메뉴 건너뛰기




Volumn 56, Issue 1, 2011, Pages 168-186

Improving the performance of data-driven techniques through data pre-processing for modelling daily reservoir inflow;Amélioration de la performance de techniques conditionnées par les données par pré-traitement pour la modélisation de l'apport journalier d'un réservoir

Author keywords

Data pre processing; Full year inflow data; India; Linear genetic programming; Model tree; Moving average; Pawana reservoir; Seasonal inflow; Time lagged recurrent network; Transformation

Indexed keywords

DATA PREPROCESSING; FULL-YEAR INFLOW DATA; INDIA; LINEAR GENETIC PROGRAMMING; MODEL TREE; MOVING AVERAGE; PAWANA RESERVOIR; SEASONAL INFLOW; TIME-LAGGED RECURRENT NETWORK; TRANSFORMATION;

EID: 79951559879     PISSN: 02626667     EISSN: 21503435     Source Type: Journal    
DOI: 10.1080/02626667.2010.546358     Document Type: Article
Times cited : (26)

References (62)
  • 1
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, I: Preliminary concepts
    • ASCE Task Committee on Application of Neural Networks in Hydrology
    • ASCE Task Committee on Application of Neural Networks in Hydrology (2000) Artificial neural networks in hydrology, I: Preliminary concepts. J. Hydrol. Engng ASCE 5(2), 115-123.
    • (2000) J. Hydrol. Engng ASCE , vol.5 , Issue.2 , pp. 115-123
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, II: Hydrologic applications
    • ASCE Task Committee on Application of Neural Networks in Hydrology
    • ASCE Task Committee on Application of Neural Networks in Hydrology (2000) Artificial neural networks in hydrology, II: Hydrologic applications. J. Hydrol. Engng ASCE 5(2), 124-137.
    • (2000) J. Hydrol. Engng ASCE , vol.5 , Issue.2 , pp. 124-137
  • 3
    • 0036997582 scopus 로고    scopus 로고
    • Rainfall runoff modelling based on genetic programming
    • Babovic, V. & Keijzer, M. (2002) Rainfall runoff modelling based on genetic programming. Nordic Hydrol. 33(5), 1-346.
    • (2002) Nordic Hydrol , vol.33 , Issue.5 , pp. 1-346
    • Babovic, V.1    Keijzer, M.2
  • 4
    • 12144264770 scopus 로고    scopus 로고
    • Neural networks and M5 model trees in modelling water level-discharge relationship
    • Bhattacharya, B. & Solomatine, D. P. (2005) Neural networks and M5 model trees in modelling water level-discharge relationship. Neurocomputing 63, 381-396.
    • (2005) Neurocomputing , vol.63 , pp. 381-396
    • Bhattacharya, B.1    Solomatine, D.P.2
  • 6
    • 33845580770 scopus 로고    scopus 로고
    • On linear genetic programming
    • University of Dortmund, Germany
    • Brameier, M. (2004) On linear genetic programming. PhD Thesis, University of Dortmund, Germany.
    • (2004) PhD Thesis
    • Brameier, M.1
  • 7
    • 84954358683 scopus 로고    scopus 로고
    • Jordan recurrent neural network versus IHACRES in modelling daily streamflows
    • Carcano, E. C., Bartolini, P., Muselli, M. & Piroddi, L. (2008) Jordan recurrent neural network versus IHACRES in modelling daily streamflows. J. Hydrol. 362, 291-307.
    • (2008) J. Hydrol , vol.362 , pp. 291-307
    • Carcano, E.C.1    Bartolini, P.2    Muselli, M.3    Piroddi, L.4
  • 8
    • 33744824379 scopus 로고    scopus 로고
    • A hybrid linear-neural model for river flow forecasting
    • doi: 10.1029/2005WR004072
    • Chetan, M. & Sudheer, K. P. (2006) A hybrid linear-neural model for river flow forecasting. Water Resour. Res. 2(4), doi: 10.1029/2005WR004072.
