-
1
-
-
71349084249
-
The molecular clockwork of a protein-based circadian oscillator.
-
Markson JS, O'Shea EK. The molecular clockwork of a protein-based circadian oscillator. FEBS Lett 2009, 583:3938-3947.
-
(2009)
FEBS Lett
, vol.583
, pp. 3938-3947
-
-
Markson, J.S.1
O'Shea, E.K.2
-
2
-
-
0348011476
-
The coevolution of blue-light photoreception and circadian rhythms.
-
Gehring W, Rosbash M. The coevolution of blue-light photoreception and circadian rhythms. J Mol Evol 2003, 57(suppl 1):S286-S289.
-
(2003)
J Mol Evol
, vol.57
, Issue.SUPPL 1
-
-
Gehring, W.1
Rosbash, M.2
-
3
-
-
0015119210
-
Clock mutants of Drosophila melanogaster.
-
Konopka RJ, Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 1971, 68: 2112-2116.
-
(1971)
Proc Natl Acad Sci U S A
, vol.68
, pp. 2112-2116
-
-
Konopka, R.J.1
Benzer, S.2
-
5
-
-
4544356423
-
Transcription regulation within the circadian clock: the E-box and beyond.
-
Hardin PE. Transcription regulation within the circadian clock: the E-box and beyond. J Biol Rhythms 2004, 19:348-360.
-
(2004)
J Biol Rhythms
, vol.19
, pp. 348-360
-
-
Hardin, P.E.1
-
7
-
-
33847779219
-
Post-translational modifications regulate the ticking of the circadian clock.
-
Gallego M, Virshup DM. Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 2007, 8:139-148.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 139-148
-
-
Gallego, M.1
Virshup, D.M.2
-
8
-
-
0035919618
-
NPAS2: an analog of clock operative in the mammalian forebrain.
-
Reick M, Garcia JA, Dudley C, McKnight SL. NPAS2: an analog of clock operative in the mammalian forebrain. Science 2001, 293:506-509.
-
(2001)
Science
, vol.293
, pp. 506-509
-
-
Reick, M.1
Garcia, J.A.2
Dudley, C.3
McKnight, S.L.4
-
10
-
-
34247526990
-
CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock.
-
DeBruyne JP, Weaver DR, Reppert SM. CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 2007, 10:543-545.
-
(2007)
Nat Neurosci
, vol.10
, pp. 543-545
-
-
DeBruyne, J.P.1
Weaver, D.R.2
Reppert, S.M.3
-
11
-
-
4143105727
-
A rhythmic Ror.
-
Emery P, Reppert SM. A rhythmic Ror. Neuron 2004, 43:443-446.
-
(2004)
Neuron
, vol.43
, pp. 443-446
-
-
Emery, P.1
Reppert, S.M.2
-
12
-
-
4143142003
-
A functional genomics strategy reveals Rora as a component of the mammalian circadian clock.
-
Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, Naik KA, FitzGerald GA, Kay SA, Hogenesch JB. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 2004, 43:527-537.
-
(2004)
Neuron
, vol.43
, pp. 527-537
-
-
Sato, T.K.1
Panda, S.2
Miraglia, L.J.3
Reyes, T.M.4
Rudic, R.D.5
McNamara, P.6
Naik, K.A.7
FitzGerald, G.A.8
Kay, S.A.9
Hogenesch, J.B.10
-
13
-
-
75649127967
-
Identification of RACK1 and protein kinase C α as integral components of the mammalian circadian clock.
-
Robles MS, Boyault C, Knutti D, Padmanabhan K, Weitz CJ. Identification of RACK1 and protein kinase C α as integral components of the mammalian circadian clock. Science 2010, 327:463-466.
-
(2010)
Science
, vol.327
, pp. 463-466
-
-
Robles, M.S.1
Boyault, C.2
Knutti, D.3
Padmanabhan, K.4
Weitz, C.J.5
-
14
-
-
38449105491
-
Entrainment of the Drosophila circadian clock: more heat than light.
-
Fan JY, Muskus MJ, Price JL. Entrainment of the Drosophila circadian clock: more heat than light. Sci STKE 2007, 2007:pe65.
-
(2007)
Sci STKE 2007
-
-
Fan, J.Y.1
Muskus, M.J.2
Price, J.L.3
-
15
-
-
34250340567
-
PER-TIM interactions with the photoreceptor cryptochrome mediate circadian temperature responses in Drosophila.
