메뉴 건너뛰기




Volumn 136, Issue 10, 2010, Pages 715-723

Evapotranspiration modeling using linear genetic programming technique

Author keywords

Evapotranspiration modeling; Linear genetic programming; Neural networks; Support vector regression

Indexed keywords

ABSOLUTE ERROR; AIR TEMPERATURE; ARTIFICIAL NEURAL NETWORK; CALIFORNIA; CLIMATIC DATA; COMPARISON RESULT; DETERMINATION COEFFICIENTS; EMPIRICAL MODEL; HARGREAVES; IRRIGATION MANAGEMENT; LINEAR GENETIC PROGRAMMING; PENMAN-MONTEITH EQUATIONS; REFERENCE EVAPOTRANSPIRATION; RELATIVE HUMIDITIES; RITCHIE; ROOT-MEAN SQUARE ERRORS; SUPPORT VECTOR REGRESSION; SUPPORT VECTOR REGRESSIONS; WIND SPEED; WINDSOR;

EID: 77956821935     PISSN: 07339437     EISSN: None     Source Type: Journal    
DOI: 10.1061/(ASCE)IR.1943-4774.0000244     Document Type: Article
Times cited : (54)

References (47)
  • 1
    • 0003491818 scopus 로고    scopus 로고
    • Crop evapotranspiration guidelines for computing crop water requirements
    • Food and Agriculture Organization of the United Nations, Rome, Italy.
    • Allen R.G. Pereira L.S. Raes D. Smith M. Crop evapotranspiration guidelines for computing crop water requirements. FAO irrigation and drainage, Paper No. 56 1998, Food and Agriculture Organization of the United Nations, Rome, Italy.
    • (1998) FAO irrigation and drainage, Paper No. 56
    • Allen, R.G.1    Pereira, L.S.2    Raes, D.3    Smith, M.4
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrological applications
    • ASCE Task Committee, JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2000)5:2(124).
    • Artificial neural networks in hydrology. II: Hydrological applications. J. Hydrol. Eng. 2000, 5(2):124-137. ASCE Task Committee, JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2000)5:2(124).
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
  • 3
    • 52649094242 scopus 로고    scopus 로고
    • An explicit neural network formulation for evapotranspiration
    • HSJODN, 0262-6667, 10.1623/hysj.53.4.893.
    • Aytek A. Guven A. Yüce M.I. Aksoy H. An explicit neural network formulation for evapotranspiration. Hydrol. Sci. J. 2008, 53(4):893-904. HSJODN, 0262-6667, 10.1623/hysj.53.4.893.
    • (2008) Hydrol. Sci. J. , vol.53 , Issue.4 , pp. 893-904
    • Aytek, A.1    Guven, A.2    Yüce, M.I.3    Aksoy, H.4
  • 4
    • 39849091610 scopus 로고    scopus 로고
    • A genetic programming approach to suspended sediment modeling
    • JHYDA7, 0022-1694, 10.1016/j.jhydrol.2007.12.005.
    • Aytek A. Kişi T. A genetic programming approach to suspended sediment modeling. J. Hydrol. 2008, 351:288-298. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2007.12.005.
    • (2008) J. Hydrol. , vol.351 , pp. 288-298
    • Aytek, A.1    Kişi, T.2
  • 5
    • 0034285035 scopus 로고    scopus 로고
    • Data mining and knowledge discovery in sediment transport
    • CCIEFR, 1093-9687, 10.1111/0885-9507.00202.
    • Babovic V. Data mining and knowledge discovery in sediment transport. Comput. Aided Civ. Infrastruct. Eng. 2000, 15(5):383-389. CCIEFR, 1093-9687, 10.1111/0885-9507.00202.
    • (2000) Comput. Aided Civ. Infrastruct. Eng. , vol.15 , Issue.5 , pp. 383-389
    • Babovic, V.1
  • 6
    • 0242647831 scopus 로고    scopus 로고
    • Declarative and preferential bias in GEP-based scientific discovery
    • 10.1023/A:1014596120381.
    • Babovic V. Keijzer M. Declarative and preferential bias in GEP-based scientific discovery. Genetic Programming and Evolvable Machines 2002, 3(1):41-79. 10.1023/A:1014596120381.
