메뉴 건너뛰기




Volumn 21, Issue 1, 2011, Pages 27-32

Protection of the Heart Against Ischemia/Reperfusion by Silent Information Regulator 1

Author keywords

[No Author keywords available]

Indexed keywords

HYDROGEN PEROXIDE; ISOPRENALINE; PROTEIN P53; PROTEIN SILENT INFORMATION REGULATOR 1; REACTIVE OXYGEN METABOLITE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE; RESVERATROL; SILENT INFORMATION REGULATOR PROTEIN; SILENT INFORMATION REGULATOR PROTEIN 2; SIRTUIN 3; SOMATOMEDIN C; SRT 2104; SRT 2379; SUPEROXIDE DISMUTASE; TRANSCRIPTION FACTOR E2F1; TRANSCRIPTION FACTOR FKHRL1; UNCLASSIFIED DRUG; X BOX BINDING PROTEIN 1;

EID: 84859499343     PISSN: 10501738     EISSN: 18732615     Source Type: Journal    
DOI: 10.1016/j.tcm.2012.01.005     Document Type: Review
Times cited : (57)

References (64)
  • 1
    • 33847035824 scopus 로고    scopus 로고
    • Phosphorylation of HuR by Chk2 regulates SIRT1 expression
    • Abdelmohsen K., Pullmann R., Lal A., et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell 2007, 25:543-557.
    • (2007) Mol Cell , vol.25 , pp. 543-557
    • Abdelmohsen, K.1    Pullmann, R.2    Lal, A.3
  • 2
    • 84856041363 scopus 로고    scopus 로고
    • An unSIRTain role in longevity
    • Accili D., de Cabo R., Sinclair D.A. An unSIRTain role in longevity. Nat Med 2011, 17:1350-1351.
    • (2011) Nat Med , vol.17 , pp. 1350-1351
    • Accili, D.1    de Cabo, R.2    Sinclair, D.A.3
  • 3
    • 34249669270 scopus 로고    scopus 로고
    • Sirt1 regulates aging and resistance to oxidative stress in the heart
    • Alcendor R.R., Gao S., Zhai P., et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 2007, 100:1512-1521.
    • (2007) Circ Res , vol.100 , pp. 1512-1521
    • Alcendor, R.R.1    Gao, S.2    Zhai, P.3
  • 4
    • 47749140333 scopus 로고    scopus 로고
    • SIRT1 regulates circadian clock gene expression through PER2 deacetylation
    • Asher G., Gatfield D., Stratmann M., et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008, 134:317-328.
    • (2008) Cell , vol.134 , pp. 317-328
    • Asher, G.1    Gatfield, D.2    Stratmann, M.3
  • 5
    • 77953480631 scopus 로고    scopus 로고
    • Biochemical effects of SIRT1 activators
    • Baur J.A. Biochemical effects of SIRT1 activators. Biochim Biophys Acta 2010, 1804:1626-1634.
    • (2010) Biochim Biophys Acta , vol.1804 , pp. 1626-1634
    • Baur, J.A.1
  • 6
    • 70350524083 scopus 로고    scopus 로고
    • Resveratrol is not a direct activator of SIRT1 enzyme activity
    • Beher D., Wu J., Cumine S., et al. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 2009, 74:619-624.
    • (2009) Chem Biol Drug Des , vol.74 , pp. 619-624
    • Beher, D.1    Wu, J.2    Cumine, S.3
  • 7
    • 78649861860 scopus 로고    scopus 로고
    • Sirtuin activators: Designing molecules to extend life span
    • Camins A., Sureda F.X., Junyent F., et al. Sirtuin activators: Designing molecules to extend life span. Biochim Biophys Acta 2010, 1799:740-749.
    • (2010) Biochim Biophys Acta , vol.1799 , pp. 740-749
    • Camins, A.1    Sureda, F.X.2    Junyent, F.3
  • 8
    • 27544434763 scopus 로고    scopus 로고
    • Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses
    • Chen W.Y., Wang D.H., Yen R.C., et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 2005, 123:437-448.