-
Kaushik R, Nawathean P, Busza A, Murad A, Emery P, Rosbash M. PER-TIM interactions with the photoreceptor cryptochrome mediate circadian temperature responses in Drosophila. PLoS Biol 2007, 5:e146.
-
(2007)
PLoS Biol
, vol.5
-
-
Kaushik, R.1
Nawathean, P.2
Busza, A.3
Murad, A.4
Emery, P.5
Rosbash, M.6
-
16
-
-
33644758156
-
Drosophila CRYPTOCHROME is a circadian transcriptional repressor.
-
Collins B, Mazzoni EO, Stanewsky R, Blau J. Drosophila CRYPTOCHROME is a circadian transcriptional repressor. Curr Biol 2006, 16:441-449.
-
(2006)
Curr Biol
, vol.16
, pp. 441-449
-
-
Collins, B.1
Mazzoni, E.O.2
Stanewsky, R.3
Blau, J.4
-
17
-
-
0033944040
-
A time-less function for mouse Timeless.
-
Gotter AL, Manganaro T, Weaver DR, Kolakowski LF Jr, Possidente B, Sriram S, MacLaughlin DT, Reppert SM. A time-less function for mouse Timeless. Nat Neurosci 2000, 3:755-756.
-
(2000)
Nat Neurosci
, vol.3
, pp. 755-756
-
-
Gotter, A.L.1
Manganaro, T.2
Weaver, D.R.3
Kolakowski, L.F.4
Possidente, B.5
Sriram, S.6
MacLaughlin, D.T.7
Reppert, S.M.8
-
18
-
-
0142052946
-
Requirement of mammalian timeless for circadian rhythmicity.
-
Barnes JW, Tischkau SA, Barnes JA, Mitchell JW, Burgoon PW, Hickok JR, Gillette MU. Requirement of mammalian timeless for circadian rhythmicity. Science 2003, 302:439-442.
-
(2003)
Science
, vol.302
, pp. 439-442
-
-
Barnes, J.W.1
Tischkau, S.A.2
Barnes, J.A.3
Mitchell, J.W.4
Burgoon, P.W.5
Hickok, J.R.6
Gillette, M.U.7
-
19
-
-
76749137596
-
Drosophila timeless2 is required for chromosome stability and circadian photoreception.
-
Benna C, Bonaccorsi S, Wulbeck C, Helfrich-Forster C, Gatti M, Kyriacou CP, Costa R, Sandrelli F. Drosophila timeless2 is required for chromosome stability and circadian photoreception. Curr Biol 2010, 20:346-352.
-
(2010)
Curr Biol
, vol.20
, pp. 346-352
-
-
Benna, C.1
Bonaccorsi, S.2
Wulbeck, C.3
Helfrich-Forster, C.4
Gatti, M.5
Kyriacou, C.P.6
Costa, R.7
Sandrelli, F.8
-
20
-
-
33750467113
-
Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock.
-
Rubin EB, Shemesh Y, Cohen M, Elgavish S, Robertson HM, Bloch G. Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res 2006, 16:1352-1365.
-
(2006)
Genome Res
, vol.16
, pp. 1352-1365
-
-
Rubin, E.B.1
Shemesh, Y.2
Cohen, M.3
Elgavish, S.4
Robertson, H.M.5
Bloch, G.6
-
21
-
-
0037423224
-
Vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock.
-
Cyran SA, Buchsbaum AM, Reddy KL, Lin MC, Glossop NR, Hardin PE, Young MW, Storti RV, Blau J. Vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 2003, 112:329-341.
-
(2003)
Cell
, vol.112
, pp. 329-341
-
-
Cyran, S.A.1
Buchsbaum, A.M.2
Reddy, K.L.3
Lin, M.C.4
Glossop, N.R.5
Hardin, P.E.6
Young, M.W.7
Storti, R.V.8
Blau, J.9
-
22
-
-
34347375754
-
A functional genomics strategy reveals clockwork orange as a transcriptional regulator in the Drosophila circadian clock.
-
Matsumoto A, Ukai-Tadenuma M, Yamada RG, Houl J, Uno KD, Kasukawa T, Dauwalder B, Itoh TQ, Takahashi K, Ueda R. et al. A functional genomics strategy reveals clockwork orange as a transcriptional regulator in the Drosophila circadian clock. Genes Dev 2007, 21:1687-1700.