    • (2006) Water Resour. Res , vol.2 , Issue.4
    • Chetan, M.1    Sudheer, K.P.2
  • 9
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly, P., Anctil, F. & Bobee, B. (2000) Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol. 230, 244-257.
    • (2000) J. Hydrol , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 10
    • 0035450182 scopus 로고    scopus 로고
    • Multivariate reservoir inflow forecasting using temporal neural networks
    • Coulibaly, P., Anctil, F. & Bobee, B. (2001) Multivariate reservoir inflow forecasting using temporal neural networks. J. Hydrol. Engng ASCE 6(5), 367-376.
    • (2001) J. Hydrol. Engng ASCE , vol.6 , Issue.5 , pp. 367-376
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 11
    • 14844292558 scopus 로고    scopus 로고
    • Improving daily reservoir inflow forecasts with model combination
    • Coulibaly, P., Hache, M., Fortin, V. & Bobee, B. (2005) Improving daily reservoir inflow forecasts with model combination. J. Hydrol. Engng ASCE 10(2), 91-99.
    • (2005) J. Hydrol. Engng ASCE , vol.10 , Issue.2 , pp. 91-99
    • Coulibaly, P.1    Hache, M.2    Fortin, V.3    Bobee, B.4
  • 12
    • 40049111488 scopus 로고    scopus 로고
    • Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation
    • de Vos, N. J.& Rientjes, T.H.M. (2005) Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation. Hydrol. Earth System Sci. Disc. 2, 365-415.
    • (2005) Hydrol. Earth System Sci. Disc , vol.2 , pp. 365-415
    • de Vos, N.J.1    Rientjes, T.H.M.2
  • 13
    • 0242415241 scopus 로고    scopus 로고
    • Prediction and modelling of the rainfall-runoff transformation of a typical urban basin using ANN and GP
    • Dorado, J., Rabunal, J. R., Pazos, A., Rivero, D., Santos, A. & Puertas, J. (2003) Prediction and modelling of the rainfall-runoff transformation of a typical urban basin using ANN and GP. Appl. Arti. Int. 17, 329-343.
    • (2003) Appl. Arti. Int , vol.17 , pp. 329-343
    • Dorado, J.1    Rabunal, J.R.2    Pazos, A.3    Rivero, D.4    Santos, A.5    Puertas, J.6
  • 14
    • 0007545218 scopus 로고    scopus 로고
    • Application of Neural Networks and Genetic Programming to Rainfall-runoff Modelling
    • Danish Hydraulic Institute, HIT, June 1999, D2K-0699-1
    • Drecourt, J. P. (1999) Application of neural networks and genetic programming to rainfall-runoff modelling, Danish Hydraulic Institute, HIT, June 1999, D2K-0699-1.
    • (1999)
    • Drecourt, J.P.1
  • 15
    • 37249028164 scopus 로고    scopus 로고
    • Stream flowrate prediction using genetic programming model in a semi-arid coastal watershed
    • ASCE Walton, R. (Ed.) Anchorage, Alaska
    • Drunpob, A., Chang, N. B. & Beaman, M. (2005) Stream flowrate prediction using genetic programming model in a semi-arid coastal watershed. Proc. of World Water and Env. Resour. Congress-2005, ASCE Walton, R. (Ed.) Anchorage, Alaska; 15-19.
    • (2005) Proc. of World Water and Env. Resour. Congress-2005 , pp. 15-19
    • Drunpob, A.1    Chang, N.B.2    Beaman, M.3
  • 16
    • 42149160306 scopus 로고    scopus 로고
    • Machine Learning Technologies, Inc., Littleton, Colorado
    • Francone, F.D. (1998) Discipulus Owner's Manual. Machine Learning Technologies, Inc., Littleton, Colorado.
    • (1998) Discipulus Owner's Manual
    • Francone, F.D.1
  • 18
    • 70349753109 scopus 로고    scopus 로고
    • Linear genetic programming for time series prediction of daily flow rate
    • Guven, A. (2009) Linear genetic programming for time series prediction of daily flow rate. J. Earth Syst. Sci. 118(2),137-146.
