메뉴 건너뛰기




Volumn 19, Issue 4, 2005, Pages 955-968

Fuzzy computing based rainfall-runoff model for real time flood forecasting

Author keywords

Clustering algorithm; Flood forecasting; Fuzzy modelling

Indexed keywords

CATCHMENTS; DATA ACQUISITION; FUZZY CONTROL; MATHEMATICAL MODELS; PRECIPITATION (METEOROLOGY); RAIN; REAL TIME SYSTEMS; RUNOFF; SENSITIVITY ANALYSIS; STREAM FLOW; WEATHER FORECASTING;

EID: 14844352523     PISSN: 08856087     EISSN: None     Source Type: Journal    
DOI: 10.1002/hyp.5553     Document Type: Article
Times cited : (164)

References (33)
  • 2
    • 0033105287 scopus 로고    scopus 로고
    • Model selection in neural networks
    • Anders U, Korn O. 1999. Model selection in neural networks. Neural Networks 12: 309-323.
    • (1999) Neural Networks , vol.12 , pp. 309-323
    • Anders, U.1    Korn, O.2
  • 3
    • 0002540279 scopus 로고    scopus 로고
    • A discussion of distributed hydrological modelling
    • Abbott MB, Refsgarrd JC (eds). Kluwer: Dordecht
    • Beven KJ. 1996a. A discussion of distributed hydrological modelling. In Distributed Hydrological Modelling, Abbott MB, Refsgarrd JC (eds). Kluwer: Dordecht; 255-278.
    • (1996) Distributed Hydrological Modelling , pp. 255-278
    • Beven, K.J.1
  • 4
    • 0002540279 scopus 로고    scopus 로고
    • Response to comments on A discussion of distributed hydrological modelling by JC Refsgarrd et al
    • Abbott MB, Refsgarrd JC (eds). Kluwer: Dordecht
    • Beven KJ. 1996b. Response to comments on A discussion of distributed hydrological modelling by JC Refsgarrd et al. In Distributed Hydrological Modelling, Abbott MB, Refsgarrd JC (eds). Kluwer: Dordecht; 289-296.
    • (1996) Distributed Hydrological Modelling , pp. 289-296
    • Beven, K.J.1
  • 5
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with neural network model
    • Campolo M, Andreussi P, Soldati A. 1999. River flood forecasting with neural network model. Water Resources Research 35(4): 1191-1197.
    • (1999) Water Resources Research , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 6
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu S. 1994. Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems 2(3): 267-278.
    • (1994) Journal of Intelligent and Fuzzy Systems , vol.2 , Issue.3 , pp. 267-278
    • Chiu, S.1
  • 8
    • 0001083304 scopus 로고
    • A criterion of efficiency for rainfall-runoff models
    • Garrick M, Cunnane C, Nash JE. 1978. A criterion of efficiency for rainfall-runoff models. Journal of Hydrology 36: 375-381.
    • (1978) Journal of Hydrology , vol.36 , pp. 375-381
    • Garrick, M.1    Cunnane, C.2    Nash, J.E.3
  • 9
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K, Gupta VH, Soorooshian S. 1995. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research 31 (10): 2517-2530.
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, V.H.2    Soorooshian, S.3
  • 12
    • 0036640826 scopus 로고    scopus 로고
    • Evaluation of short-term water demand forecast modeling techniques: Conventional methods versus AI
    • Jain A, Ormsbee LE. 2002. Evaluation of short-term water demand forecast modeling techniques: conventional methods versus AI. Journal of the American Water Works Association 94(7): 64-72.
    • (2002) Journal of the American Water Works Association , vol.94 , Issue.7 , pp. 64-72
    • Jain, A.1    Ormsbee, L.E.2
  • 13
    • 0035494446 scopus 로고    scopus 로고
    • Short-term water demand forecast modeling at IIT Kanpur using artificial neural networks
    • Jain A, Varshney AK, Joshi UC. 2001. Short-term water demand forecast modeling at IIT Kanpur using artificial neural networks. Water Resources Management 15(5): 299-321.
    • (2001) Water Resources Management , vol.15 , Issue.5 , pp. 299-321
    • Jain, A.1    Varshney, A.K.2    Joshi, U.C.3
  • 15
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation
    • Legates DR, McCabe Jr. GJ. 1999. Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation. Water Resources Research 35(1): 233-241.
    • (1999) Water Resources Research , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe Jr., G.J.2
  • 17
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models: 1. A discussion of principles
    • Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models: 1. A discussion of principles. Journal of Hydrology 10: 282-290.