-
(2007)
Genes Dev
, vol.21
, pp. 1687-1700
-
-
Matsumoto, A.1
Ukai-Tadenuma, M.2
Yamada, R.G.3
Houl, J.4
Uno, K.D.5
Kasukawa, T.6
Dauwalder, B.7
Itoh, T.Q.8
Takahashi, K.9
Ueda, R.10
-
23
-
-
40849106529
-
The clockwork Orange Drosophila protein functions as both an activator and a repressor of clock gene expression.
-
Richier B, Michard-Vanhee C, Lamouroux A, Papin C, Rouyer F. The clockwork Orange Drosophila protein functions as both an activator and a repressor of clock gene expression. J Biol Rhythms 2008, 23:103-116.
-
(2008)
J Biol Rhythms
, vol.23
, pp. 103-116
-
-
Richier, B.1
Michard-Vanhee, C.2
Lamouroux, A.3
Papin, C.4
Rouyer, F.5
-
24
-
-
0035955374
-
Identification of novel genes coding for small expressed RNAs.
-
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001, 294:853-858.
-
(2001)
Science
, vol.294
, pp. 853-858
-
-
Lagos-Quintana, M.1
Rauhut, R.2
Lendeckel, W.3
Tuschl, T.4
-
25
-
-
0347444723
-
MicroRNAs: genomics, biogenesis, mechanism, and function.
-
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
-
(2004)
Cell
, vol.116
, pp. 281-297
-
-
Bartel, D.P.1
-
26
-
-
28344440823
-
MicroRNA function: multiple mechanisms for a tiny RNA?
-
Pillai RS. MicroRNA function: multiple mechanisms for a tiny RNA? RNA 2005, 11:1753-1761.
-
(2005)
RNA
, vol.11
, pp. 1753-1761
-
-
Pillai, R.S.1
-
27
-
-
58549089327
-
The role of microRNAs (miRNA) in circadian rhythmicity.
-
Pegoraro M, Tauber E. The role of microRNAs (miRNA) in circadian rhythmicity. J Genet 2008, 87: 505-511.
-
(2008)
J Genet
, vol.87
, pp. 505-511
-
-
Pegoraro, M.1
Tauber, E.2
-
28
-
-
70349245117
-
The miRNA-192/194 cluster regulates the Period gene family and the circadian clock.
-
Nagel R, Clijsters L, Agami R. The miRNA-192/194 cluster regulates the Period gene family and the circadian clock. FEBS J 2009, 276:5447-5455.
-
(2009)
FEBS J
, vol.276
, pp. 5447-5455
-
-
Nagel, R.1
Clijsters, L.2
Agami, R.3
-
29
-
-
34249713720
-
MicroRNA modulation of circadian-clock period and entrainment.
-
Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S, et al. MicroRNA modulation of circadian-clock period and entrainment. Neuron 2007, 54:813-829.
-
(2007)
Neuron
, vol.54
, pp. 813-829
-
-
Cheng, H.Y.1
Papp, J.W.2
Varlamova, O.3
Dziema, H.4
Russell, B.5
Curfman, J.P.6
Nakazawa, T.7
Shimizu, K.8
Okamura, H.9
Impey, S.10
-
30
-
-
70349469700
-
Comprehensive analysis of microRNA-mRNA co-expression in circadian rhythm.
-
Na YJ, Sung JH, Lee SC, Lee YJ, Choi YJ, Park WY, Shin HS, Kim JH. Comprehensive analysis of microRNA-mRNA co-expression in circadian rhythm. Exp Mol Med 2009, 41:638-647.
-
(2009)
Exp Mol Med
, vol.41
, pp. 638-647
-
-
Na, Y.J.1
Sung, J.H.2
Lee, S.C.3
Lee, Y.J.4
Choi, Y.J.5
Park, W.Y.6
Shin, H.S.7
Kim, J.H.8
-
31
-
-
70349093118
-
A role for microRNAs in the Drosophila circadian clock.
-
Kadener S, Menet JS, Sugino K, Horwich MD, Weissbein U, Nawathean P, Vagin VV, Zamore PD, Nelson SB, Rosbash MA. A role for microRNAs in the Drosophila circadian clock. Genes Dev 2009, 23: 2179-2191.