    • (2002) Genetic Programming and Evolvable Machines , vol.3 , Issue.1 , pp. 41-79
    • Babovic, V.1    Keijzer, M.2
  • 7
    • 0242479473 scopus 로고    scopus 로고
    • Automatic discovery of settling velocity equations
    • D2K Technical Rep. No.D2K-0201-1, Danish Technical Research Council (STVF).
    • Babovic V. Keijzer M. Aguilera D.R. Harrington J. Automatic discovery of settling velocity equations. 2001, D2K Technical Rep. No.D2K-0201-1, Danish Technical Research Council (STVF).
    • (2001)
    • Babovic, V.1    Keijzer, M.2    Aguilera, D.R.3    Harrington, J.4
  • 10
    • 33845580770 scopus 로고    scopus 로고
    • On linear genetic programming
    • Ph.D. thesis, Univ. of Dortmund, Germany.
    • Brameier M. On linear genetic programming. 2004, Ph.D. thesis, Univ. of Dortmund, Germany.
    • (2004)
    • Brameier, M.1
  • 11
    • 0035247432 scopus 로고    scopus 로고
    • A comparison of linear genetic programming and neural networks in medical data mining
    • ITEVF5, 1089-778X, 10.1109/4235.910462.
    • Brameier M. Banzhaf W. A comparison of linear genetic programming and neural networks in medical data mining. IEEE Trans. Evol. Comput. 2001, 5:17-26. ITEVF5, 1089-778X, 10.1109/4235.910462.
    • (2001) IEEE Trans. Evol. Comput. , vol.5 , pp. 17-26
    • Brameier, M.1    Banzhaf, W.2
  • 13
    • 0345358243 scopus 로고    scopus 로고
    • A rainfall-runoff model using genetic programming
    • Centre for Systems and Control Engineering Rep. No.97/03, School of Engineering, Univ. of Exeter, Exeter, U.K.
    • Cousin N. Savic D.A. A rainfall-runoff model using genetic programming. 1997Centre for Systems and Control Engineering Rep. No.97/03, School of Engineering, Univ. of Exeter, Exeter, U.K.
    • (1997)
    • Cousin, N.1    Savic, D.A.2
  • 14
    • 0242415241 scopus 로고    scopus 로고
    • Prediction and modelling of the rainfall-runoff transformation of a typical urban basin using ANN and GP
    • 0883-9514.
    • Dorado J. Rabunal J.R. Pazos A. Rivero D. Santos A. Puertas J. Prediction and modelling of the rainfall-runoff transformation of a typical urban basin using ANN and GP. Appl. Artif. Intell. 2003, 17:329-343. 0883-9514.
    • (2003) Appl. Artif. Intell. , vol.17 , pp. 329-343
    • Dorado, J.1    Rabunal, J.R.2    Pazos, A.3    Rivero, D.4    Santos, A.5    Puertas, J.6
  • 15
    • 0007545218 scopus 로고    scopus 로고
    • Application of neural networks and genetic programming to rainfall-runoff modeling
    • D2K Technical Rep. No.0699-1-1, Danish Hydraulic Institute, Hørsholm, Denmark.
    • Drecourt J.P. Application of neural networks and genetic programming to rainfall-runoff modeling. 1999, D2K Technical Rep. No.0699-1-1, Danish Hydraulic Institute, Hørsholm, Denmark.
    • (1999)
    • Drecourt, J.P.1
  • 16
    • 1842424456 scopus 로고    scopus 로고
    • Extending the boundaries of design optimization by integrating fast optimization techniques with machine-code-based, linear genetic programming
    • ISIJBC, 0020-0255, 10.1016/j.ins.2003.05.006.
    • Francone F.D. Deschaine L.M. Extending the boundaries of design optimization by integrating fast optimization techniques with machine-code-based, linear genetic programming. Inf. Sci. (N.Y.) 2004, 161:99-120. ISIJBC, 0020-0255, 10.1016/j.ins.2003.05.006.
