메뉴 건너뛰기




Volumn 42, Issue 6, 2012, Pages 639-650

Using machine learning techniques and genomic/proteomic information from known databases for defining relevant features for PPI classification

Author keywords

Feature extraction and selection; PPI classification; Proteomic in protein interaction; Support vector machines

Indexed keywords

BIOLOGICAL PROCESS; CONFIDENCE SCORE; DATA CLASSIFICATION; DATA MINING TECHNIQUES; DATA SETS; FEATURE EXTRACTION AND SELECTION; MACHINE LEARNING TECHNIQUES; PREDICTION CAPABILITY; PROTEIN INTERACTION; PROTEIN-PROTEIN INTERACTIONS; PROTEOMICS; ROC ANALYSIS; SENSITIVITY AND SPECIFICITY; SIMILARITY MEASURE; SUPPORT VECTOR;

EID: 84861223047     PISSN: 00104825     EISSN: 18790534     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2012.01.010     Document Type: Article
Times cited : (11)

References (65)
  • 1
    • 25444434087 scopus 로고    scopus 로고
    • AVID: an integrative framework for discovering functional relationships among proteins
    • (PMID: 15929793, PMCID: 1177925)
    • Jiang T., Keating A.E. AVID: an integrative framework for discovering functional relationships among proteins. BMC Bioinformatics 2005, 6:136. (PMID: 15929793, PMCID: 1177925). 10.1186/1471-2105-6-136.
    • (2005) BMC Bioinformatics , vol.6 , pp. 136
    • Jiang, T.1    Keating, A.E.2
  • 2
    • 33847720776 scopus 로고    scopus 로고
    • Predicting protein-protein interactions from protein domains using a set cover approach
    • (PMID: 17277415)
    • Huang C., et al. Predicting protein-protein interactions from protein domains using a set cover approach. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2007, 4(1):78-87. (PMID: 17277415). 10.1109/TCBB.2007.1001.
    • (2007) IEEE/ACM Trans. Comput. Biol. Bioinformatics , vol.4 , Issue.1 , pp. 78-87
    • Huang, C.1
  • 3
    • 77958554380 scopus 로고    scopus 로고
    • Predicting domain-domain interaction based on domain profiles with feature selection and support vector machines
    • URL 〈 〉
    • Gonzalez A., Liao L. Predicting domain-domain interaction based on domain profiles with feature selection and support vector machines. BMC Bioinformatics 2010, 11(1):537. URL 〈http://www.biomedcentral.com/1471-2105/11/537〉. 10.1186/1471-2105-11-537.
    • (2010) BMC Bioinformatics , vol.11 , Issue.1 , pp. 537
    • Gonzalez, A.1    Liao, L.2
  • 4
    • 25144498379 scopus 로고    scopus 로고
    • A human protein-protein interaction network: a resource for annotating the proteome
    • Stelzl U., et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005, 122(6):957-968. 10.1016/j.cell.2005.08.029.
    • (2005) Cell , vol.122 , Issue.6 , pp. 957-968
    • Stelzl, U.1
  • 5
    • 39649083998 scopus 로고    scopus 로고
    • Integration of genomic data for inferring protein complexes from global protein-protein interaction networks
    • Zheng H., Wang H., Glass D. Integration of genomic data for inferring protein complexes from global protein-protein interaction networks. IEEE Trans. Syst. Man Cybern. B Cybern. 2008, 38(1):5-16. 10.1109/TSMCB.2007.908912.
    • (2008) IEEE Trans. Syst. Man Cybern. B Cybern. , vol.38 , Issue.1 , pp. 5-16
    • Zheng, H.1    Wang, H.2    Glass, D.3
  • 7
    • 58149242456 scopus 로고    scopus 로고
    • An experimentally derived confidence score for binary protein-protein interactions
    • URL 〈 〉
    • Braun P., et al. An experimentally derived confidence score for binary protein-protein interactions. Nat. Methods 2009, 6(1):91-97. URL 〈http://dx.doi.org/10.1038/nmeth.1281〉. 10.1038/nmeth.1281.