-
(2009)
Genes Dev
, vol.23
, pp. 2179-2191
-
-
Kadener, S.1
Menet, J.S.2
Sugino, K.3
Horwich, M.D.4
Weissbein, U.5
Nawathean, P.6
Vagin, V.V.7
Zamore, P.D.8
Nelson, S.B.9
Rosbash, M.A.10
-
32
-
-
40549096693
-
Circadian regulation of a limited set of conserved microRNAs in Drosophila.
-
Yang M, Lee JE, Padgett RW, Edery I. Circadian regulation of a limited set of conserved microRNAs in Drosophila. BMC Genomics 2008, 9:83.
-
(2008)
BMC Genomics
, vol.9
, pp. 83
-
-
Yang, M.1
Lee, J.E.2
Padgett, R.W.3
Edery, I.4
-
33
-
-
73349122330
-
Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms.
-
Loya CM, Lu CS, Van Vactor D, Fulga TA. Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nat Methods 2009, 6:897-903.
-
(2009)
Nat Methods
, vol.6
, pp. 897-903
-
-
Loya, C.M.1
Lu, C.S.2
Van Vactor, D.3
Fulga, T.A.4
-
34
-
-
34548316982
-
MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells.
-
Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007, 4:721-726.
-
(2007)
Nat Methods
, vol.4
, pp. 721-726
-
-
Ebert, M.S.1
Neilson, J.R.2
Sharp, P.A.3
-
35
-
-
70349330769
-
Post-translational modifications in circadian rhythms.
-
Mehra A, Baker CL, Loros JJ, Dunlap JC. Post-translational modifications in circadian rhythms. Trends Biochem Sci 2009, 34:483-490.
-
(2009)
Trends Biochem Sci
, vol.34
, pp. 483-490
-
-
Mehra, A.1
Baker, C.L.2
Loros, J.J.3
Dunlap, J.C.4
-
36
-
-
0037053314
-
The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase I ε.
-
Eide EJ, Vielhaber EL, Hinz WA, Virshup DM. The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase I ε. J Biol Chem 2002, 277:17248-17254.
-
(2002)
J Biol Chem
, vol.277
, pp. 17248-17254
-
-
Eide, E.J.1
Vielhaber, E.L.2
Hinz, W.A.3
Virshup, D.M.4
-
37
-
-
0037016665
-
Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix-loop-helix-PAS transcription factor BMAL1.
-
Sanada K, Okano T, Fukada Y. Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix-loop-helix-PAS transcription factor BMAL1. J Biol Chem 2002, 277:267-271.
-
(2002)
J Biol Chem
, vol.277
, pp. 267-271
-
-
Sanada, K.1
Okano, T.2
Fukada, Y.3
-
38
-
-
33746041826
-
An opposite role for tau in circadian rhythms revealed by mathematical modeling.
-
Gallego M, Eide EJ, Woolf MF, Virshup DM, Forger DB. An opposite role for tau in circadian rhythms revealed by mathematical modeling. Proc Natl Acad Sci U S A 2006, 103:10618-10623.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 10618-10623
-
-
Gallego, M.1
Eide, E.J.2
Woolf, M.F.3
Virshup, D.M.4
Forger, D.B.5
-
39
-
-
41549142176
-
Setting clock speed in mammals: the CK1ε tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins.
-
Meng QJ, Logunova L, Maywood ES, Gallego M, Lebiecki J, Brown TM, Sládek M, Semikhodskii AS, Glossop NR, Piggins HD. et al. Setting clock speed in mammals: the CK1ε tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 2008, 58:78-88.
-
(2008)
Neuron
, vol.58
, pp. 78-88
-
-
Meng, Q.J.1
Logunova, L.2
Maywood, E.S.3
Gallego, M.4
Lebiecki, J.5
Brown, T.M.6
Sládek, M.7
Semikhodskii, A.S.8
Glossop, N.R.9
Piggins, H.D.10
-
40
-
-
15044343742
-
Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation.
-
Eide EJ, Woolf MF, Kang H, Woolf P, Hurst W, Camacho F, Vielhaber EL, Giovanni A, Virshup DM. Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation. Mol Cell Biol 2005, 25:2795-2807.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 2795-2807
-
-
Eide, E.J.1
Woolf, M.F.2
Kang, H.3
Woolf, P.4
Hurst, W.5
Camacho, F.6
Vielhaber, E.L.7
Giovanni, A.8
Virshup, D.M.9
-
41
-
-
22844432019
-
β-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian Period-1 (Per1) protein.