    • (2005) Cell , vol.123 , pp. 437-448
    • Chen, W.Y.1    Wang, D.H.2    Yen, R.C.3
  • 9
    • 77958488312 scopus 로고    scopus 로고
    • SIRT1 activation by small molecules: Kinetic and biophysical evidence for direct interaction of enzyme and activator
    • Dai H., Kustigian L., Carney D., et al. SIRT1 activation by small molecules: Kinetic and biophysical evidence for direct interaction of enzyme and activator. J Biol Chem 2010, 285:32695-32703.
    • (2010) J Biol Chem , vol.285 , pp. 32695-32703
    • Dai, H.1    Kustigian, L.2    Carney, D.3
  • 10
    • 3042750643 scopus 로고    scopus 로고
    • Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity
    • Daitoku H., Hatta M., Matsuzaki H., et al. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci USA 2004, 101:10042-10047.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 10042-10047
    • Daitoku, H.1    Hatta, M.2    Matsuzaki, H.3
  • 11
    • 39449118273 scopus 로고    scopus 로고
    • Exercise training promotes SIRT1 activity in aged rats
    • Ferrara N., Rinaldi B., Corbi G., et al. Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Res 2008, 11:139-150.
    • (2008) Rejuvenation Res , vol.11 , pp. 139-150
    • Ferrara, N.1    Rinaldi, B.2    Corbi, G.3
  • 12
    • 43049121395 scopus 로고    scopus 로고
    • Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
    • Fulco M., Cen Y., Zhao P., et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 2008, 14:661-673.
    • (2008) Dev Cell , vol.14 , pp. 661-673
    • Fulco, M.1    Cen, Y.2    Zhao, P.3
  • 13
    • 77956185062 scopus 로고    scopus 로고
    • A novel pathway regulates memory and plasticity via SIRT1 and miR-134
    • Gao J., Wang W.Y., Mao Y.W., et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 2010, 466:1105-1109.
    • (2010) Nature , vol.466 , pp. 1105-1109
    • Gao, J.1    Wang, W.Y.2    Mao, Y.W.3
  • 14
    • 79958206937 scopus 로고    scopus 로고
    • Franklin H. Epstein Lecture: Sirtuins, aging, and medicine
    • Guarente L. Franklin H. Epstein Lecture: Sirtuins, aging, and medicine. N Engl J Med 2011, 364:2235-2244.
    • (2011) N Engl J Med , vol.364 , pp. 2235-2244
    • Guarente, L.1
  • 15
    • 79952266729 scopus 로고    scopus 로고
    • Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy
    • Hafner A.V., Dai J., Gomes A.P., et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY) 2010, 2:914-923.
    • (2010) Aging (Albany NY) , vol.2 , pp. 914-923
    • Hafner, A.V.1    Dai, J.2    Gomes, A.P.3
  • 16
    • 33751113602 scopus 로고    scopus 로고
    • Mammalian sirtuins: Emerging roles in physiology, aging, and calorie restriction
    • Haigis M.C., Guarente L.P. Mammalian sirtuins: Emerging roles in physiology, aging, and calorie restriction. Genes Dev 2006, 20:2913-2921.
    • (2006) Genes Dev , vol.20 , pp. 2913-2921
    • Haigis, M.C.1    Guarente, L.P.2
  • 17
    • 78650691023 scopus 로고    scopus 로고
    • Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes
    • Hariharan N., Maejima Y., Nakae J., et al. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res 2010, 107:1470-1482.
    • (2010) Circ Res , vol.107 , pp. 1470-1482
    • Hariharan, N.1    Maejima, Y.2    Nakae, J.3
  • 18
    • 0141719702 scopus 로고    scopus 로고
    • Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
    • Howitz K.T., Bitterman K.J., Cohen H.Y., et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003, 425:191-196.
    • (2003) Nature , vol.425 , pp. 191-196
    • Howitz, K.T.1    Bitterman, K.J.2    Cohen, H.Y.3
  • 19
    • 70149095672 scopus 로고    scopus 로고
    • + synthesis in cardiac myocytes
    • + synthesis in cardiac myocytes. Circ Res 2009, 105:481-491.