    • (2009) Nat. Methods , vol.6 , Issue.1 , pp. 91-97
    • Braun, P.1
  • 8
    • 40049092465 scopus 로고    scopus 로고
    • An assessment of the uses of homologous interactions
    • Saeed R., Deane C. An assessment of the uses of homologous interactions. Bioinformatics 2008, 24(5):689-695. 10.1093/bioinformatics/btm576.
    • (2008) Bioinformatics , vol.24 , Issue.5 , pp. 689-695
    • Saeed, R.1    Deane, C.2
  • 9
    • 0142052944 scopus 로고    scopus 로고
    • A Bayesian networks approach for predicting protein-protein interactions from genomic data
    • Jansen R., et al. A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 2003, 302(5644):449-453. 10.1126/science.1087361.
    • (2003) Science , vol.302 , Issue.5644 , pp. 449-453
    • Jansen, R.1
  • 10
    • 25444433570 scopus 로고    scopus 로고
    • HINT-a database of annotated protein-protein interactions and their homologs
    • doi:10.2142/biophysics.1.21.
    • A. Patil, H. Nakamura, HINT-a database of annotated protein-protein interactions and their homologs, Biophysics. doi:10.2142/biophysics.1.21.
    • Biophysics.
    • Patil, A.1    Nakamura, H.2
  • 11
    • 33746724092 scopus 로고    scopus 로고
    • Probabilistic prediction of protein-protein interactions from the protein sequences
    • Chinnasamy A., Mittal A., Sung W.-K. Probabilistic prediction of protein-protein interactions from the protein sequences. Comput. Biol. Med. 2006, 36(10):1143-1154. 10.1016/j.compbiomed.2005.09.005.
    • (2006) Comput. Biol. Med. , vol.36 , Issue.10 , pp. 1143-1154
    • Chinnasamy, A.1    Mittal, A.2    Sung, W.-K.3
  • 12
    • 77549085334 scopus 로고    scopus 로고
    • A knowledge-driven probabilistic framework for the prediction of protein-protein interaction networks
    • Browne F., Wang H., Zheng H., Azuaje F. A knowledge-driven probabilistic framework for the prediction of protein-protein interaction networks. Comput. Biol. Med. 2010, 40(3):306-317. 10.1016/j.compbiomed.2010.01.002.
    • (2010) Comput. Biol. Med. , vol.40 , Issue.3 , pp. 306-317
    • Browne, F.1    Wang, H.2    Zheng, H.3    Azuaje, F.4
  • 13
    • 0036799752 scopus 로고    scopus 로고
    • Inferring domain-domain interactions from protein-protein interactions
    • (PMC187530)
    • Deng M., et al. Inferring domain-domain interactions from protein-protein interactions. Genome Res. 2002, 12(10):1540-1548. (PMC187530). 10.1101/gr.153002.
    • (2002) Genome Res. , vol.12 , Issue.10 , pp. 1540-1548
    • Deng, M.1
  • 14
    • 3042688055 scopus 로고    scopus 로고
    • Probabilistic inference of molecular networks from noisy data sources
    • Iossifov I., et al. Probabilistic inference of molecular networks from noisy data sources. Bioinformatics 2004, 20(8):1205-1213. 10.1093/bioinformatics/bth061.
    • (2004) Bioinformatics , vol.20 , Issue.8 , pp. 1205-1213
    • Iossifov, I.1
  • 15
    • 2942541277 scopus 로고    scopus 로고
    • Predicting co-complexed protein pairs using genomic and proteomic data integration
    • (PMC419405)
    • Zhang L.V., et al. Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics 2004, 5:38. (PMC419405). 10.1186/1471-2105-5-38.
    • (2004) BMC Bioinformatics , vol.5 , pp. 38
    • Zhang, L.V.1
  • 16
    • 43049159751 scopus 로고    scopus 로고
    • Protein interaction predictions from diverse sources
    • Liu Y., Kim I., Zhao H. Protein interaction predictions from diverse sources. Drug Discovery Today 2008, 13(9-10):409-416. 10.1016/j.drudis.2008.01.005.