-
β-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian Period-1 (Per1) protein. J Biol Chem 2005, 280:26863-26872.
-
(2005)
J Biol Chem
, vol.280
, pp. 26863-26872
-
-
Shirogane, T.1
Jin, J.2
Ang, X.L.3
Harper, J.W.4
-
42
-
-
33645010948
-
PER-dependent rhythms in CLK phosphorylation and E-box binding regulate circadian transcription.
-
Yu W, Zheng H, Houl JH, Dauwalder B, Hardin PE. PER-dependent rhythms in CLK phosphorylation and E-box binding regulate circadian transcription. Genes Dev 2006, 20:723-733.
-
(2006)
Genes Dev
, vol.20
, pp. 723-733
-
-
Yu, W.1
Zheng, H.2
Houl, J.H.3
Dauwalder, B.4
Hardin, P.E.5
-
43
-
-
33646591926
-
Balance between DBT/CKIε kinase and protein phosphatase activities regulate phosphorylation and stability of Drosophila CLOCK protein.
-
Kim EY, Edery I. Balance between DBT/CKIε kinase and protein phosphatase activities regulate phosphorylation and stability of Drosophila CLOCK protein. Proc Natl Acad Sci U S A 2006, 103:6178-6183.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 6178-6183
-
-
Kim, E.Y.1
Edery, I.2
-
45
-
-
48349122032
-
Activating PER repressor through a DBT-directed phosphorylation switch.
-
Kivimae S, Saez L, Young MW. Activating PER repressor through a DBT-directed phosphorylation switch. PLoS Biol 2008, 6:e183.
-
(2008)
PLoS Biol
, vol.6
-
-
Kivimae, S.1
Saez, L.2
Young, M.W.3
-
46
-
-
0344091557
-
A role for CK2 in the Drosophila circadian oscillator.
-
Akten B, Jauch E, Genova GK, Kim EY, Edery I, Raabe T, Jackson FR. A role for CK2 in the Drosophila circadian oscillator. Nat Neurosci 2003, 6:251-257.
-
(2003)
Nat Neurosci
, vol.6
, pp. 251-257
-
-
Akten, B.1
Jauch, E.2
Genova, G.K.3
Kim, E.Y.4
Edery, I.5
Raabe, T.6
Jackson, F.R.7
-
47
-
-
38949155276
-
Dominant-negative CK2α induces potent effects on circadian rhythmicity.
-
Smith EM, Lin JM, Meissner RA, Allada R. Dominant-negative CK2α induces potent effects on circadian rhythmicity. PLoS Genet 2008, 4:e12.
-
(2008)
PLoS Genet
, vol.4
-
-
Smith, E.M.1
Lin, J.M.2
Meissner, R.A.3
Allada, R.4
-
48
-
-
30644471172
-
In vivo circadian function of casein kinase 2 phosphorylation sites in Drosophila PERIOD.
-
Lin JM, Schroeder A, Allada R. In vivo circadian function of casein kinase 2 phosphorylation sites in Drosophila PERIOD. J Neurosci 2005, 25: 11175-11183.
-
(2005)
J Neurosci
, vol.25
, pp. 11175-11183
-
-
Lin, J.M.1
Schroeder, A.2
Allada, R.3
-
49
-
-
55749090812
-
TIMELESS is an important mediator of CK2 effects on circadian clock function in vivo.
-
Meissner RA, Kilman VL, Lin JM, Allada R. TIMELESS is an important mediator of CK2 effects on circadian clock function in vivo. J Neurosci 2008, 28:9732-9740.
-
(2008)
J Neurosci
, vol.28
, pp. 9732-9740
-
-
Meissner, R.A.1
Kilman, V.L.2
Lin, J.M.3
Allada, R.4
-
50
-
-
23844460834
-
A role for glycogen synthase kinase-3 β in the mammalian circadian clock.
-
Iitaka C, Miyazaki K, Akaike T, Ishida N. A role for glycogen synthase kinase-3 β in the mammalian circadian clock. J Biol Chem 2005, 280:29397-29402.
-
(2005)
J Biol Chem
, vol.280
, pp. 29397-29402
-
-
Iitaka, C.1
Miyazaki, K.2
Akaike, T.3
Ishida, N.4
-
51
-
-
33144465537
-
Nuclear receptor Rev-erbα is a critical lithium-sensitive component of the circadian clock.