    • (1970) Journal of Hydrology , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 18
    • 0035879624 scopus 로고    scopus 로고
    • Multivariate nonlinear prediction of river flows
    • Porporato A, Ridolfi L. 2001. Multivariate nonlinear prediction of river flows. Journal of Hydrology 248: 109-122.
    • (2001) Journal of Hydrology , vol.248 , pp. 109-122
    • Porporato, A.1    Ridolfi, L.2
  • 19
    • 0031581547 scopus 로고    scopus 로고
    • Water flow modeling in the unsaturated zone with imprecise parameters using a fuzzy approach
    • Schulz K, Huwe B. 1997. Water flow modeling in the unsaturated zone with imprecise parameters using a fuzzy approach. Journal of Hydrology 201: 211-229.
    • (1997) Journal of Hydrology , vol.201 , pp. 211-229
    • Schulz, K.1    Huwe, B.2
  • 20
    • 0033118690 scopus 로고    scopus 로고
    • Parameter uncertainty in chemical equilibrium calculations using fuzzy set theory
    • Schulz K, Huwe B, Peiffer S. 1999. Parameter uncertainty in chemical equilibrium calculations using fuzzy set theory. Journal of Hydrology 217: 119-134.
    • (1999) Journal of Hydrology , vol.217 , pp. 119-134
    • Schulz, K.1    Huwe, B.2    Peiffer, S.3
  • 21
    • 0033381989 scopus 로고    scopus 로고
    • Applying soft computing approaches to river level forecasting
    • See L, Openshaw S. 1999. Applying soft computing approaches to river level forecasting. Hydrological Sciences Journal 44(5): 763-779.
    • (1999) Hydrological Sciences Journal , vol.44 , Issue.5 , pp. 763-779
    • See, L.1    Openshaw, S.2
  • 22
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modeling
    • Shamseldin AY. 1997. Application of a neural network technique to rainfall-runoff modeling. Journal of Hydrology 199: 272-294.
    • (1997) Journal of Hydrology , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 23
    • 0034451729 scopus 로고    scopus 로고
    • Machine supported development of fuzzy-flood forecast systems
    • Potsdam, PIK Report 65, Bronstert A, Bismuth C, Menzel L (eds), Reprint of Proceedings
    • Stuber M, Gemmar P, Greving M. 2000. Machine supported development of fuzzy-flood forecast systems. European Conference on Advances in Flood Research, Potsdam, PIK Report 65, Bronstert A, Bismuth C, Menzel L (eds), Reprint of Proceedings, Vol. 2; 504-515.
    • (2000) European Conference on Advances in Flood Research , vol.2 , pp. 504-515
    • Stuber, M.1    Gemmar, P.2    Greving, M.3
  • 25
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer KP, Gosain AK, Ramasastri KS. 2002. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrological Processes 16: 1325-1330.
    • (2002) Hydrological Processes , vol.16 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 26
    • 0037470339 scopus 로고    scopus 로고
    • Improving peak flow estimates in artificial neural network river flow models
    • Sudheer KP, Nayak PC, Ramasastri KS. 2003. Improving peak flow estimates in artificial neural network river flow models. Hydrological Processes 17(1): 677-686.
    • (2003) Hydrological Processes , vol.17 , Issue.1 , pp. 677-686
    • Sudheer, K.P.1    Nayak, P.C.2    Ramasastri, K.S.3
  • 27
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • Takagi T, Sugeno M. 1985. Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on Systems, Man and Cybernetics 15(1): 116-132.
    • (1985) IEEE Transactions on Systems, Man and Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 29
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural network and conceptual models
    • American Society of Civil Engineers
    • Tokar AS, Markus M. 2000. Precipitation-runoff modeling using artificial neural network and conceptual models. Journal of Hydrologic Engineering, American Society of Civil Engineers 5(2): 156-161.
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 32
    • 0000251270 scopus 로고
    • Comparison between fuzzy reasoning and neural network method to forecast runoff discharge
    • Zhu M-L, Fujita M. 1994. Comparison between fuzzy reasoning and neural network method to forecast runoff discharge. Journal of Hydroscience and Hydraulic Engineering 12(2): 131-141.
    • (1994) Journal of Hydroscience and Hydraulic Engineering , vol.12 , Issue.2 , pp. 131-141
    • Zhu, M.-L.1    Fujita, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.