    • (2008) Drug Discovery Today , vol.13 , Issue.9-10 , pp. 409-416
    • Liu, Y.1    Kim, I.2    Zhao, H.3
  • 17
    • 24744435534 scopus 로고    scopus 로고
    • Kernel methods for predicting protein-protein interactions
    • Ben-Hur A., Noble W.S. Kernel methods for predicting protein-protein interactions. Bioinformatics 2005, 21(suppl _1):i38-i46. 10.1093/bioinformatics/bti1016.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1
    • Ben-Hur, A.1    Noble, W.S.2
  • 18
    • 36248986676 scopus 로고    scopus 로고
    • Improving protein-protein interaction prediction based on phylogenetic information using a least-squares support vector machine
    • (Reverse Engineering Biological Networks: Opportunities and Challenges in Computational Methods for Pathway Inference)
    • Craig R.A., Liao L. Improving protein-protein interaction prediction based on phylogenetic information using a least-squares support vector machine. Ann. N. Y. Acad. Sci. 2007, 1115:154-167. (Reverse Engineering Biological Networks: Opportunities and Challenges in Computational Methods for Pathway Inference). 10.1196/annals.1407.005.
    • (2007) Ann. N. Y. Acad. Sci. , vol.1115 , pp. 154-167
    • Craig, R.A.1    Liao, L.2
  • 19
    • 67649494468 scopus 로고    scopus 로고
    • Protein-protein interaction based on pairwise similarity
    • Zaki N., et al. Protein-protein interaction based on pairwise similarity. BMC Bioinformatics 2009, 10(1):150. 10.1186/1471-2105-10-150.
    • (2009) BMC Bioinformatics , vol.10 , Issue.1 , pp. 150
    • Zaki, N.1
  • 20
    • 0034628508 scopus 로고    scopus 로고
    • A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae
    • Uetz P., et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000, 403(6770):623-627. 10.1038/35001009.
    • (2000) Nature , vol.403 , Issue.6770 , pp. 623-627
    • Uetz, P.1
  • 21
    • 0035836765 scopus 로고    scopus 로고
    • A comprehensive two-hybrid analysis to explore the yeast protein interactome
    • Ito T., et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Nat. Acad. Sci. USA 2001, 98(8):4569-4574. 10.1073/pnas.061034498.
    • (2001) Proc. Nat. Acad. Sci. USA , vol.98 , Issue.8 , pp. 4569-4574
    • Ito, T.1
  • 22
    • 0037050026 scopus 로고    scopus 로고
    • Functional organization of the yeast proteome by systematic analysis of protein complexes
    • Gavin A., et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002, 415(6868):141-147. 10.1038/415141a.
    • (2002) Nature , vol.415 , Issue.6868 , pp. 141-147
    • Gavin, A.1
  • 23
    • 0037050004 scopus 로고    scopus 로고
    • Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry
    • URL 〈 〉
    • Ho Y., et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 2002, 415(6868):180-183. URL 〈http://dx.doi.org/10.1038/415180a〉. 10.1038/415180a.
    • (2002) Nature , vol.415 , Issue.6868 , pp. 180-183
    • Ho, Y.1
  • 24
    • 0345600247 scopus 로고    scopus 로고
    • A protein interaction map of Drosophila melanogaster
    • Giot L., et al. A protein interaction map of Drosophila melanogaster. Science 2003, 302(5651):1727-1736. 10.1126/science.1090289.
    • (2003) Science , vol.302 , Issue.5651 , pp. 1727-1736
    • Giot, L.1
  • 25
    • 20144379646 scopus 로고    scopus 로고
    • Protein interaction mapping: a Drosophila case study
    • (PMC551564)
    • Formstecher E., et al. Protein interaction mapping: a Drosophila case study. Genome Res. 2005, 15(3):376-384. (PMC551564). 10.1101/gr.2659105.