    • (2004) Inf. Sci. (N.Y.) , vol.161 , pp. 99-120
    • Francone, F.D.1    Deschaine, L.M.2
  • 17
    • 32444435850 scopus 로고    scopus 로고
    • Using genetic programming to determine Chezy resistance coefficient in corrugated channels
    • ZZZZZZ, 1464-7141.
    • Giustolisi O. Using genetic programming to determine Chezy resistance coefficient in corrugated channels. J. Hydroinform. 2004, 6(3):157-173. ZZZZZZ, 1464-7141.
    • (2004) J. Hydroinform. , vol.6 , Issue.3 , pp. 157-173
    • Giustolisi, O.1
  • 18
    • 70349753109 scopus 로고    scopus 로고
    • Linear genetic programming for time-series modeling of daily flow rate
    • 10.1007/s12040-009-0022-9.
    • Guven A. Linear genetic programming for time-series modeling of daily flow rate. Earth System Science 2009, 118(2):137-146. 10.1007/s12040-009-0022-9.
    • (2009) Earth System Science , vol.118 , Issue.2 , pp. 137-146
    • Guven, A.1
  • 19
    • 68349106166 scopus 로고    scopus 로고
    • Genetic programming-based empirical model for daily reference evapotranspiration estimation
    • 10.1002/clen.200800009.
    • Guven A. Aytek A. Yuce M.I. Aksoy H. Genetic programming-based empirical model for daily reference evapotranspiration estimation. Clean-Soil,Air,Water 2007, 36(10-11):905-912. 10.1002/clen.200800009.
    • (2007) Clean-Soil,Air,Water , vol.36 , Issue.10-11 , pp. 905-912
    • Guven, A.1    Aytek, A.2    Yuce, M.I.3    Aksoy, H.4
  • 20
    • 68749103188 scopus 로고    scopus 로고
    • Linear genetic programming for prediction of circular pile scour
    • OCENBQ, 0029-8018, 10.1016/j.oceaneng.2009.05.010.
    • Guven A. Azamathulla H. Zakaria N.A. Linear genetic programming for prediction of circular pile scour. Ocean Eng. 2009, 36(12-13):985-991. OCENBQ, 0029-8018, 10.1016/j.oceaneng.2009.05.010.
    • (2009) Ocean Eng. , vol.36 , Issue.12-13 , pp. 985-991
    • Guven, A.1    Azamathulla, H.2    Zakaria, N.A.3
  • 21
    • 54249085849 scopus 로고    scopus 로고
    • Prediction of local scour downstream of grade-control structures using neural networks
    • JHEND8, 0733-9429, 10.1061/(ASCE)0733-9429(2008)134:11(1656).
    • Guven A. Gunal M. Prediction of local scour downstream of grade-control structures using neural networks. J. Hydraul. Eng. 2008a, 134(11):1656-1660. JHEND8, 0733-9429, 10.1061/(ASCE)0733-9429(2008)134:11(1656).
    • (2008) J. Hydraul. Eng. , vol.134 , Issue.11 , pp. 1656-1660
    • Guven, A.1    Gunal, M.2
  • 22
    • 41749119185 scopus 로고    scopus 로고
    • Genetic programming approach for prediction of local scour downstream hydraulic structures
    • JIDEDH, 0733-9437, 10.1061/(ASCE)0733-9437(2008)134:2(241).
    • Guven A. Gunal M. Genetic programming approach for prediction of local scour downstream hydraulic structures. J. Irrig. Drain. Eng. 2008b, 134(2):241-249. JIDEDH, 0733-9437, 10.1061/(ASCE)0733-9437(2008)134:2(241).
    • (2008) J. Irrig. Drain. Eng. , vol.134 , Issue.2 , pp. 241-249
    • Guven, A.1    Gunal, M.2
  • 23
    • 34047131239 scopus 로고    scopus 로고
    • Prediction of pressure fluctuations on stilling basins
    • CJCEB8, 0315-1468, 10.1139/L06-101.
    • Güven A. Gunal M. Cevik A. Prediction of pressure fluctuations on stilling basins. Can. J. Civ. Eng. 2006, 33(11):1379-1388. CJCEB8, 0315-1468, 10.1139/L06-101.