    • (2009) J. Earth Syst. Sci , vol.118 , Issue.2 , pp. 137-146
    • Guven, A.1
  • 20
    • 2442639370 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded GA and ANN techniques
    • Jain, A. & Srinivasulu, S. (2004) Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded GA and ANN techniques. Water Resour. Res. 40(4), W04302.
    • (2004) Water Resour. Res , vol.40 , Issue.4
    • Jain, A.1    Srinivasulu, S.2
  • 21
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall runoff models
    • Jain, A., Sudheer, K. P. & Srinivasulu, S. (2003) Identification of physical processes inherent in artificial neural network rainfall runoff models. Hydrol. Processes 18(3), 571-581.
    • (2003) Hydrol. Processes , vol.18 , Issue.3 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 22
    • 0033197895 scopus 로고    scopus 로고
    • Application of ANN for reservoir inflow prediction and operation
    • Jain, S. K., Das, A. & Srivastava, D.K. (1999) Application of ANN for reservoir inflow prediction and operation. J. Water Resour. Plann. Manag. ASCE 125(5), 263-271.
    • (1999) J. Water Resour. Plann. Manag. ASCE , vol.125 , Issue.5 , pp. 263-271
    • Jain, S.K.1    Das, A.2    Srivastava, D.K.3
  • 23
    • 31444453851 scopus 로고    scopus 로고
    • Comparative analysis of data-driven and GIS based conceptual rainfall-runoff model
    • Jayawardena, A. W., Muttil, N. & Lee, J. H. W. (2006) Comparative analysis of data-driven and GIS based conceptual rainfall-runoff model. J. Hydrol. Engng ASCE 11(1), 1-11.
    • (2006) J. Hydrol. Engng ASCE , vol.11 , Issue.1 , pp. 1-11
    • Jayawardena, A.W.1    Muttil, N.2    Lee, J.H.W.3
  • 24
  • 25
    • 73549096397 scopus 로고    scopus 로고
    • Monthly reservoir inflow modelling using time lagged recurrent networks
    • Kote, A. S. & Jothiprakash, V. (2009) Monthly reservoir inflow modelling using time lagged recurrent networks. Int. J. Tomog. & Stat. 12(F09), 64-84.
    • (2009) Int. J. Tomog. & Stat , vol.12 , Issue.9 F , pp. 64-84
    • Kote, A.S.1    Jothiprakash, V.2
  • 27
    • 0017846358 scopus 로고
    • On a measure of lack of fit in time series models
    • Ljung, G. M. & Box, G. E. P. (1978) On a measure of lack of fit in time series models. Biometrica 65, 297-303.
    • (1978) Biometrica , vol.65 , pp. 297-303
    • Ljung, G.M.1    Box, G.E.P.2
  • 28
    • 78650509451 scopus 로고    scopus 로고
    • Comparison of data-driven modeling techniques for river flow forecasting
    • Londhe, S. & Charhate, S. (2010) Comparison of data-driven modeling techniques for river flow forecasting. Hydrol. Sci. J. 55(7), 1163-1174.
    • (2010) Hydrol. Sci. J , vol.55 , Issue.7 , pp. 1163-1174
    • Londhe, S.1    Charhate, S.2
  • 29
    • 0033957764 scopus 로고    scopus 로고
    • Neural network for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier, H. R. & Dandy, G.C. (2000) Neural network for the prediction and forecasting of water resources variables: A review of modeling issues and applications. Environ. Model. Softw. 15, 101-124.
    • (2000) Environ. Model. Softw , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 30
    • 34249787892 scopus 로고    scopus 로고
    • Seasonal reservoir inflow forecasting with low-frequency climatic indices: A comparison of data-driven methods
    • Muluye, G. Y. & Coulibaly, P. (2007) Seasonal reservoir inflow forecasting with low-frequency climatic indices: A comparison of data-driven methods. Hydrol. Sci. J. 52(3), 508-522.
