메뉴 건너뛰기




Volumn 15, Issue , 2009, Pages 84-96

Soft computing tools in rainfall-runoff modeling

Author keywords

Adaptive Neuro Fuzzy Inference System; Artificial Neural Network; Chaos Theory; Genetic Programming; Rainfall Runoff process; Soft Computing Technique; Support Vector Machine

Indexed keywords


EID: 84555210587     PISSN: 09715010     EISSN: 21643040     Source Type: Journal    
DOI: 10.1080/09715010.2009.10514970     Document Type: Article
Times cited : (9)

References (60)
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology II: Hydrologic applications
    • ASCE. 2000b. Artificial neural networks in hydrology II:hydrologic applications. Journal of Hydrologic Engineering, ASCE, 5 (No. 2):124–137.
    • (2000) Journal of Hydrologic Engineering, ASCE , vol.5 , Issue.2 , pp. 124-137
  • 3
    • 0034174280 scopus 로고    scopus 로고
    • Artificial Neural Networks in Hydrology I: Preliminary Concepts
    • ASCE. 2000a. Artificial Neural Networks in Hydrology I:Preliminary Concepts. Journal of Hydrologic Engineering, ASCE, 5 (No. 2):115–123.
    • (2000) Journal of Hydrologic Engineering, ASCE , vol.5 , Issue.2 , pp. 115-123
  • 8
    • 33746834358 scopus 로고    scopus 로고
    • Identification of Support Vector Machines for Runoff Modeling
    • Bray, M., and Han, D., 2004. Identification of Support Vector Machines for Runoff Modeling. Journal of Hydroinformatics, 6:265–280.
    • (2004) Journal of Hydroinformatics , vol.6 , pp. 265-280
    • Bray, M.1    Han, D.2
  • 10
    • 0035340711 scopus 로고    scopus 로고
    • A Counterpropogation Fuzzy-Neural Network Modeling Approaches to Real Time Stream Flow Prediction
    • Chang, F. J., and Chen, Y. C., 2001. A Counterpropogation Fuzzy-Neural Network Modeling Approaches to Real Time Stream Flow Prediction. Journal of Hydrology, 245:153–164.
    • (2001) Journal of Hydrology , vol.245 , pp. 153-164
    • Chang, F.J.1    Chen, Y.C.2
  • 11
    • 31044455061 scopus 로고    scopus 로고
    • Integration Neural Network with Conceptual Models in Rainfall Runoff Modeling
    • Chen, J., and Adams, B., 2006. Integration Neural Network with Conceptual Models in Rainfall Runoff Modeling. Journal of Hydrology, 318:232–249.
    • (2006) Journal of Hydrology , vol.318 , pp. 232-249
    • Chen, J.1    Adams, B.2
  • 12
    • 0036845179 scopus 로고    scopus 로고
    • Combining a fuzzy optimal models with a genetic algorithms solve multi objective rainfall-runoff model calibration
    • Cheng, C. T., Ou, C. P., and Chau, K. W., 2002. Combining a fuzzy optimal models with a genetic algorithms solve multi objective rainfall-runoff model calibration. Journal of Hydrology, 26 (No. 3):72–86.
    • (2002) Journal of Hydrology , vol.26 , Issue.3 , pp. 72-86
    • Cheng, C.T.1    Ou, C.P.2    Chau, K.W.3
  • 18
    • 17044442585 scopus 로고    scopus 로고
    • Development of a Fuzzy Logic Based Rainfall-Runoff Model
    • Hundecha, Y., Bardossy, A., and Theisen, H. W., 2001. Development of a Fuzzy Logic Based Rainfall-Runoff Model. Hydrological Sciences Journal, 46 (No. 3):363–377.
    • (2001) Hydrological Sciences Journal , vol.46 , Issue.3 , pp. 363-377
    • Hundecha, Y.1    Bardossy, A.2    Theisen, H.W.3
  • 20
    • 0026925677 scopus 로고
    • Self-Learning Fuzzy Controllers Based On Temporal Back Propagation