    • (2006) Can. J. Civ. Eng. , vol.33 , Issue.11 , pp. 1379-1388
    • Güven, A.1    Gunal, M.2    Cevik, A.3
  • 24
    • 85009570458 scopus 로고    scopus 로고
    • Velocity predictions in compound channels with vegetated floodplains using genetic programming
    • Harris E.L. Babovic V. Falconer R.A. Velocity predictions in compound channels with vegetated floodplains using genetic programming. Int. J. River Basin Management 2003, 1(2):117-123. .
    • (2003) Int. J. River Basin Management , vol.1 , Issue.2 , pp. 117-123
    • Harris, E.L.1    Babovic, V.2    Falconer, R.A.3
  • 26
    • 10244249159 scopus 로고    scopus 로고
    • Multi-layer perceptrons with Levenberg-Marquardt optimization algorithm for suspended sediment concentration prediction and estimation
    • HSJODN, 0262-6667, 10.1623/hysj.49.6.1025.55720.
    • Kisi O. Multi-layer perceptrons with Levenberg-Marquardt optimization algorithm for suspended sediment concentration prediction and estimation. Hydrol. Sci. J. 2004, 49(6):1-1040. HSJODN, 0262-6667, 10.1623/hysj.49.6.1025.55720.
    • (2004) Hydrol. Sci. J. , vol.49 , Issue.6 , pp. 1-1040
    • Kisi, O.1
  • 27
    • 33845321370 scopus 로고    scopus 로고
    • Generalized regression neural networks for evapotranspiration modeling
    • HYPRE3, 0885-6087.
    • Kisşi O. Generalized regression neural networks for evapotranspiration modeling. Hydrolog. Process. 2006a, 51(6):1092-1105. HYPRE3, 0885-6087.
    • (2006) Hydrolog. Process. , vol.51 , Issue.6 , pp. 1092-1105
    • Kisşi, O.1
  • 28
    • 33746879196 scopus 로고    scopus 로고
    • Evapotranspiration estimation using feed forward neurol networks
    • NOHYBB, 0029-1277, 10.2166/nh.2006.010.
    • Kişsi O. Evapotranspiration estimation using feed forward neurol networks. Nord. Hydrol. 2006b, 37(3):247-260. NOHYBB, 0029-1277, 10.2166/nh.2006.010.
    • (2006) Nord. Hydrol. , vol.37 , Issue.3 , pp. 247-260
    • Kişsi, O.1
  • 29
    • 34447337473 scopus 로고    scopus 로고
    • Evapotranspiration modeling from climatic data using a neural computing technique
    • HYPRE3, 0885-6087, 10.1002/hyp.6403.
    • Kisi O. Evapotranspiration modeling from climatic data using a neural computing technique. Hydrolog. Process. 2007, 21(14):1925-1934. HYPRE3, 0885-6087, 10.1002/hyp.6403.
    • (2007) Hydrolog. Process. , vol.21 , Issue.14 , pp. 1925-1934
    • Kisi, O.1
  • 30
    • 48649099727 scopus 로고    scopus 로고
    • The potential of different ANN techniques in evapotranspiration modelling
    • HYPRE3, 0885-6087, 10.1002/hyp.6837, .,.
    • Kisi O. The potential of different ANN techniques in evapotranspiration modelling. Hydrolog. Process. 2008, 22:2449-2460. HYPRE3, 0885-6087, 10.1002/hyp.6837, .,.
    • (2008) Hydrolog. Process. , vol.22 , pp. 2449-2460
    • Kisi, O.1
  • 31
    • 70349559015 scopus 로고    scopus 로고
    • Evapotranspiration modelling using support vector machines
    • HSJODN, 0262-6667, 10.1623/hysj.54.5.918.
    • Kisşi O. Cimen M. Evapotranspiration modelling using support vector machines. Hydrol. Sci. J. 2009, 54(5):918-928. HSJODN, 0262-6667, 10.1623/hysj.54.5.918.
    • (2009) Hydrol. Sci. J. , vol.54 , Issue.5 , pp. 918-928
    • Kisşi, O.1    Cimen, M.2
  • 34
    • 0036635791 scopus 로고    scopus 로고
    • Estimating evapotranspiration using artificial neural network
    • JIDEDH, 0733-9437, 10.1061/(ASCE)0733-9437(2002)128:4(224).