    • (2005) Genome Res. , vol.15 , Issue.3 , pp. 376-384
    • Formstecher, E.1
  • 26
    • 12144289400 scopus 로고    scopus 로고
    • A physical and functional map of the human TNF-[alpha]/NF-[kappa]B signal transduction pathway
    • Bouwmeester T., et al. A physical and functional map of the human TNF-[alpha]/NF-[kappa]B signal transduction pathway. Nat. Cell Biol. 2004, 6(2):97-105. 10.1038/ncb1086.
    • (2004) Nat. Cell Biol. , vol.6 , Issue.2 , pp. 97-105
    • Bouwmeester, T.1
  • 27
    • 27144530248 scopus 로고    scopus 로고
    • Towards a proteome-scale map of the human protein-protein interaction network
    • Rual J., et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005, 437(7062):1173-1178. 10.1038/nature04209.
    • (2005) Nature , vol.437 , Issue.7062 , pp. 1173-1178
    • Rual, J.1
  • 28
    • 2942544498 scopus 로고    scopus 로고
    • Protein interaction networks from yeast to human
    • Bork P., et al. Protein interaction networks from yeast to human. Curr. Opin. Struct. Biol. 2004, 14(3):292-299. 10.1016/j.sbi.2004.05.003.
    • (2004) Curr. Opin. Struct. Biol. , vol.14 , Issue.3 , pp. 292-299
    • Bork, P.1
  • 29
    • 24044434446 scopus 로고    scopus 로고
    • Filtering high-throughput protein-protein interaction data using a combination of genomic features
    • Patil A., Nakamura H. Filtering high-throughput protein-protein interaction data using a combination of genomic features. BMC Bioinformatics 2005, 6(1):100. 10.1186/1471-2105-6-100.
    • (2005) BMC Bioinformatics , vol.6 , Issue.1 , pp. 100
    • Patil, A.1    Nakamura, H.2
  • 31
    • 0034614678 scopus 로고    scopus 로고
    • Protein interaction mapping in C. elegans using proteins involved in vulval development
    • Walhout A.J.M., et al. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 2000, 287(5450):116-122. 10.1126/science.287.5450.116.
    • (2000) Science , vol.287 , Issue.5450 , pp. 116-122
    • Walhout, A.J.M.1
  • 32
    • 0036580169 scopus 로고    scopus 로고
    • Protein interactions: two methods for assessment of the reliability of high throughput observations
    • Deane C.M., et al. Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol. Cell. Proteomics 2002, 1(5):349-356. 10.1074/mcp.M100037-MCP200.
    • (2002) Mol. Cell. Proteomics , vol.1 , Issue.5 , pp. 349-356
    • Deane, C.M.1
  • 33
    • 15944418607 scopus 로고    scopus 로고
    • Random forest similarity for protein-protein interaction prediction from multiple sources
    • (PMID: 15759657).
    • Y. Qi, J. Klein-Seetharaman, Z. Bar-Joseph, Random forest similarity for protein-protein interaction prediction from multiple sources, Pac. Symp. Biocomput. (2005) 531-542 (PMID: 15759657).
    • (2005) Pac. Symp. Biocomput. , pp. 531-542
    • Qi, Y.1    Klein-Seetharaman, J.2    Bar-Joseph, Z.3
  • 34
    • 53349117774 scopus 로고    scopus 로고
    • High-quality binary protein interaction map of the yeast interactome network
    • Yu H., et al. High-quality binary protein interaction map of the yeast interactome network. Science 2008, 322(5898):104-110. 10.1126/science.1158684.
    • (2008) Science , vol.322 , Issue.5898 , pp. 104-110
    • Yu, H.1
  • 35
    • 33646358998 scopus 로고    scopus 로고
    • Prediction of yeast protein-protein interaction network: insights from the gene ontology and annotations
    • Wu X., et al. Prediction of yeast protein-protein interaction network: insights from the gene ontology and annotations. Nucleic Acids Res. 2006, 34(7):2137-2150. 10.1093/nar/gkl219.
    • (2006) Nucleic Acids Res. , vol.34 , Issue.7 , pp. 2137-2150
    • Wu, X.1
  • 37
    • 0346801873 scopus 로고    scopus 로고
    • The gene ontology (GO) database and informatics resource
    • Consortium G.O. The gene ontology (GO) database and informatics resource. Nucleic Acids Res. 2004, 32(suppl_1):D258-D261. 10.1093/nar/gkh036.