    • Jang, J. S. R., 1992. Self-Learning Fuzzy Controllers Based On Temporal Back Propagation. IEEE, Trans. Neural Networks, 3 (No. 5):714–723.
    • (1992) IEEE, Trans. Neural Networks , vol.3 , Issue.5 , pp. 714-723
    • Jang, J.S.R.1
  • 21
    • 31444453851 scopus 로고    scopus 로고
    • Comparative Analysis of Data-Driven and GIS-Based Conceptual Rainfall-Runoff Model
    • Jayawardena, A. W., Muttil, N., and Lee, J. H. W., 2006. Comparative Analysis of Data-Driven and GIS-Based Conceptual Rainfall-Runoff Model. Journal of Hydrologic Engineering, ASCE, 11 (No. 1):1–11.
    • (2006) Journal of Hydrologic Engineering, ASCE , vol.11 , Issue.1 , pp. 1-11
    • Jayawardena, A.W.1    Muttil, N.2    Lee, J.H.W.3
  • 27
    • 85024566855 scopus 로고    scopus 로고
    • Development of an Interactive Software for Precipitation Analysis
    • Mohan, S., and Jothiprakash, V., 2002. Development of an Interactive Software for Precipitation Analysis. Journal of Indian Water Resources Society, 22 (No. 2):37–46.
    • (2002) Journal of Indian Water Resources Society , vol.22 , Issue.2 , pp. 37-46
    • Mohan, S.1    Jothiprakash, V.2
  • 28
    • 1942490118 scopus 로고    scopus 로고
    • A Neuro-Fuzzy Computing Technique for Modeling Hydrological Time Series
    • Nayak, P. C., Sudheer, K. P., Rangan, D. M., and Ramasastri, K. S., 2004. A Neuro-Fuzzy Computing Technique for Modeling Hydrological Time Series. Journal of Hydrology, 291:52–66.
    • (2004) Journal of Hydrology , vol.291 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 29
    • 0347877505 scopus 로고
    • The Application of Genetic Programming to the Investigation of Short, Noisy, Chaotic Data Series. In: Evolutionary Programming. Lecture Notes in Computer Sciences, T. C
    • Springer-Verlag
    • Oakley, N., and Howard, E., 1994. The Application of Genetic Programming to the Investigation of Short, Noisy, Chaotic Data Series. In:Evolutionary Programming. Lecture Notes in Computer Sciences, T. C. Fogarty (Editor),:320–332. Springer-Verlag
    • (1994) Fogarty (Editor) , pp. 320-332
    • Oakley, N.1    Howard, E.2
  • 32
    • 0347135926 scopus 로고    scopus 로고
    • Modeling of the daily Rainfall-Runoff relationship with Artificial Neural Network
    • No. (1–4)
    • Rajurkar, M. P., Kothyari, U. C., and Chaube, U. C., 2004. Modeling of the daily Rainfall-Runoff relationship with Artificial Neural Network. Journal of Hydrology, 285:96–113. No. (1–4)
    • (2004) Journal of Hydrology , vol.285 , pp. 96-113
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 33
    • 28344455955 scopus 로고    scopus 로고
    • An Artificial Neural Network Model for Generating Hydrograph from Hydro-Meteorological Parameters
    • Sajjad, A., Slobodan, P., and Simonovicb. 2005. An Artificial Neural Network Model for Generating Hydrograph from Hydro-Meteorological Parameters. Journal of Hydrology, 315:236–251.
    • (2005) Journal of Hydrology , vol.315 , pp. 236-251
    • Sajjad, A.1    Slobodan, P.2    Simonovicb3
  • 34
    • 0032804627 scopus 로고    scopus 로고
    • A Genetic Programming Approach to Rainfall-Runoff Modeling
    • Savic, D. A., Walters, G. A., and Davidson, J. W., 1999. A Genetic Programming Approach to Rainfall-Runoff Modeling. Water Resources Management, 13:219–231.
    • (1999) Water Resources Management , vol.13 , pp. 219-231