    • Kumar M. Raghuwanshi N.S. Singh R. Wallender W.W. Pruitt W.O. Estimating evapotranspiration using artificial neural network. J. Irrig. Drain. Eng. 2002, 128(4):224-233. JIDEDH, 0733-9437, 10.1061/(ASCE)0733-9437(2002)128:4(224).
    • (2002) J. Irrig. Drain. Eng. , vol.128 , Issue.4 , pp. 224-233
    • Kumar, M.1    Raghuwanshi, N.S.2    Singh, R.3    Wallender, W.W.4    Pruitt, W.O.5
  • 35
    • 66449088932 scopus 로고    scopus 로고
    • Forecasting weekly evapotranspiration with ARIMA and artificial neural network models
    • JIDEDH, 0733-9437, 10.1061/(ASCE)IR.1943-4774.0000008.
    • Landeras G. Ortiz-Barredo A. López J.J. Forecasting weekly evapotranspiration with ARIMA and artificial neural network models. J. Irrig. Drain. Eng. 2009, 135(3):323-334. JIDEDH, 0733-9437, 10.1061/(ASCE)IR.1943-4774.0000008.
    • (2009) J. Irrig. Drain. Eng. , vol.135 , Issue.3 , pp. 323-334
    • Landeras, G.1    Ortiz-Barredo, A.2    López, J.J.3
  • 36
    • 34547743385 scopus 로고    scopus 로고
    • Deriving stage-discharge-sediment concentration relationships using fuzzy logic
    • HSJODN, 0262-6667, 10.1623/hysj.52.4.793.
    • Lohani A.K. Goel N.K. Bhatia K.K. S. Deriving stage-discharge-sediment concentration relationships using fuzzy logic. Hydrol. Sci. J. 2007, 52(4):793-807. HSJODN, 0262-6667, 10.1623/hysj.52.4.793.
    • (2007) Hydrol. Sci. J. , vol.52 , Issue.4 , pp. 793-807
    • Lohani, A.K.1    Goel, N.K.2    Bhatia, K.K.S.3
  • 37
    • 0037281781 scopus 로고    scopus 로고
    • Hydroinformatics in evapotranspiration estimation
    • EMSOFT, 1364-8152, 10.1016/S1364-8152(02)00076-2.
    • Naoum S. Tsanis I.K. Hydroinformatics in evapotranspiration estimation. Environ. Modell. Software 2003, 18:261-271. EMSOFT, 1364-8152, 10.1016/S1364-8152(02)00076-2.
    • (2003) Environ. Modell. Software , vol.18 , pp. 261-271
    • Naoum, S.1    Tsanis, I.K.2
  • 38
    • 26444612035 scopus 로고    scopus 로고
    • A comparison of several linear genetic programming techniques
    • CPSYEN, 0891-2513.
    • Oltean M. Grosan C. A comparison of several linear genetic programming techniques. Complex Syst. 2003, 14(1):1-29. CPSYEN, 0891-2513.
    • (2003) Complex Syst. , vol.14 , Issue.1 , pp. 1-29
    • Oltean, M.1    Grosan, C.2
  • 39
    • 33847065032 scopus 로고    scopus 로고
    • Determination of the unit hydrograph of a typical urban basin using genetic programming and artificial neural networks
    • HYPRE3, 0885-6087, 10.1002/hyp.6250.
    • Rabuñal J.R. Puertas J. Suárez J. Rivero D. Determination of the unit hydrograph of a typical urban basin using genetic programming and artificial neural networks. Hydrolog. Process. 2007, 21:476-485. HYPRE3, 0885-6087, 10.1002/hyp.6250.
    • (2007) Hydrolog. Process. , vol.21 , pp. 476-485
    • Rabuñal, J.R.1    Puertas, J.2    Suárez, J.3    Rivero, D.4
  • 40
    • 0032804627 scopus 로고    scopus 로고
    • A genetic programming approach to rainfall-runoff modeling
    • WRMAEJ, 0920-4741, 10.1023/A:1008132509589.
    • Savic A.D. Walters A.G. Davidson J.W. A genetic programming approach to rainfall-runoff modeling. Water Resour. Manage. 1999, 13:219-231. WRMAEJ, 0920-4741, 10.1023/A:1008132509589.
