메뉴 건너뛰기




Volumn 36, Issue 10, 2006, Pages 1143-1154

Probabilistic prediction of protein-protein interactions from the protein sequences

Author keywords

Machine learning; Protein feature extraction; Protein protein interaction; TAN Bayesian classifier

Indexed keywords

PROTEIN FEATURE EXTRACTION; PROTEIN-PROTEIN INTERACTION; SUPPORT VECTOR MACHINE (SVM); TAN BAYESIAN CLASSIFIER;

EID: 33746724092     PISSN: 00104825     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2005.09.005     Document Type: Article
Times cited : (15)

References (29)
  • 1
    • 0033576589 scopus 로고    scopus 로고
    • The promise of proteomics
    • Editorial
    • Editorial. The promise of proteomics. Nature 402 6763 (1999) 703
    • (1999) Nature , vol.402 , Issue.6763 , pp. 703
  • 2
    • 18244386985 scopus 로고    scopus 로고
    • M. Deng, K. Zhang, S. Mehta, T. Chen, F. Sun, Prediction of protein function using protein-protein interaction data, IEEE Computer Society Bioinformatics Conference, 2002, pp. 197-206.
  • 4
    • 0035369531 scopus 로고    scopus 로고
    • Protein-protein interaction maps: a lead towards cellular functions
    • Legrain P., Wojcik J., and Gauthier J.M. Protein-protein interaction maps: a lead towards cellular functions. Trends Genet. 17 (2001) 346-352
    • (2001) Trends Genet. , vol.17 , pp. 346-352
    • Legrain, P.1    Wojcik, J.2    Gauthier, J.M.3
  • 5
    • 0036601150 scopus 로고    scopus 로고
    • Computational methods for the prediction of protein interactions
    • Valencia A., and Pazos F. Computational methods for the prediction of protein interactions. Curr. Opin. Struct. Biol. 12 (2002) 368-373
    • (2002) Curr. Opin. Struct. Biol. , vol.12 , pp. 368-373
    • Valencia, A.1    Pazos, F.2
  • 7
    • 0032242111 scopus 로고    scopus 로고
    • Microbial genescapes: phyletic and functional patterns of ORF distribution among prokaryotes
    • Gaasterland T., and Ragan M.A. Microbial genescapes: phyletic and functional patterns of ORF distribution among prokaryotes. Microb. Comp. Genomics 3 (1998) 199-217
    • (1998) Microb. Comp. Genomics , vol.3 , pp. 199-217
    • Gaasterland, T.1    Ragan, M.A.2
  • 8
    • 0031024670 scopus 로고    scopus 로고
    • Conserved clusters of functionally related genes in two bacterial genomes
    • Tamames J., Casari G., Ouzounis C., and Valencia A. Conserved clusters of functionally related genes in two bacterial genomes. J. Mol. Evol. 44 (1997) 66-73
    • (1997) J. Mol. Evol. , vol.44 , pp. 66-73
    • Tamames, J.1    Casari, G.2    Ouzounis, C.3    Valencia, A.4
  • 9
    • 0033523989 scopus 로고    scopus 로고
    • Protein interaction maps for complete genomes based on gene fusion events
    • Enright A.J., Iliopoulos I., Kyrpides N.C., and Ouzounis C.A. Protein interaction maps for complete genomes based on gene fusion events. Nature 402 (1999) 86-90
    • (1999) Nature , vol.402 , pp. 86-90
    • Enright, A.J.1    Iliopoulos, I.2    Kyrpides, N.C.3    Ouzounis, C.A.4
  • 10
    • 0036360139 scopus 로고    scopus 로고
    • Towards the prediction of complete protein-protein interaction networks
    • Gomez S.M., and Rzhetsky A. Towards the prediction of complete protein-protein interaction networks. Pac. Symp. Biocomput. 7 (2002) 413-424
    • (2002) Pac. Symp. Biocomput. , vol.7 , pp. 413-424
    • Gomez, S.M.1    Rzhetsky, A.2
  • 11
    • 0037249217 scopus 로고    scopus 로고
    • Whole-proteome interaction mining
    • Bock J.R., and Gough D.A. Whole-proteome interaction mining. Bioinforrnatics 19 1 (2003) 125-134
    • (2003) Bioinforrnatics , vol.19 , Issue.1 , pp. 125-134
    • Bock, J.R.1    Gough, D.A.2
  • 12
    • 33746667246 scopus 로고    scopus 로고
    • R. Bandyopadhyay, K. Maatthews, D. Subramanian, X.X. Tan, Predicting protein-ligand interactions from primary structure, Rice University, Department of Computer Science, Technical Report TR02-387, February 2002.
  • 13
    • 0035023445 scopus 로고    scopus 로고
    • Predicting protein-protein interactions from primary structure
    • Bock J.R., and Gough D.A. Predicting protein-protein interactions from primary structure. Bioinformatics 17-5 (2001) 455-460
    • (2001) Bioinformatics , vol.17-5 , pp. 455-460
    • Bock, J.R.1    Gough, D.A.2
  • 15