    • Savic, D.A.1    Walters, G.A.2    Davidson, J.W.3
  • 35
    • 0033381989 scopus 로고    scopus 로고
    • Applying Soft Computing Approaches to River Level Forecasting
    • No, 5
    • See, L., and Openshaw, S., 1999. Applying Soft Computing Approaches to River Level Forecasting. Hydrological Sciences Journal, 44:763–779. No, 5
    • (1999) Hydrological Sciences Journal , vol.44 , pp. 763-779
    • See, L.1    Openshaw, S.2
  • 36
    • 0345404342 scopus 로고    scopus 로고
    • Fuzzy Algorithm for Estimation of Solar Irradiation from Sunshine Duration
    • Sen, Z., 1998. Fuzzy Algorithm for Estimation of Solar Irradiation from Sunshine Duration. Solar Energy, 63 (No. 1):39–49.
    • (1998) Solar Energy , vol.63 , Issue.1 , pp. 39-49
    • Sen, Z.1
  • 37
    • 0031259688 scopus 로고    scopus 로고
    • Methods for Combining the Outputs of Different Rainfall-Runoff Models
    • Shamseldin, A. Y., O'Connor, K. M., and Liang, G. C., 1997. Methods for Combining the Outputs of Different Rainfall-Runoff Models. Journal of Hydrology, 197:203–229.
    • (1997) Journal of Hydrology , vol.197 , pp. 203-229
    • Shamseldin, A.Y.1    O'Connor, K.M.2    Liang, G.C.3
  • 40
    • 0032999119 scopus 로고    scopus 로고
    • Singapore Rainfall Behavior: Chaotic? Journal of Hydrologic Engineering
    • Sivakumar, B., Liong, S. Y, Liaw, C. Y., and Phoon, K. K., 1999. Singapore Rainfall Behavior:Chaotic? Journal of Hydrologic Engineering. ASCE, 4 (No. 1):38–48.
    • (1999) ASCE , vol.4 , Issue.1 , pp. 38-48
    • Sivakumar, B.1    Liong, S.Y.2    Liaw, C.Y.3    Phoon, K.K.4
  • 42
    • 10244261532 scopus 로고    scopus 로고
    • M5 Model Tree and Neural Networks; Application to Flood Forecasting in Upper Reach of Huai River In China
    • Solomatine, D. P, and Xue, Y., 2004. M5 Model Tree and Neural Networks; Application to Flood Forecasting in Upper Reach of Huai River In China. Hydrological Sciences Journal, 9 (No. 6):491–501.
    • (2004) Hydrological Sciences Journal , vol.9 , Issue.6 , pp. 491-501
    • Solomatine, D.P.1    Xue, Y.2
  • 44
    • 33644636765 scopus 로고    scopus 로고
    • A Comparative Analysis of training Methods for Artificial Neural Network Rainfall Runoff Models
    • Srinivasulu, S., and Jain, A., 2006. A Comparative Analysis of training Methods for Artificial Neural Network Rainfall Runoff Models. Applied Soft Computing, Elsevier, 6 (No. 3):295–306.
    • (2006) Applied Soft Computing, Elsevier , vol.6 , Issue.3 , pp. 295-306
    • Srinivasulu, S.1    Jain, A.2
  • 45
    • 0037197571 scopus 로고    scopus 로고
    • A Data Driven Algorithm for Constructing ANN Based Rainfall-Runoff Models
    • Sudheer, K. P., Gosain, A. K., and Ramasastri, K. S., 2002. A Data Driven Algorithm for Constructing ANN Based Rainfall-Runoff Models. Hydrological Processes, 16 (No. 6):1325–1330.
    • (2002) Hydrological Processes , vol.16 , Issue.6 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 47
    • 0021892282 scopus 로고
    • Fuzzy Identification of Systems and its Application to modeling and control
    • Takagi, T., and Sugeno, M., 1985. Fuzzy Identification of Systems and its Application to modeling and control. IEEE Transactions System Man and Cybernetics, 15 (No. 1):116–132.