    • (1999) Water Resour. Manage. , vol.13 , pp. 219-231
    • Savic, A.D.1    Walters, A.G.2    Davidson, J.W.3
  • 42
    • 0038546820 scopus 로고    scopus 로고
    • Estimating actual evapotranspiration from limited climatic data using neural computing technique
    • JIDEDH, 0733-9437, 10.1061/(ASCE)0733-9437(2003)129:3(214).
    • Sudheer K.P. Gosain A.K. Ramasastri K.S. Estimating actual evapotranspiration from limited climatic data using neural computing technique. J. Irrig. Drain. Eng. 2003, 129(3):214-218. JIDEDH, 0733-9437, 10.1061/(ASCE)0733-9437(2003)129:3(214).
    • (2003) J. Irrig. Drain. Eng. , vol.129 , Issue.3 , pp. 214-218
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 43
    • 23044444044 scopus 로고    scopus 로고
    • Temperature-based approaches for estimating reference evapotranspiration
    • JIDEDH, 0733-9437, 10.1061/(ASCE)0733-9437(2005)131:4(316).
    • Trajkovic S. Temperature-based approaches for estimating reference evapotranspiration. J. Irrig. Drain. Eng. 2005, 131(4):316-323. JIDEDH, 0733-9437, 10.1061/(ASCE)0733-9437(2005)131:4(316).
    • (2005) J. Irrig. Drain. Eng. , vol.131 , Issue.4 , pp. 316-323
    • Trajkovic, S.1
  • 44
    • 68049113583 scopus 로고    scopus 로고
    • Estimating reference evapotranspiration using limited weather data
    • JIDEDH, 0733-9437, 10.1061/(ASCE)IR.1943-4774.0000094.
    • Trajkovic S. Kolakovic S. Estimating reference evapotranspiration using limited weather data. J. Irrig. Drain. Eng. 2009, 135(4):443-449. JIDEDH, 0733-9437, 10.1061/(ASCE)IR.1943-4774.0000094.
    • (2009) J. Irrig. Drain. Eng. , vol.135 , Issue.4 , pp. 443-449
    • Trajkovic, S.1    Kolakovic, S.2
  • 45
    • 0346875564 scopus 로고    scopus 로고
    • Forecasting reference evapotranspiration by artificial neural networks
    • JIDEDH, 0733-9437, 10.1061/(ASCE)0733-9437(2003)129:6(454).
    • Trajkovic S. Todorovic B. Stankovic M. Forecasting reference evapotranspiration by artificial neural networks. J. Irrig. Drain. Eng. 2003, 129(6):454-457. JIDEDH, 0733-9437, 10.1061/(ASCE)0733-9437(2003)129:6(454).
    • (2003) J. Irrig. Drain. Eng. , vol.129 , Issue.6 , pp. 454-457
    • Trajkovic, S.1    Todorovic, B.2    Stankovic, M.3
  • 46
    • 0035105632 scopus 로고    scopus 로고
    • Modeling rainfall-runoff using genetic programming
    • MCMOEG, 0895-7177, 10.1016/S0895-7177(00)00274-0.
    • Whigham P.A. Crapper P.F. Modeling rainfall-runoff using genetic programming. Math. Comput. Modell. 2001, 33:707-721. MCMOEG, 0895-7177, 10.1016/S0895-7177(00)00274-0.
    • (2001) Math. Comput. Modell. , vol.33 , pp. 707-721
    • Whigham, P.A.1    Crapper, P.F.2
  • 47
    • 0028668729 scopus 로고
    • Data analysis of bed concentration of suspended sediment
    • JHEND8, 0733-9429, 10.1061/(ASCE)0733-9429(1994)120:9(1021).
    • Zyserman J.A. Fredsoe J. Data analysis of bed concentration of suspended sediment. J. Hydraul. Eng. 1994, 120(9):1021-1042. JHEND8, 0733-9429, 10.1061/(ASCE)0733-9429(1994)120:9(1021).
    • (1994) J. Hydraul. Eng. , vol.120 , Issue.9 , pp. 1021-1042
    • Zyserman, J.A.1    Fredsoe, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.