    • (2007) Hydrol. Sci. J , vol.52 , Issue.3 , pp. 508-522
    • Muluye, G.Y.1    Coulibaly, P.2
  • 31
    • 33845384467 scopus 로고    scopus 로고
    • Neural network and genetic programming for modelling coastal algal blooms
    • Muttil, N. & Chau, K-W. (2006) Neural network and genetic programming for modelling coastal algal blooms. Int. J. Env. & Pollution 28, 223-238.
    • (2006) Int. J. Env. & Pollution , vol.28 , pp. 223-238
    • Muttil, N.1    Chau, K.-W.2
  • 32
    • 0004264236 scopus 로고
    • Forecasting monthly river flow time series
    • Nokes, D. J., Mcleod, I. & Hipel, K. W. (1985) Forecasting monthly river flow time series. Int. J. Forecasting, 1, 179-190.
    • (1985) Int. J. Forecasting , vol.1 , pp. 179-190
    • Nokes, D.J.1    McLeod, I.2    Hipel, K.W.3
  • 33
    • 33847229800 scopus 로고    scopus 로고
    • Influence of inflows modelling on management simulation of water resources system
    • Ochoa-Riviera, J. C., Garcia-Bartual, R.& Andreu, J. (2007) Influence of inflows modelling on management simulation of water resources system. J.Water Resour. Plann.& Manag. ASCE 133(2), 106-116.
    • J.Water Resour. Plann.& Manag. ASCE , vol.133 , Issue.2 , pp. 106-116
    • Ochoa-Riviera, J.C.1    Garcia-Bartual, R.2
  • 34
    • 69949188486 scopus 로고    scopus 로고
    • Prediction of daily precipitation using wavelet-neural networks
    • Partal, T. & Cigizoglu, H. K. (2009) Prediction of daily precipitation using wavelet-neural networks. Hydrol. Sci. J. 54(2), 234-246.
    • (2009) Hydrol. Sci. J , vol.54 , Issue.2 , pp. 234-246
    • Partal, T.1    Cigizoglu, H.K.2
  • 35
    • 69949143939 scopus 로고    scopus 로고
    • Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction
    • Pramanik, N. & Panda, R. K. (2009) Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction. Hydrol. Sci. J. 54(2), 247-260.
    • (2009) Hydrol. Sci. J , vol.54 , Issue.2 , pp. 247-260
    • Pramanik, N.1    Panda, R.K.2
  • 36
    • 0001495905 scopus 로고
    • Learning with continuous Classes
    • Adams & Sterling eds), Singapore: World Scientific
    • Quinlan, J. R. (1992) Learning with continuous Classes, Proc. 5th Australian Joint Conf. Artificial Intelligence, (Adams & Sterling eds), 343-348. Singapore: World Scientific.
    • (1992) Proc. 5th Australian Joint Conf. Artificial Intelligence , pp. 343-348
    • Quinlan, J.R.1
  • 37
    • 0029413038 scopus 로고
    • Multivariate modelling of water resources time series using artificial neural networks
    • Raman, H. & Sunilkumar, N. (1995) Multivariate modelling of water resources time series using artificial neural networks. Hydrol. Sci. J. 40(2), 145-163.
    • (1995) Hydrol. Sci. J , vol.40 , Issue.2 , pp. 145-163
    • Raman, H.1    Sunilkumar, N.2
  • 38
    • 0033535432 scopus 로고    scopus 로고
    • Anonlinear rainfall-runoff model using artificial neural network
    • Sajikumar, N. & Thandaveswara, B.S. (1999)Anonlinear rainfall-runoff model using artificial neural network. J. Hydrol. 216, 32-55.
    • (1999) J. Hydrol , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 39
    • 0027007933 scopus 로고
    • Conceptual basis of seasonal streamflow time series models
    • Salas, J. D. & Obeysekera, J. (1992) Conceptual basis of seasonal streamflow time series models. J. Hydrol. Engng ASCE 118(8), 1186-1194.