    • (2009) Circ Res , vol.105 , pp. 481-491
    • Hsu, C.P.1    Oka, S.2    Shao, D.3
  • 20
    • 78650172708 scopus 로고    scopus 로고
    • Silent information regulator 1 protects the heart from ischemia/reperfusion
    • Hsu C.P., Zhai P., Yamamoto T., et al. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 2010, 122:2170-2182.
    • (2010) Circulation , vol.122 , pp. 2170-2182
    • Hsu, C.P.1    Zhai, P.2    Yamamoto, T.3
  • 21
    • 0034682983 scopus 로고    scopus 로고
    • Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes
    • Hung L.M., Chen J.K., Huang S.S., et al. Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes. Cardiovasc Res 2000, 47:549-555.
    • (2000) Cardiovasc Res , vol.47 , pp. 549-555
    • Hung, L.M.1    Chen, J.K.2    Huang, S.S.3
  • 22
    • 79957557182 scopus 로고    scopus 로고
    • Dissecting systemic control of metabolism and aging in the NAD World: The importance of SIRT1 and NAMPT-mediated NAD biosynthesis
    • Imai S. Dissecting systemic control of metabolism and aging in the NAD World: The importance of SIRT1 and NAMPT-mediated NAD biosynthesis. FEBS Lett 2011, 585:1657-1662.
    • (2011) FEBS Lett , vol.585 , pp. 1657-1662
    • Imai, S.1
  • 23
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • Imai S., Armstrong C.M., Kaeberlein M., Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000, 403:795-800.
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.1    Armstrong, C.M.2    Kaeberlein, M.3    Guarente, L.4
  • 24
    • 35349011726 scopus 로고    scopus 로고
    • Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity
    • Kim E.J., Kho J.H., Kang M.R., Um S.J. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell 2007, 28:277-290.
    • (2007) Mol Cell , vol.28 , pp. 277-290
    • Kim, E.J.1    Kho, J.H.2    Kang, M.R.3    Um, S.J.4
  • 25
    • 38749088678 scopus 로고    scopus 로고
    • DBC1 is a negative regulator of SIRT1
    • Kim J.E., Chen J., Lou Z. DBC1 is a negative regulator of SIRT1. Nature 2008, 451:583-586.
    • (2008) Nature , vol.451 , pp. 583-586
    • Kim, J.E.1    Chen, J.2    Lou, Z.3
  • 26
    • 0029982023 scopus 로고    scopus 로고
    • Circadian variation of ambulatory myocardial ischemia: Triggering by daily activities and evidence for an endogenous circadian component
    • Krantz D.S., Kop W.J., Gabbay F.H., et al. Circadian variation of ambulatory myocardial ischemia: Triggering by daily activities and evidence for an endogenous circadian component. Circulation 1996, 93:1364-1371.
    • (1996) Circulation , vol.93 , pp. 1364-1371
    • Krantz, D.S.1    Kop, W.J.2    Gabbay, F.H.3
  • 27
    • 53249121556 scopus 로고    scopus 로고
    • Sirtuins: Novel therapeutic targets to treat age-associated diseases
    • Lavu S., Boss O., Elliott P.J., Lambert P.D. Sirtuins: Novel therapeutic targets to treat age-associated diseases. Nat Rev Drug Discov 2008, 7:841-853.
    • (2008) Nat Rev Drug Discov , vol.7 , pp. 841-853
    • Lavu, S.1    Boss, O.2    Elliott, P.J.3    Lambert, P.D.4
  • 28
    • 41549138483 scopus 로고    scopus 로고
    • A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy
    • Lee I.H., Cao L., Mostoslavsky R., et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 2008, 105:3374-3379.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 3374-3379
    • Lee, I.H.1    Cao, L.2    Mostoslavsky, R.3
  • 29
    • 79955661493 scopus 로고    scopus 로고
    • Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver
    • Li Y., Xu S., Giles A., et al. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB J 2011, 25:1664-1679.
