메뉴 건너뛰기




Volumn 90, Issue NOVEMBER, 2009, Pages 25-33

Stochastic and artificial neural network models for reservoir inflow prediction

Author keywords

Auto regressive integrated moving average (arima); Back propagation through time (bptt); Inflow prediction; Reservoirs; Time lagged recurrent neural networks (tlrn)

Indexed keywords

ARIMA MODELS; ARTIFICIAL NEURAL NETWORK MODELS; AUTO REGRESSIVE INTEGRATED MOVING AVERAGE MODELS; AUTO-REGRESSIVE INTEGRATED MOVING AVERAGE; BACK-PROPAGATION THROUGH TIME; GOODNESS-OF-FIT MEASURE; MEMORY STRUCTURE; MODEL RESULTS; RESERVOIR INFLOW; RESERVOIR INFLOW PREDICTION; SCATTER PLOTS; TIME LAGGED RECURRENT NETWORK; TIME LAGGED RECURRENT NEURAL NETWORKS (TLRN); TIME STEP; TRAINED NEURAL NETWORKS; UNIVARIATE; UPPER BHIMA RIVER BASINS;

EID: 84859778319     PISSN: 0020336X     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (3)

References (28)
  • 2
    • 0017846358 scopus 로고
    • On a measure of lack of fit in time series models
    • G M Ljung and GEP Box. 'On a Measure of Lack of Fit in Time Series Models'. Biometrica, vol 65, 1978, p 297.
    • (1978) Biometrica , vol.65 , pp. 297
    • Ljung, G.M.1    Box, G.E.P.2
  • 5
    • 34248202148 scopus 로고    scopus 로고
    • Artificial neural network model for synthetic streamflow generation
    • DOI 10.1007/s11269-006-9070-y
    • J Ahmed and A K Sarma. 'Artificial Neural Network Model for Synthetic Streamflow Generation'. Springer Water Resour Manage, 2006 DOI 10.1007/s11269-006-9070-y.
    • (2006) Springer Water Resour Manage
    • Ahmed, J.1    Sarma, A.K.2
  • 8
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology-i: Preliminary concepts
    • ASCE Task Committee
    • ASCE Task Committee. 'Artificial Neural Networks in Hydrology-I: Preliminary Concepts'. ASCE Journal of Hydrologic Engineering, vol 5, no 2, 2000a, p 115.
    • (2000) ASCE Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 115
  • 9
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology-ii: Hydrologic applications
    • ASCE Task Committee
    • ASCE Task Committee. 'Artificial Neural Networks in Hydrology-II: Hydrologic Applications'. ASCE Journal of Hydrologic Engineering, 2000b, vol 5, no 2, p 124.
    • (2000) ASCE Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 124
  • 10
    • 0029413797 scopus 로고
    • Artificial neural network modelling of the rainfall-runoff process
    • K L Hsu, H V Gupta and S Sorooshian. 'Artificial Neural Network Modelling of the Rainfall-Runoff Process'. Water Resources Research, vol 31. no 10, 1995, pp 2517-2530.
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 11
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural networks. ASCE
    • A S Tokar and P A Johnson. 'Rainfall-Runoff Modelling using Artificial Neural Networks'. 4SCE Journal of Hydrologic Engineering, vol 4, no 3, 1999, p 232.
    • (1999) Journal of Hydrologic Engineering , vol.4 , Issue.3 , pp. 232
    • Tokar, A.S.1    Johnson, P.A.2
  • 12
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • K P Sudheer, A K Gosain and K S Ramasastri. 'A Data-driven Algorithm for Constructing Artificial Neural Network Rainfall-Runoff Models'. Hydrological Processes, vol 16, no 6, 2002, p 325.
    • (2002) Hydrological Processes , vol.16 , Issue.6 , pp. 325
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 13
    • 0037340658 scopus 로고    scopus 로고
    • Comparative analysis of event-based rainfall-runoff modelling techniques-deterministic, statistical and artificial neural networks
    • A Jain and SKV lndurthy. 'Comparative Analysis of Event-based Rainfall-runoff Modelling Techniques-deterministic, Statistical and Artificial Neural Networks'. ASCE Journal of Hydrologic Engineering, vol 8, no 2, 2003, p 93.
    • (2003) ASCE Journal of Hydrologic Engineering , vol.8 , Issue.2 , pp. 93
    • Jain, A.1    Lndurthy, S.K.V.2
  • 14
    • 33644636765 scopus 로고    scopus 로고
    • A comparative analysis of training methods for artificial neural network rainfall-runoff modelling
    • S Srinivasulu and A Jain. 'A Comparative Analysis of Training Methods for Artificial Neural Network Rainfall-runoff Modelling'. Elsevier Journal of Applied Soft Computing, vol 6, no 3, 2006, p 295.
    • (2006) Elsevier Journal of Applied Soft Computing , vol.6 , Issue.3 , pp. 295
    • Srinivasulu, S.1    Jain, A.2
  • 18
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • P Coulibaly, F Anctil and B Bobee. 'Daily Reservoir Inflow Forecasting using Artificial Neural Networks with Stopped Training Approach'. Elsevier Journal of Hydrology, vol 230, 2000, p 244.
    • (2000) Elsevier Journal of Hydrology , vol.230 , pp. 244
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 22
    • 33747405169 scopus 로고    scopus 로고
    • Comparison of three alternative artificial neural network designs for monthly rainfall-runoff simulation
    • J D Garbrecht. 'Comparison of Three Alternative Artificial Neural Network Designs for Monthly Rainfall-runoff Simulation'. ASCE Journal of Hydrologic Engineering, vol 11, no 5, 2006, p 502.
    • (2006) ASCE Journal of Hydrologic Engineering , vol.11 , Issue.5 , pp. 502
    • Garbrecht, J.D.1
  • 23
    • 73549096397 scopus 로고    scopus 로고
    • Forecasting monthly reservoir inflow using time lagged recurrent neural networks
    • A S Kote and V Jothiprakash. 'Forecasting Monthly Reservoir Inflow using Time Lagged Recurrent Neural Networks'. International Journal of Tomography and Statistics, vol 12, no F09, p 64.
    • International Journal of Tomography and Statistics , vol.12 , Issue.F09 , pp. 64
    • Kote, A.S.1    Jothiprakash, V.2
  • 25
    • 33846453985 scopus 로고    scopus 로고
    • Genetic programming model for forecast of short and noisy data
    • C Sivapragasam, P Vincent and G Vasudevan. 'Genetic Programming Model for Forecast of Short and Noisy Data'. Hydrological Processes, vol 21, 2007, p 266.
    • (2007) Hydrological Processes , vol.21 , pp. 266
    • Sivapragasam, C.1    Vincent, P.2    Vasudevan, G.3
  • 27
    • 0003353181 scopus 로고    scopus 로고
    • Neural network: A comprehensive foundation
    • Upper Saddle River, New Jersey
    • S Haykin. 'Neural Network: A Comprehensive Foundation'. Prentice-Hall, Upper Saddle River, New Jersey, 1999.
    • (1999) Prentice-Hall
    • Haykin, S.1
  • 28
    • 33846813334 scopus 로고    scopus 로고
    • Hybrid neural network models for hydrologic time series forecasting
    • doi: 10.1016/j.asoc.2006.03.002
    • A Jain and A M Kumar. 'Hybrid Neural Network Models for Hydrologic Time Series Forecasting'. Elsevier Applied Son Computing, 2006, doi: 10.1016/j.asoc.2006.03.002.
    • (2006) Elsevier Applied Son Computing
    • Jain, A.1    Kumar, A.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.