    • (2004) Nucleic Acids Res. , vol.32 , Issue.SUPPL. 1
    • Consortium, G.O.1
  • 38
    • 77957821742 scopus 로고    scopus 로고
    • Simple sequence-based kernels do not predict protein-protein interactions
    • Yu J., Guo M., Needham C.J., Huang Y., Cai L., Westhead D.R. Simple sequence-based kernels do not predict protein-protein interactions. Bioinformatics 2010, 26(20):2610-2614. http://arxiv.org/abs/http://bioinformatics.oxfordjournals.org/content/26/20/2610.full.pdf+html URL 〈http://bioinformatics.oxfordjournals.org/content/26/20/2610.abstract〉. 10.1093/bioinformatics/btq483.
    • (2010) Bioinformatics , vol.26 , Issue.20 , pp. 2610-2614
    • Yu, J.1    Guo, M.2    Needham, C.J.3    Huang, Y.4    Cai, L.5    Westhead, D.R.6
  • 39
    • 33746426699 scopus 로고    scopus 로고
    • Margin based feature selection: theory and algorithms
    • Gilad-Bachrach A.N.R., Tishby N. Margin based feature selection: theory and algorithms. Proceedings of the 21'st ICML 2004, 43-50. 〈http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1186〉.
    • (2004) Proceedings of the 21'st ICML , pp. 43-50
    • Gilad-Bachrach, A.N.R.1    Tishby, N.2
  • 40
    • 58049215468 scopus 로고    scopus 로고
    • Combining multiple positive training sets to generate confidence scores for protein-protein interactions
    • Yu J., Finley R.L. Combining multiple positive training sets to generate confidence scores for protein-protein interactions. Bioinformatics 2009, 25(1):105-111. 10.1093/bioinformatics/btn597.
    • (2009) Bioinformatics , vol.25 , Issue.1 , pp. 105-111
    • Yu, J.1    Finley, R.L.2
  • 41
    • 9144252016 scopus 로고    scopus 로고
    • The gene ontology annotation (GOA) database: sharing knowledge in Uniprot with gene ontology
    • (PMC308756)
    • Camon E., et al. The gene ontology annotation (GOA) database: sharing knowledge in Uniprot with gene ontology. Nucleic Acids Res. 2004, 32(Database issue):D262-D266. (PMC308756). 10.1093/nar/gkh021.
    • (2004) Nucleic Acids Res. , vol.32 , Issue.DATABASE ISSUE
    • Camon, E.1
  • 42
    • 13444306676 scopus 로고    scopus 로고
    • CYGD: the comprehensive yeast genome database
    • Guldener U., et al. CYGD: the comprehensive yeast genome database. Nucleic Acids Res. 2005, 33(suppl_1):D364-D368. 10.1093/nar/gki053.
    • (2005) Nucleic Acids Res. , vol.33 , Issue.SUPPL. 1
    • Guldener, U.1
  • 43
    • 13444257903 scopus 로고    scopus 로고
    • 3did: interacting protein domains of known three-dimensional structure
    • Stein A., Russell R.B., Aloy P. 3did: interacting protein domains of known three-dimensional structure. Nucleic Acids Res. 2005, 33(suppl_1):D413-D417. 10.1093/nar/gki037.
    • (2005) Nucleic Acids Res. , vol.33 , Issue.SUPPL. 1
    • Stein, A.1    Russell, R.B.2    Aloy, P.3
  • 44
    • 0033954256 scopus 로고    scopus 로고
    • The protein data bank
    • Berman H.M., et al. The protein data bank. Nucleic Acids Res. 2000, 28(1):235-242. 10.1093/nar/28.1.235.
    • (2000) Nucleic Acids Res. , vol.28 , Issue.1 , pp. 235-242
    • Berman, H.M.1
  • 45
    • 0037255072 scopus 로고    scopus 로고
    • The SWISS-PROT protein knowledge base and its supplement TrEMBL in 2003
    • Boeckmann B., et al. The SWISS-PROT protein knowledge base and its supplement TrEMBL in 2003. Nucleic Acids Res. 2003, 31(1):365-370. 10.1093/nar/gkg095.