    • (2011) FASEB J , vol.25 , pp. 1664-1679
    • Li, Y.1    Xu, S.2    Giles, A.3
  • 31
    • 48749098341 scopus 로고    scopus 로고
    • SIRT2 is a negative regulator of anoxia-reoxygenation tolerance via regulation of 14-3-3 zeta and BAD in H9c2 cells
    • Lynn E.G., McLeod C.J., Gordon J.P., et al. SIRT2 is a negative regulator of anoxia-reoxygenation tolerance via regulation of 14-3-3 zeta and BAD in H9c2 cells. FEBS Lett 2008, 582:2857-2862.
    • (2008) FEBS Lett , vol.582 , pp. 2857-2862
    • Lynn, E.G.1    McLeod, C.J.2    Gordon, J.P.3
  • 32
    • 34147168105 scopus 로고    scopus 로고
    • Distinct roles of autophagy in the heart during ischemia and reperfusion: Roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy
    • Matsui Y., Takagi H., Qu X., et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: Roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 2007, 100:914-922.
    • (2007) Circ Res , vol.100 , pp. 914-922
    • Matsui, Y.1    Takagi, H.2    Qu, X.3
  • 33
    • 0024656069 scopus 로고
    • The effect of retarded growth upon the length of life span and upon the ultimate body size
    • McCay C.M., Crowell M.F., Maynard L.A. The effect of retarded growth upon the length of life span and upon the ultimate body size. Nutrition 1989, 5:155-172.
    • (1989) Nutrition , vol.5 , pp. 155-172
    • McCay, C.M.1    Crowell, M.F.2    Maynard, L.A.3
  • 34
    • 47949099098 scopus 로고    scopus 로고
    • Origin and physiological roles of inflammation
    • Medzhitov R. Origin and physiological roles of inflammation. Nature 2008, 454:428-435.
    • (2008) Nature , vol.454 , pp. 428-435
    • Medzhitov, R.1
  • 35
    • 70350134022 scopus 로고    scopus 로고
    • MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1
    • Menghini R., Casagrande V., Cardellini M., et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 2009, 120:1524-1532.
    • (2009) Circulation , vol.120 , pp. 1524-1532
    • Menghini, R.1    Casagrande, V.2    Cardellini, M.3
  • 36
    • 75749122303 scopus 로고    scopus 로고
    • Methods in mammalian autophagy research
    • Mizushima N., Yoshimori T., Levine B. Methods in mammalian autophagy research. Cell 2010, 140:313-326.
    • (2010) Cell , vol.140 , pp. 313-326
    • Mizushima, N.1    Yoshimori, T.2    Levine, B.3
  • 37
    • 79551470041 scopus 로고    scopus 로고
    • Lysine deacetylation in ischaemic preconditioning: The role of SIRT1
    • Nadtochiy S.M., Redman E., Rahman I., Brookes P.S. Lysine deacetylation in ischaemic preconditioning: The role of SIRT1. Cardiovasc Res 2011, 89:643-649.
    • (2011) Cardiovasc Res , vol.89 , pp. 643-649
    • Nadtochiy, S.M.1    Redman, E.2    Rahman, I.3    Brookes, P.S.4
  • 39
    • 47549088250 scopus 로고    scopus 로고
    • +-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • +-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008, 134:329-340.
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1    Kaluzova, M.2    Grimaldi, B.3
  • 40
    • 77949539030 scopus 로고    scopus 로고
    • JNK1 phosphorylates SIRT1 and promotes its enzymatic activity
    • Nasrin N., Kaushik V.K., Fortier E., et al. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS One 2009, 4:e8414.
    • (2009) PLoS One , vol.4
    • Nasrin, N.1    Kaushik, V.K.2    Fortier, E.3
  • 41
    • 10844236451 scopus 로고    scopus 로고
    • Nutrient availability regulates SIRT1 through a forkhead-dependent pathway
    • Nemoto S., Fergusson M.M., Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 2004, 306:2105-2108.
    • (2004) Science , vol.306 , pp. 2105-2108
    • Nemoto, S.1    Fergusson, M.M.2    Finkel, T.3
  • 42
    • 33750049651 scopus 로고    scopus 로고
    • Caspase-mediated changes in Sir2alpha during apoptosis
    • Ohsawa S., Miura M. Caspase-mediated changes in Sir2alpha during apoptosis. FEBS Lett 2006, 580:5875-5879.
