A novel consensus phosphorylation motif in sulfatide- and cholesterol-3-sulfate-binding protein substrates for CK1 in vitro. Biol Pharm Bull 31:193-200
-
(2008)
Biol Pharm Bull
, vol.31
, pp. 193-200
-
-
Kawakami, F.1
Suzuki, K.2
Ohtsuki, K.3
-
58
-
-
67650088244
-
Casein kinase 1δ regulates the pace of the mammalian circadian clock
-
Etchegaray JP, Machida KK, Noton E, Constance CM, Dallmann R, Di Napoli MN, DeBruyne JP, Lambert CM, Yu EA, Reppert SM, Weaver DR 2009 Casein kinase 1δ regulates the pace of the mammalian circadian clock. Mol Cell Biol 29:3853-3866
-
(2009)
Mol Cell Biol
, vol.29
, pp. 3853-3866
-
-
Etchegaray, J.P.1
Machida, K.K.2
Noton, E.3
Constance, C.M.4
Dallmann, R.5
di Napoli, M.N.6
Debruyne, J.P.7
Lambert, C.M.8
Yu, E.A.9
Reppert, S.M.10
Weaver, D.R.11
-
59
-
-
72649098153
-
Cdc2-like kinase 2 is an insulin-regulated suppressor of hepatic gluconeogenesis
-
Rodgers JT, Haas W, Gygi SP, Puigserver P 2010 Cdc2-like kinase 2 is an insulin-regulated suppressor of hepatic gluconeogenesis. Cell Metab 11:23-34
-
(2010)
Cell Metab
, vol.11
, pp. 23-34
-
-
Rodgers, J.T.1
Haas, W.2
Gygi, S.P.3
Puigserver, P.4
-
60
-
-
34547545892
-
AMPactivated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α
-
Jäger S, Handschin C, St-Pierre J, Spiegelman BM 2007 AMPactivated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc Natl Acad Sci USA 104:12017-12022
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 12017-12022
-
-
Jäger, S.1
Handschin, C.2
-
61
-
-
34250740323
-
Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator
-
Li X, Monks B, Ge Q, Birnbaum MJ 2007 Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator. Nature 447:1012-1016
-
(2007)
Nature
, vol.447
, pp. 1012-1016
-
-
Li, X.1
Monks, B.2
Ge, Q.3
Birnbaum, M.J.4
-
62
-
-
79959635928
-
Separation of the gluconeogenic and mitochondrial functions of PGC-1 through S6 kinase
-
Lustig Y, Ruas JL, Estall JL, Lo JC, Devarakonda S, Laznik D, Choi JH, Ono H, Olsen JV, Spiegelman BM 2011 Separation of the gluconeogenic and mitochondrial functions of PGC-1[1] through S6 kinase. Genes Dev 25:1232-1244
-
(2011)
Genes Dev
, vol.25
, pp. 1232-1244
-
-
Lustig, Y.1
Ruas, J.L.2
Estall, J.L.3
Lo, J.C.4
Devarakonda, S.5
Laznik, D.6
Choi, J.H.7
Ono, H.8
Olsen, J.V.9
Spiegelman, B.M.10
-
63
-
-
5344252327
-
Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice
-
Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jäger S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krainc D, Spiegelman BM 2004 Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. Cell 119:121-135
-
(2004)
Cell
, vol.119
, pp. 121-135
-
-
Lin, J.1
Wu, P.H.2
Tarr, P.T.3
Lindenberg, K.S.4
St-Pierre, J.5
Zhang, C.Y.6
Mootha, V.K.7
Jäger, S.8
Vianna, C.R.9
Reznick, R.M.10
Cui, L.11
Manieri, M.12
Donovan, M.X.13
Wu, Z.14
Cooper, M.P.15
Fan, M.C.16
Rohas, L.M.17
Zavacki, A.M.18
Cinti, S.19
Shulman, G.I.20
Lowell, B.B.21
Krainc, D.22
Spiegelman, B.M.23
more..
-
64
-
-
77957674906
-
Regulation of hepatic ApoC3 expression by PGC-1α mediates hypolipidemic effect of nicotinic acid
-
Hernandez C, Molusky M, Li Y, Li S, Lin JD 2010 Regulation of hepatic ApoC3 expression by PGC-1α mediates hypolipidemic effect of nicotinic acid. Cell Metab 12:411-419
-
(2010)
Cell Metab
, vol.12
, pp. 411-419
-
-
Hernandez, C.1
Molusky, M.2
Li, Y.3
Li, S.4
Lin, J.D.5
-
65
-
-
19944430411
-
Hyperlipidemic effects of dietary saturated fats mediated through PGC-1α coactivation of SREBP
-
Lin J, Yang R, Tarr PT, Wu PH, Handschin C, Li S, Yang W, Pei L, Uldry M, Tontonoz P, Newgard CB, Spiegelman BM 2005 Hyperlipidemic effects of dietary saturated fats mediated through PGC-1α coactivation of SREBP. Cell 120:261-273
-
(2005)
Cell
, vol.120
, pp. 261-273
-
-
Lin, J.1
Yang, R.2
Tarr, P.T.3
Wu, P.H.4
Handschin, C.5
Li, S.6
Yang, W.7
Pei, L.8
Uldry, M.9
Tontonoz, P.10
Newgard, C.B.11
Spiegelman, B.M.12
-
66
-
-
48349108293
-
Genome-wide coactivation analysis of PGC-1α identifies BAF60a as a regulator of hepatic lipid metabolism
-
Li S, Liu C, Li N, Hao T, Han T, Hill DE, Vidal M, Lin JD 2008 Genome-wide coactivation analysis of PGC-1α identifies BAF60a as a regulator of hepatic lipid metabolism. Cell Metab 8:105-117
-
(2008)
Cell Metab
, vol.8
, pp. 105-117
-
-
Li, S.1
Liu, C.2
Li, N.3
Hao, T.4
Han, T.5
Hill, D.E.6
Vidal, M.7
Lin, J.D.8
-
67
-
-
79955626595
-
Exocyst function is regulated by effector phosphorylation
-
Chen XW, Leto D, Xiao J, Goss J, Wang Q, Shavit JA, Xiong T, Yu G, Ginsburg D, Toomre D, Xu Z, Saltiel AR 2011 Exocyst function is regulated by effector phosphorylation. Nat Cell Biol 13:580-588
-
(2011)
Nat Cell Biol
, vol.13
, pp. 580-588
-
-
Chen, X.W.1
Leto, D.2
Xiao, J.3
Goss, J.4
Wang, Q.5
Shavit, J.A.6
Xiong, T.7
Yu, G.8
Ginsburg, D.9
Toomre, D.10
Xu, Z.11
Saltiel, A.R.12
|