    • (1985) IEEE Transactions System Man and Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 48
    • 0034174356 scopus 로고    scopus 로고
    • Hydrological Forecasting using Neural Networks
    • Thirumalaiah, K., and Deo, M. C., 2000. Hydrological Forecasting using Neural Networks. Journal of Hydrologic Engineering, 5 (No. 2):180–189.
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 180-189
    • Thirumalaiah, K.1    Deo, M.C.2
  • 50
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-Runoff Modeling Using Artificial Neural networks
    • Tokar, A. S., and Johnson, P. A., 1999. Rainfall-Runoff Modeling Using Artificial Neural networks. Journal of Hydrologic Engineering, ASCE, 4 (No. 3):232–239.
    • (1999) Journal of Hydrologic Engineering, ASCE , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 53
    • 33847223427 scopus 로고    scopus 로고
    • Using Time Delay Neural Network Combined with Genetic Algorithm to Predict Runoff Level of Linsham Watershed
    • Wang, X. K., Lu, W. Z., Cao, S. Y., and Fang, D., 2007. Using Time Delay Neural Network Combined with Genetic Algorithm to Predict Runoff Level of Linsham Watershed. Sinchuan, China, Journal of Hydrologic Engineering, ASCE, 12 (No. 2):231–236.
    • (2007) Sinchuan, China, Journal of Hydrologic Engineering, ASCE , vol.12 , Issue.2 , pp. 231-236
    • Wang, X.K.1    Lu, W.Z.2    Cao, S.Y.3    Fang, D.4
  • 55
    • 0034306804 scopus 로고    scopus 로고
    • Application of Gray and Fuzzy Method for Rainfall Forecasting
    • Yu, P. S., Chen, C. J., and Chen, S. J., 2000. Application of Gray and Fuzzy Method for Rainfall Forecasting. Journal of Hydrologic Engineering, ASCE, 5 (No. 40):339–345.
    • (2000) Journal of Hydrologic Engineering, ASCE , vol.5 , Issue.40 , pp. 339-345
    • Yu, P.S.1    Chen, C.J.2    Chen, S.J.3
  • 56
    • 34248666540 scopus 로고
    • Fuzzy Sets
    • Zadeh, L. A., 1965. Fuzzy Sets. Information Control, 8 (No. 3):338–353.
    • (1965) Information Control , vol.8 , Issue.3 , pp. 338-353
    • Zadeh, L.A.1
  • 58
    • 0033019602 scopus 로고    scopus 로고
    • Short Term Stream Flow Forecasting using Artificial Neural Networks
    • Zealand, C., Burn, D. H., and Simonovic, S. P., 1999. Short Term Stream Flow Forecasting using Artificial Neural Networks. Journal of hydrology, 214:32–48.
    • (1999) Journal of hydrology , vol.214 , pp. 32-48
    • Zealand, C.1    Burn, D.H.2    Simonovic, S.P.3
  • 59
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of Watershed Runoff Using Bayesian Concepts and Modular Neural Networks
    • Zhang, B., and Govindraju, R. S., 2000. Prediction of Watershed Runoff Using Bayesian Concepts and Modular Neural Networks. Water Resources Research, 36 (No. 3):753–762.
    • (2000) Water Resources Research , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindraju, R.S.2
  • 60
    • 0000251270 scopus 로고
    • Comparison between Fuzzy Reasoning and Neural Network Method to Forecast Runoff Discharge
    • Zhu, M. L., and Fujita, M., 1994. Comparison between Fuzzy Reasoning and Neural Network Method to Forecast Runoff Discharge. Journal of Hydro science and Hydraulic Engineering, 12 (No. 2):131–141.
    • (1994) Journal of Hydro science and Hydraulic Engineering , vol.12 , Issue.2 , pp. 131-141
    • Zhu, M.L.1    Fujita, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.