    • (2006) FEBS Lett , vol.580 , pp. 5875-5879
    • Ohsawa, S.1    Miura, M.2
  • 43
    • 80455128956 scopus 로고    scopus 로고
    • PPARalpha-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway
    • Oka S., Alcendor R., Zhai P., et al. PPARalpha-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway. Cell Metab 2011, 14:598-611.
    • (2011) Cell Metab , vol.14 , pp. 598-611
    • Oka, S.1    Alcendor, R.2    Zhai, P.3
  • 44
    • 34547599329 scopus 로고    scopus 로고
    • Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease
    • Outeiro T.F., Kontopoulos E., Altmann S.M., et al. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease. Science 2007, 317:516-519.
    • (2007) Science , vol.317 , pp. 516-519
    • Outeiro, T.F.1    Kontopoulos, E.2    Altmann, S.M.3
  • 45
    • 77950246109 scopus 로고    scopus 로고
    • SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1
    • Pacholec M., Bleasdale J.E., Chrunyk B., et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 2010, 285:8340-8351.
    • (2010) J Biol Chem , vol.285 , pp. 8340-8351
    • Pacholec, M.1    Bleasdale, J.E.2    Chrunyk, B.3
  • 47
    • 65249185780 scopus 로고    scopus 로고
    • Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes
    • Rane S., He M., Sayed D., et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res 2009, 104:879-886.
    • (2009) Circ Res , vol.104 , pp. 879-886
    • Rane, S.1    He, M.2    Sayed, D.3
  • 48
    • 35549002189 scopus 로고    scopus 로고
    • Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme
    • Revollo J.R., Korner A., Mills K.F., et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab 2007, 6:363-375.
    • (2007) Cell Metab , vol.6 , pp. 363-375
    • Revollo, J.R.1    Korner, A.2    Mills, K.F.3
  • 49
    • 58149202185 scopus 로고    scopus 로고
    • Phosphorylation regulates SIRT1 function
    • Sasaki T., Maier B., Koclega K.D., et al. Phosphorylation regulates SIRT1 function. PLoS One 2008, 3:e4020.
    • (2008) PLoS One , vol.3
    • Sasaki, T.1    Maier, B.2    Koclega, K.D.3
  • 50
    • 84857638264 scopus 로고    scopus 로고
    • Redox modification of cell signaling in the cardiovascular system
    • [E-pub ahead of print]
    • Shao D., Oka S.I., Brady C.D., et al. Redox modification of cell signaling in the cardiovascular system. J Mol Cell Cardiol 2011, [E-pub ahead of print].
    • (2011) J Mol Cell Cardiol
    • Shao, D.1    Oka, S.I.2    Brady, C.D.3
  • 51
    • 57349200508 scopus 로고    scopus 로고
    • Impact of 6-mo caloric restriction on myocardial ischemic tolerance: Possible involvement of nitric oxide-dependent increase in nuclear Sirt1
    • Shinmura K., Tamaki K., Bolli R. Impact of 6-mo caloric restriction on myocardial ischemic tolerance: Possible involvement of nitric oxide-dependent increase in nuclear Sirt1. Am J Physiol Heart Circ Physiol 2008, 295:H2348-H2355.
    • (2008) Am J Physiol Heart Circ Physiol , vol.295
    • Shinmura, K.1    Tamaki, K.2    Bolli, R.3
  • 52
    • 80051802678 scopus 로고    scopus 로고
    • Caloric restriction primes mitochondria for ischemic stress by deacetylating specific mitochondrial proteins of the electron transport chain
    • Shinmura K., Tamaki K., Sano M., et al. Caloric restriction primes mitochondria for ischemic stress by deacetylating specific mitochondrial proteins of the electron transport chain. Circ Res 2011, 109:396-406.