-
Yin L, Wang J, Klein PS, Lazar MA. Nuclear receptor Rev-erbα is a critical lithium-sensitive component of the circadian clock. Science 2006, 311:1002-1005.
-
(2006)
Science
, vol.311
, pp. 1002-1005
-
-
Yin, L.1
Wang, J.2
Klein, P.S.3
Lazar, M.A.4
-
52
-
-
24744436847
-
Ser-557-phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase-3β.
-
Harada Y, Sakai M, Kurabayashi N, Hirota T, Fukada Y. Ser-557-phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase-3β. J Biol Chem 2005, 280:31714-31721.
-
(2005)
J Biol Chem
, vol.280
, pp. 31714-31721
-
-
Harada, Y.1
Sakai, M.2
Kurabayashi, N.3
Hirota, T.4
Fukada, Y.5
-
53
-
-
0035875069
-
A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock.
-
Martinek S, Inonog S, Manoukian AS, Young MW. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 2001, 105:769-779.
-
(2001)
Cell
, vol.105
, pp. 769-779
-
-
Martinek, S.1
Inonog, S.2
Manoukian, A.S.3
Young, M.W.4
-
54
-
-
33745918016
-
Posttranslational regulation of the mammalian circadian clock by cryptochrome and protein phosphatase 5.
-
Partch CL, Shields KF, Thompson CL, Selby CP, Sancar A. Posttranslational regulation of the mammalian circadian clock by cryptochrome and protein phosphatase 5. Proc Natl Acad Sci U S A 2006, 103:10467-10472.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 10467-10472
-
-
Partch, C.L.1
Shields, K.F.2
Thompson, C.L.3
Selby, C.P.4
Sancar, A.5
-
55
-
-
33749360459
-
Protein phosphatase 1 regulates the stability of the circadian protein PER2.
-
Gallego M, Kang H, Virshup DM. Protein phosphatase 1 regulates the stability of the circadian protein PER2. Biochem J 2006, 399:169-175.
-
(2006)
Biochem J
, vol.399
, pp. 169-175
-
-
Gallego, M.1
Kang, H.2
Virshup, D.M.3
-
56
-
-
34250790719
-
Post-translational regulation of the Drosophila circadian clock requires protein phosphatase 1 (PP1).
-
Fang Y, Sathyanarayanan S, Sehgal A. Post-translational regulation of the Drosophila circadian clock requires protein phosphatase 1 (PP1). Genes Dev 2007, 21:1506-1518.
-
(2007)
Genes Dev
, vol.21
, pp. 1506-1518
-
-
Fang, Y.1
Sathyanarayanan, S.2
Sehgal, A.3
-
57
-
-
1342285689
-
Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A.
-
Sathyanarayanan S, Zheng X, Xiao R, Sehgal A. Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A. Cell 2004, 116:603-615.
-
(2004)
Cell
, vol.116
, pp. 603-615
-
-
Sathyanarayanan, S.1
Zheng, X.2
Xiao, R.3
Sehgal, A.4
-
58
-
-
0037426839
-
Rhythmic histone acetylation underlies transcription in the mammalian circadian clock.
-
Etchegaray JP, Lee C, Wade PA, Reppert SM. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 2003, 421: 177-182.
-
(2003)
Nature
, vol.421
, pp. 177-182
-
-
Etchegaray, J.P.1
Lee, C.2
Wade, P.A.3
Reppert, S.M.4
-
59
-
-
33644617485
-
Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions.
-
Ripperger JA, Schibler U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet 2006, 38:369-374.
-
(2006)
Nat Genet
, vol.38
, pp. 369-374
-
-
Ripperger, J.A.1
Schibler, U.2
-
60
-
-
37249053976
-
CLOCK-mediated acetylation of BMAL1 controls circadian function.
-
Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Sassone-Corsi P. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 2007, 450:1086-1090.
-
(2007)
Nature
, vol.450
, pp. 1086-1090
-
-
Hirayama, J.1
Sahar, S.2
Grimaldi, B.3
Tamaru, T.4
Takamatsu, K.5
Nakahata, Y.6
Sassone-Corsi, P.7
-
61
-
-
47549088250
-
The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control.
-
Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008, 134:329-340.
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
Kaluzova, M.2
Grimaldi, B.3
Sahar, S.4
Hirayama, J.5
Chen, D.6
Guarente, L.P.7
Sassone-Corsi, P.8
-
62
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation.
-
Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008, 134:317-328.