    • (2003) Nucleic Acids Res. , vol.31 , Issue.1 , pp. 365-370
    • Boeckmann, B.1
  • 46
    • 33846041078 scopus 로고    scopus 로고
    • The universal protein resource (UniProt)
    • Consortium T.U. The universal protein resource (UniProt). Nucleic Acids Res. 2007, 35(suppl_1):D193-D197. 10.1093/nar/gkl929.
    • (2007) Nucleic Acids Res. , vol.35 , Issue.SUPPL. 1
    • Consortium, T.U.1
  • 47
    • 38549146894 scopus 로고    scopus 로고
    • The Pfam protein families database
    • Finn R.D., et al. The Pfam protein families database. Nucleic Acids Res. 2008, 36(suppl_1):D281-D288. 10.1093/nar/gkm960.
    • (2008) Nucleic Acids Res. , vol.36 , Issue.SUPPL. 1
    • Finn, R.D.1
  • 48
    • 77953360440 scopus 로고    scopus 로고
    • Utilizing shared interacting domain patterns and gene ontology information to improve protein-protein interaction prediction
    • Roslan R., Othman R.M., Shah Z.A., Kasim S., Asmuni H., Taliba J., Hassan R., Zakaria Z. Utilizing shared interacting domain patterns and gene ontology information to improve protein-protein interaction prediction. Comput. Biol. Med. 2010, 40(6):555-564. 10.1016/j.compbiomed.2010.03.009.
    • (2010) Comput. Biol. Med. , vol.40 , Issue.6 , pp. 555-564
    • Roslan, R.1    Othman, R.M.2    Shah, Z.A.3    Kasim, S.4    Asmuni, H.5    Taliba, J.6    Hassan, R.7    Zakaria, Z.8
  • 49
    • 33750090686 scopus 로고    scopus 로고
    • Physicochemical descriptors to discriminate protein-protein interactions in permanent and transient complexes selected by means of machine learning algorithms
    • Block P., et al. Physicochemical descriptors to discriminate protein-protein interactions in permanent and transient complexes selected by means of machine learning algorithms. Proteins: Struct. Funct. Bioinformatics 2006, 65(3):607-622. 10.1002/prot.21104.
    • (2006) Proteins: Struct. Funct. Bioinformatics , vol.65 , Issue.3 , pp. 607-622
    • Block, P.1
  • 50
    • 75149123557 scopus 로고    scopus 로고
    • Modular prediction of protein structural classes from sequences of twilight-zone identity with predicting sequences
    • Mizianty M., Kurgan L. Modular prediction of protein structural classes from sequences of twilight-zone identity with predicting sequences. BMC Bioinformatics 2009, 10(1):414. 10.1186/1471-2105-10-414.
    • (2009) BMC Bioinformatics , vol.10 , Issue.1 , pp. 414
    • Mizianty, M.1    Kurgan, L.2
  • 51
    • 85146422424 scopus 로고
    • A practical approach to feature selection
    • Morgan Kaufmann Publishers Inc., Aberdeen, Scotland, United Kingdom, URL 〈
    • Kira K., Rendell L.A. A practical approach to feature selection. Proceedings of the Ninth International Workshop on Machine Learning 1992, 249-256. Morgan Kaufmann Publishers Inc., Aberdeen, Scotland, United Kingdom, URL 〈http://portal.acm.org/citation.cfm?id=142034〉.
    • (1992) Proceedings of the Ninth International Workshop on Machine Learning , pp. 249-256
    • Kira, K.1    Rendell, L.A.2
  • 52
    • 0000761229 scopus 로고    scopus 로고
    • Support vector network
    • C. Cortes, V. Vapnik, Support vector network, Mach. Learn. 〈〉. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.9362.
    • Mach. Learn. 〈〉.