    • (2011) Circ Res , vol.109 , pp. 396-406
    • Shinmura, K.1    Tamaki, K.2    Sano, M.3
  • 53
    • 70349208608 scopus 로고    scopus 로고
    • Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
    • Sundaresan N.R., Gupta M., Kim G., et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 2009, 119:2758-2771.
    • (2009) J Clin Invest , vol.119 , pp. 2758-2771
    • Sundaresan, N.R.1    Gupta, M.2    Kim, G.3
  • 55
    • 41449083867 scopus 로고    scopus 로고
    • Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice
    • Vakhrusheva O., Smolka C., Gajawada P., et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 2008, 102:703-710.
    • (2008) Circ Res , vol.102 , pp. 703-710
    • Vakhrusheva, O.1    Smolka, C.2    Gajawada, P.3
  • 56
    • 77953386141 scopus 로고    scopus 로고
    • Local IGF-1 isoform protects cardiomyocytes from hypertrophic and oxidative stresses via SirT1 activity
    • Vinciguerra M., Santini M.P., Claycomb W.C., et al. Local IGF-1 isoform protects cardiomyocytes from hypertrophic and oxidative stresses via SirT1 activity. Aging (Albany NY) 2009, 2:43-62.
    • (2009) Aging (Albany NY) , vol.2 , pp. 43-62
    • Vinciguerra, M.1    Santini, M.P.2    Claycomb, W.C.3
  • 57
    • 84855860714 scopus 로고    scopus 로고
    • MIGF-1/JNK1/SirT1 signaling confers protection against oxidative stress in the heart
    • Vinciguerra M., Santini M.P., Martinez C., et al. mIGF-1/JNK1/SirT1 signaling confers protection against oxidative stress in the heart. Aging Cell 2011, 11:139-149.
    • (2011) Aging Cell , vol.11 , pp. 139-149
    • Vinciguerra, M.1    Santini, M.P.2    Martinez, C.3
  • 58
    • 33748200050 scopus 로고    scopus 로고
    • Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage
    • Wang C., Chen L., Hou X., et al. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 2006, 8:1025-1031.
    • (2006) Nat Cell Biol , vol.8 , pp. 1025-1031
    • Wang, C.1    Chen, L.2    Hou, X.3
  • 59
    • 79953152333 scopus 로고    scopus 로고
    • FoxO1 mediates an autofeedback loop regulating SIRT1 expression
    • Xiong S., Salazar G., Patrushev N., Alexander R.W. FoxO1 mediates an autofeedback loop regulating SIRT1 expression. J Biol Chem 2011, 286:5289-5299.
    • (2011) J Biol Chem , vol.286 , pp. 5289-5299
    • Xiong, S.1    Salazar, G.2    Patrushev, N.3    Alexander, R.W.4
  • 61
    • 35748962613 scopus 로고    scopus 로고
    • SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress
    • Yang Y., Fu W., Chen J., et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol 2007, 9:1253-1262.
    • (2007) Nat Cell Biol , vol.9 , pp. 1253-1262
    • Yang, Y.1    Fu, W.2    Chen, J.3
  • 62
    • 34548746306 scopus 로고    scopus 로고
    • Myocardial reperfusion injury
    • Yellon D.M., Hausenloy D.J. Myocardial reperfusion injury. N Engl J Med 2007, 357:1121-1135.
    • (2007) N Engl J Med , vol.357 , pp. 1121-1135
    • Yellon, D.M.1    Hausenloy, D.J.2
  • 63
    • 33846505019 scopus 로고    scopus 로고
    • Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex
    • Zhang Q., Wang S.Y., Fleuriel C., et al. Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex. Proc Natl Acad Sci USA 2007, 104:829-833.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 829-833
    • Zhang, Q.1    Wang, S.Y.2    Fleuriel, C.3
  • 64
    • 38749132992 scopus 로고    scopus 로고
    • Negative regulation of the deacetylase SIRT1 by DBC1
    • Zhao W., Kruse J.P., Tang Y., et al. Negative regulation of the deacetylase SIRT1 by DBC1. Nature 2008, 451:587-590.
    • (2008) Nature , vol.451 , pp. 587-590
    • Zhao, W.1    Kruse, J.P.2    Tang, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.