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
Gatfield, D.2
Stratmann, M.3
Reinke, H.4
Dibner, C.5
Kreppel, F.6
Mostoslavsky, R.7
Alt, F.W.8
Schibler, U.9
-
63
-
-
0037295721
-
Modification with SUMO. A role in transcriptional regulation.
-
Verger A, Perdomo J, Crossley M. Modification with SUMO. A role in transcriptional regulation. EMBO Rep 2003, 4:137-142.
-
(2003)
EMBO Rep
, vol.4
, pp. 137-142
-
-
Verger, A.1
Perdomo, J.2
Crossley, M.3
-
64
-
-
3943099375
-
Protein modification by SUMO.
-
Johnson ES. Protein modification by SUMO. Annu Rev Biochem 2004, 73:355-382.
-
(2004)
Annu Rev Biochem
, vol.73
, pp. 355-382
-
-
Johnson, E.S.1
-
65
-
-
23944470712
-
Circadian clock control by SUMOylation of BMAL1.
-
Cardone L, Hirayama J, Giordano F, Tamaru T, Palvimo JJ, Sassone-Corsi P. Circadian clock control by SUMOylation of BMAL1. Science 2005, 309: 1390-1394.
-
(2005)
Science
, vol.309
, pp. 1390-1394
-
-
Cardone, L.1
Hirayama, J.2
Giordano, F.3
Tamaru, T.4
Palvimo, J.J.5
Sassone-Corsi, P.6
-
66
-
-
52649158231
-
Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex.
-
Lee J, Lee Y, Lee MJ, Park E, Kang SH, Chung CH, Lee KH, Kim K. Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex. Mol Cell Biol 2008, 28:6056-6065.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 6056-6065
-
-
Lee, J.1
Lee, Y.2
Lee, M.J.3
Park, E.4
Kang, S.H.5
Chung, C.H.6
Lee, K.H.7
Kim, K.8
-
67
-
-
0034611025
-
PACAP and glutamate are co-stored in the retinohypothalamic tract.
-
Hannibal J, Moller M, Ottersen OP, Fahrenkrug J. PACAP and glutamate are co-stored in the retinohypothalamic tract. J Comp Neurol 2000, 418:147-155.
-
(2000)
J Comp Neurol
, vol.418
, pp. 147-155
-
-
Hannibal, J.1
Moller, M.2
Ottersen, O.P.3
Fahrenkrug, J.4
-
68
-
-
0037688038
-
2+ in single suprachiasmatic nucleus neurons.
-
2+ in single suprachiasmatic nucleus neurons. Neuron 2003, 38:253-263.
-
(2003)
Neuron
, vol.38
, pp. 253-263
-
-
Ikeda, M.1
Sugiyama, T.2
Wallace, C.S.3
Gompf, H.S.4
Yoshioka, T.5
Miyawaki, A.6
Allen, C.N.7
-
69
-
-
44249094901
-
cAMP-dependent signaling as a core component of the mammalian circadian pacemaker.
-
O'Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH. cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 2008, 320:949-953.
-
(2008)
Science
, vol.320
, pp. 949-953
-
-
O'Neill, J.S.1
Maywood, E.S.2
Chesham, J.E.3
Takahashi, J.S.4
Hastings, M.H.5
-
70
-
-
0028904194
-
Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms.
-
Welsh DK, Logothetis DE, Meister M, Reppert SM. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 1995, 14:697-706.
-
(1995)
Neuron
, vol.14
, pp. 697-706
-
-
Welsh, D.K.1
Logothetis, D.E.2
Meister, M.3
Reppert, S.M.4
-
71
-
-
34247516815
-
Intercellular coupling confers robustness against mutations in the SCN circadian clock network.
-
Liu AC, Welsh DK, Ko CH, Tran HG, Zhang EE, Priest AA, Buhr ED, Singer O, Meeker K, Verma IM, et al. Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 2007, 129:605-616.
-
(2007)
Cell
, vol.129
, pp. 605-616
-
-
Liu, A.C.1
Welsh, D.K.2
Ko, C.H.3
Tran, H.G.4
Zhang, E.E.5
Priest, A.A.6
Buhr, E.D.7
Singer, O.8
Meeker, K.9
Verma, I.M.10
-
72
-
-
70349499237
-
Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons.