    • (1992) J. Hydrol. Engng ASCE , vol.118 , Issue.8 , pp. 1186-1194
    • Salas, J.D.1    Obeysekera, J.2
  • 40
    • 0032804627 scopus 로고    scopus 로고
    • A genetic programming approach to rainfall-runoff modelling
    • Savic, D. A., Walters, G. A. & Davidson, J. W. (1999) A genetic programming approach to rainfall-runoff modelling. Water Resour. Manag. 13, 219-231.
    • (1999) Water Resour. Manag , vol.13 , pp. 219-231
    • Savic, D.A.1    Walters, G.A.2    Davidson, J.W.3
  • 41
    • 16444365723 scopus 로고    scopus 로고
    • ANN based rainfall-runoff modelling: Comparison of network types
    • Senthilkumar, A. R., Sudheer, K. P., Jain, S. K. & Agarwal, P. K. (2005) ANN based rainfall-runoff modelling: Comparison of network types. Hydrol. Processes 19(6), 1277-1291.
    • (2005) Hydrol. Processes , vol.19 , Issue.6 , pp. 1277-1291
    • Senthilkumar, A.R.1    Sudheer, K.P.2    Jain, S.K.3    Agarwal, P.K.4
  • 42
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches
    • Sivakumar, B., Jayawardena, A.W. & Fernando, T. M.G.H. (2002) River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. J. Hydrol. 265(1/4), 225-245.
    • (2002) J. Hydrol , vol.265 , Issue.1-4 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.G.H.3
  • 43
    • 0037565156 scopus 로고    scopus 로고
    • Model trees as an alternative to neural networks in rainfall-runoff modelling
    • Solomatine, D. P. & Dulal, K. N. (2003) Model trees as an alternative to neural networks in rainfall-runoff modelling. Hydrol. Sci. J. 48(3), 399-411.
    • (2003) Hydrol. Sci. J , vol.48 , Issue.3 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 45
    • 10244261532 scopus 로고    scopus 로고
    • M5 model trees and neural networks: Application to flood forecasting in the upper reach of the Huai River in China
    • Solomatine, D. P. & Xue, Y. (2004) M5 model trees and neural networks: Application to flood forecasting in the upper reach of the Huai River in China. J. Hydrol. Engng ASCE 9(6), 491-501.
    • (2004) J. Hydrol. Engng ASCE , vol.9 , Issue.6 , pp. 491-501
    • Solomatine, D.P.1    Xue, Y.2
  • 46
    • 33750096150 scopus 로고    scopus 로고
    • Local and hybrid learning models in forecasting natural phenomena
    • Montreal, Canada
    • Solomatine, D. P. (2005) Local and hybrid learning models in forecasting natural phenomena. Proc. Int. IEEE Conf. Neural Networks, Montreal, Canada, 1716-1721.
    • (2005) Proc. Int. IEEE Conf. Neural Networks , pp. 1716-1721
    • Solomatine, D.P.1
  • 47
    • 34249775216 scopus 로고    scopus 로고
    • Development of a low-flow forecasting model using the M5 machine learning method
    • Štravs, L. & Brilly, M. (2007) Development of a low-flow forecasting model using the M5 machine learning method. Hydrol. Sci. J. 52(3), 466-477.
    • (2007) Hydrol. Sci. J , vol.52 , Issue.3 , pp. 466-477
    • Štravs, L.1    Brilly, M.2
  • 48
    • 1642333234 scopus 로고    scopus 로고
    • Explaining the internal behaviour of artificial neural network river flow models
    • Sudheer, K. P. & Jain, A. (2004) Explaining the internal behaviour of artificial neural network river flow models. Hydrol. Processes 18, 833-844.
    • (2004) Hydrol. Processes , vol.18 , pp. 833-844
    • Sudheer, K.P.1    Jain, A.2
  • 49
    • 0038105929 scopus 로고    scopus 로고
    • Radial basis function neural network for modelling rating curves
    • Sudheer, K. P. & Jain, S. K. (2003) Radial basis function neural network for modelling rating curves. J. Hydrol. Engng ASCE 8(3), 161-164.