    • 33746761088 scopus 로고    scopus 로고
    • G.H. John, P. Langley, Estimating continuous distributions in Bayesian classifiers, in: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, 1995, pp. 338- 345.
  • 17
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos P., and Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn. 29 (1997) 103-130
    • (1997) Mach. Learn. , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 18
    • 0036088133 scopus 로고    scopus 로고
    • DIP: The database of interacting proteins. A research tool for studying cellular networks of protein interactions
    • Xenarios I., Salwinski L., Duan X.J., Higney P., Kim S., and Eisenberg D. DIP: The database of interacting proteins. A research tool for studying cellular networks of protein interactions. NAR 30 (2002) 303-305
    • (2002) NAR , vol.30 , pp. 303-305
    • Xenarios, I.1    Salwinski, L.2    Duan, X.J.3    Higney, P.4    Kim, S.5    Eisenberg, D.6
  • 20
    • 0028332007 scopus 로고
    • A role for surface hydrophobicity in protein- protein recognition
    • Young L., Jernigan R.L., and Covell D.G. A role for surface hydrophobicity in protein- protein recognition. Protein Sci. 3 (1994) 717-729
    • (1994) Protein Sci. , vol.3 , pp. 717-729
    • Young, L.1    Jernigan, R.L.2    Covell, D.G.3
  • 21
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • Ding H.Q., and Dubchak I. Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 4 17 (2001) 349-358
    • (2001) Bioinformatics , vol.4 , Issue.17 , pp. 349-358
    • Ding, H.Q.1    Dubchak, I.2
  • 22
    • 2442682027 scopus 로고    scopus 로고
    • Protein structure and fold prediction using tree-augmented Bayesian classifier
    • Chinnasamy A., Sung W.-K., and Mittal A. Protein structure and fold prediction using tree-augmented Bayesian classifier. Pac. Symp. Biocomput. 6-10 (2004) 387-398
    • (2004) Pac. Symp. Biocomput. , vol.6-10 , pp. 387-398
    • Chinnasamy, A.1    Sung, W.-K.2    Mittal, A.3
  • 23
    • 22544444234 scopus 로고    scopus 로고
    • Protein structure and fold prediction using tree-augmented Bayesian classifier
    • Chinnasamy A., Sung W.-K., and Mittal A. Protein structure and fold prediction using tree-augmented Bayesian classifier. J. Bioinformatics Comput. Biol. 3 4 (2005) 803-820
    • (2005) J. Bioinformatics Comput. Biol. , vol.3 , Issue.4 , pp. 803-820
    • Chinnasamy, A.1    Sung, W.-K.2    Mittal, A.3
  • 24
    • 0035044077 scopus 로고    scopus 로고
    • Assessment of prediction accuracy of protein function from protein-protein interaction data
    • Hishigaki H., Nakai K., Ono T., Tanigami A., and Takagi T. Assessment of prediction accuracy of protein function from protein-protein interaction data. Yeast 18 (2001) 523-531
    • (2001) Yeast , vol.18 , pp. 523-531
    • Hishigaki, H.1    Nakai, K.2    Ono, T.3    Tanigami, A.4    Takagi, T.5
  • 25
    • 1542271409 scopus 로고    scopus 로고
    • Predicting protein function from protein/protein interaction data: a probabilistic approach
    • Letovsky S., and Kasif S. Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics 19 1 (2003) I197-I204
    • (2003) Bioinformatics , vol.19 , Issue.1
    • Letovsky, S.1    Kasif, S.2
  • 26
    • 33746699666 scopus 로고    scopus 로고
    • P.S. Bradley, O.L. Mangasarian, Feature selection via concave minimization and SVMS, Proceedings of the International Conference on Machine Learning, 1998, pp. 82-90.
  • 27
    • 33746677564 scopus 로고    scopus 로고
    • J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, V. Vapnik, T. Poggio, Feature selection for SVMs, Adv. Neural Inform. Process. Syst. (2000) 668-674.
  • 28
    • 33644802903 scopus 로고    scopus 로고
    • Testing rating accuracy
    • Engelmann B., Hayden E., and Tasche D. Testing rating accuracy. Risk 16 (2003) 82-86
    • (2003) Risk , vol.16 , pp. 82-86
    • Engelmann, B.1    Hayden, E.2    Tasche, D.3
  • 29
    • 4644249807 scopus 로고    scopus 로고
    • Measuring default accurately, credit risk special report
    • Sobehart J., and Keenan S. Measuring default accurately, credit risk special report. Risk 14 (2001) 31-33
    • (2001) Risk , vol.14 , pp. 31-33
    • Sobehart, J.1    Keenan, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.