    • Cortes, C.1    Vapnik, V.2
  • 53
    • 34548170015 scopus 로고    scopus 로고
    • Recursive prediction for long term time series forecasting using advanced models
    • Herrera L., et al. Recursive prediction for long term time series forecasting using advanced models. Neurocomputing 2007, 70(16-18):2870-2880. 10.1016/j.neucom.2006.04.015.
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 2870-2880
    • Herrera, L.1
  • 54
    • 48549094895 scopus 로고    scopus 로고
    • A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
    • Statnikov A., Wang L., Aliferis C.F. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 2008, 9(319):1-10. 10.1186/1471-2105-9-319.
    • (2008) BMC Bioinformatics , vol.9 , Issue.319 , pp. 1-10
    • Statnikov, A.1    Wang, L.2    Aliferis, C.F.3
  • 56
    • 84992255285 scopus 로고    scopus 로고
    • Analysis of the functional block involved in the design of radial basis function networks
    • Rojas I., et al. Analysis of the functional block involved in the design of radial basis function networks. Neural Process. Lett. 2000, 12(1):1-17. 10.1023/A:1009621931185.
    • (2000) Neural Process. Lett. , vol.12 , Issue.1 , pp. 1-17
    • Rojas, I.1
  • 57
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multi-class classification by pairwise coupling
    • Wu T., Lin C., Weng R.C. Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 2004, 5:975-1005.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 975-1005
    • Wu, T.1    Lin, C.2    Weng, R.C.3
  • 58
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behaviour and consistency of classification methods based on convex risk minimization
    • Zhang T. Statistical behaviour and consistency of classification methods based on convex risk minimization. Ann. Stat. 2004, 32(1):56-134.
    • (2004) Ann. Stat. , vol.32 , Issue.1 , pp. 56-134
    • Zhang, T.1
  • 59
    • 84865560594 scopus 로고    scopus 로고
    • LIBSVM: A Library for Support Vector Machines, Technical Report
    • Software Available at 〈〉.
    • C. Chang, C. Lin, LIBSVM: A Library for Support Vector Machines, Technical Report, 2001, Software Available at 〈〉. http://www.csie.ntu.edu.tw/cjlin/libsvm.
    • (2001)
    • Chang, C.1    Lin, C.2
  • 60
    • 0037087575 scopus 로고    scopus 로고
    • Subcellular localization of the yeast proteome
    • URL zotero://attachment/10297/
    • Kumar A. Subcellular localization of the yeast proteome. Genes Dev. 2002, 16(6):707-719. URL zotero://attachment/10297/. 10.1101/gad.970902.
    • (2002) Genes Dev. , vol.16 , Issue.6 , pp. 707-719
    • Kumar, A.1
  • 63
    • 0020524559 scopus 로고
    • A method of comparing the areas under receiver operating characteristic curves derived from the same cases
    • Hanley J.A., McNeil B.J. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983, 148(3):839-843. 〈http://radiology.rsna.org/content/148/3/839.abstract〉.
    • (1983) Radiology , vol.148 , Issue.3 , pp. 839-843
    • Hanley, J.A.1    McNeil, B.J.2
  • 64
    • 84861223970 scopus 로고
    • Discriminatory Analysis. Nonparametric Discrimination: Consistency properties (Technical Report 4), Technical Report, USAF school of Aviation Medicine
    • E. Fix, J. Hodges, Discriminatory Analysis. Nonparametric Discrimination: Consistency properties (Technical Report 4), Technical Report, USAF school of Aviation Medicine, 1951.
    • (1951)
    • Fix, E.1    Hodges, J.2
  • 65
    • 77950545785 scopus 로고    scopus 로고
    • Predicting protein-protein interactions in unbalanced data using the primary structure of proteins
    • Yu C.-Y., Chou L.-C., Chang D. Predicting protein-protein interactions in unbalanced data using the primary structure of proteins. BMC Bioinformatics 2010, 11(1):167. 〈http://www.biomedcentral.com/1471-2105/11/167〉. 10.1186/1471-2105-11-167.
    • (2010) BMC Bioinformatics , vol.11 , Issue.1 , pp. 167
    • Yu, C.-Y.1    Chou, L.-C.2    Chang, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.