    • (2003) J. Hydrol. Engng ASCE , vol.8 , Issue.3 , pp. 161-164
    • Sudheer, K.P.1    Jain, S.K.2
  • 50
    • 23044433719 scopus 로고    scopus 로고
    • Knowledge extraction from trained neural network river flow models
    • Sudheer, K. P. (2005) Knowledge extraction from trained neural network river flow models. J Hydrol. Engng ASCE 10(4), 264-269.
    • (2005) J Hydrol. Engng ASCE , vol.10 , Issue.4 , pp. 264-269
    • Sudheer, K.P.1
  • 51
    • 0037197571 scopus 로고    scopus 로고
    • A datadriven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer, K. P., Gosain, A. K. & Ramasastri, K. S. (2002) A datadriven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Processes 16(6), 1325-1330.
    • (2002) Hydrol. Processes , vol.16 , Issue.6 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 52
    • 0037470339 scopus 로고    scopus 로고
    • Improving peak flow estimates in artificial neural network river flow models
    • Sudheer, K. P., Nayak, P. C. & Ramasastri, K. S. (2003) Improving peak flow estimates in artificial neural network river flow models. Hydrol. Processes 17, 677-686.
    • (2003) Hydrol. Processes , vol.17 , pp. 677-686
    • Sudheer, K.P.1    Nayak, P.C.2    Ramasastri, K.S.3
  • 53
    • 47249103851 scopus 로고    scopus 로고
    • A nonlinear data-driven model for synthetic generation of annual streamflows
    • Sudheer, K. P., Srinivasan, K., Neelakantan, T. R. & Srinivas, V. V. (2008) A nonlinear data-driven model for synthetic generation of annual streamflows. Hydrol. Processes 22, 1831-1845.
    • (2008) Hydrol. Processes , vol.22 , pp. 1831-1845
    • Sudheer, K.P.1    Srinivasan, K.2    Neelakantan, T.R.3    Srinivas, V.V.4
  • 55
    • 0034174356 scopus 로고    scopus 로고
    • Some studies on hydrological forecasting using neural networks
    • Thirumalaiah, K. & Deo, M. C. (2000) Some studies on hydrological forecasting using neural networks. J Hydrol. Engng ASCE 5(2), 180-189.
    • (2000) J Hydrol. Engng ASCE , vol.5 , Issue.2 , pp. 180-189
    • Thirumalaiah, K.1    Deo, M.C.2
  • 56
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang, W. C., Chau, K. W., Cheng, C. T. & Qiu, L. (2009) A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 374(3-4), 294-306.
    • (2009) J. Hydrol , vol.374 , Issue.3-4 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 59
    • 65749118118 scopus 로고    scopus 로고
    • Methods to improve neural network performance in daily flow prediction
    • Wu, C. L., Chau, K. W. & Li, Y. S. (2009) Methods to improve neural network performance in daily flow prediction. J. Hydrol. 372, 80-93.
    • (2009) J. Hydrol , vol.372 , pp. 80-93
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 60
    • 0037200134 scopus 로고    scopus 로고
    • Short-term inflow forecasting using an artificial neural network model. Hydrol
    • Xu, Z. X. & Li, J. Y. (2002) Short-term inflow forecasting using an artificial neural network model. Hydrol. Processes 16, 2423-2439.
    • (2002) Processes , vol.16 , pp. 2423-2439
    • Xu, Z.X.1    Li, J.Y.2
  • 61
    • 77953977940 scopus 로고    scopus 로고
    • Prediction of daily maximum streamflow based on stochastic approaches
    • Yurekli, K., Kurunc, A. & Simsek, H. (2004) Prediction of daily maximum streamflow based on stochastic approaches. J. Spatial Hydrol. 4(2), 1-12.
    • (2004) J. Spatial Hydrol , vol.4 , Issue.2 , pp. 1-12
    • Yurekli, K.1    Kurunc, A.2    Simsek, H.3
  • 62
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using ANN
    • Zealand, C. M., Burn, D. H. & Simonovic, S. P. (1999) Short term streamflow forecasting using ANN. J. Hydrol. 214, 32-48.
    • (1999) J. Hydrol , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.