-
Webb AB, Angelo N, Huettner JE, Herzog ED. Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons. Proc Natl Acad Sci U S A 2009, 106:16493-16498.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 16493-16498
-
-
Webb, A.B.1
Angelo, N.2
Huettner, J.E.3
Herzog, E.D.4
-
73
-
-
77951927020
-
Suprachiasmatic nucleus: cell autonomy and network properties.
-
Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 2010, 72:551-577.
-
(2010)
Annu Rev Physiol
, vol.72
, pp. 551-577
-
-
Welsh, D.K.1
Takahashi, J.S.2
Kay, S.A.3
-
74
-
-
0345306748
-
Synchronization of cellular clocks in the suprachiasmatic nucleus.
-
Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M, Okamura H. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 2003, 302:1408-1412.
-
(2003)
Science
, vol.302
, pp. 1408-1412
-
-
Yamaguchi, S.1
Isejima, H.2
Matsuo, T.3
Okura, R.4
Yagita, K.5
Kobayashi, M.6
Okamura, H.7
-
75
-
-
39849106195
-
The Drosophila circadian pacemaker circuit: Pas de deu or Tarantella?
-
Sheeba V, Kaneko M, Sharma VK, Holmes TC. The Drosophila circadian pacemaker circuit: Pas de deu or Tarantella? Crit Rev Biochem Mol 2008, 43:37-61.
-
(2008)
Crit Rev Biochem Mol
, vol.43
, pp. 37-61
-
-
Sheeba, V.1
Kaneko, M.2
Sharma, V.K.3
Holmes, T.C.4
-
76
-
-
0037123779
-
Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock.
-
Nitabach MN, Blau J, Holmes TC. Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 2002, 109:485-495.
-
(2002)
Cell
, vol.109
, pp. 485-495
-
-
Nitabach, M.N.1
Blau, J.2
Holmes, T.C.3
-
77
-
-
14744303401
-
Neurobiology of the fruit fly's circadian clock.
-
Helfrich-Forster C. Neurobiology of the fruit fly's circadian clock. Genes Brain Behav 2005, 4:65-76.
-
(2005)
Genes Brain Behav
, vol.4
, pp. 65-76
-
-
Helfrich-Forster, C.1
-
78
-
-
38149026267
-
Organization of the Drosophila circadian control circuit.
-
Nitabach MN, Taghert PH. Organization of the Drosophila circadian control circuit. Curr Biol 2008, 18:R84-R93.
-
(2008)
Curr Biol
, vol.18
-
-
Nitabach, M.N.1
Taghert, P.H.2
-
79
-
-
77951912759
-
Circadian organization of behavior and physiology in Drosophila.
-
Allada R, Chung BY. Circadian organization of behavior and physiology in Drosophila. Annu Rev Physiol 2010, 72:605-624.
-
(2010)
Annu Rev Physiol
, vol.72
, pp. 605-624
-
-
Allada, R.1
Chung, B.Y.2
-
80
-
-
7244252844
-
Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain.
-
Grima B, Chelot E, Xia R, Rouyer F. Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 2004, 431:869-873.
-
(2004)
Nature
, vol.431
, pp. 869-873
-
-
Grima, B.1
Chelot, E.2
Xia, R.3
Rouyer, F.4
-
81
-
-
7244242193
-
Coupled oscillators control morning and evening locomotor behaviour of Drosophila.
-
Stoleru D, Peng Y, Agosto J, Rosbash M. Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 2004, 431:862-868.
-
(2004)
Nature
, vol.431
, pp. 862-868
-
-
Stoleru, D.1
Peng, Y.2
Agosto, J.3
Rosbash, M.4
-
82
-
-
27744493091
-
A resetting signal between Drosophila pacemakers synchronizes morning and evening activity.
-
Stoleru D, Peng Y, Nawathean P, Rosbash M. A resetting signal between Drosophila pacemakers synchronizes morning and evening activity. Nature 2005, 438:238-242.
-
(2005)
Nature
, vol.438
, pp. 238-242
-
-
Stoleru, D.1
Peng, Y.2
Nawathean, P.3
Rosbash, M.4
-
83
-
-
0142052954
-
A self-sustaining, light-entrainable circadian oscillator in the Drosophila brain.
-
Veleri S, Brandes C, Helfrich-Forster C, Hall JC, Stanewsky R. A self-sustaining, light-entrainable circadian oscillator in the Drosophila brain. Curr Biol 2003, 13:1758-1767.
-
(2003)
Curr Biol
, vol.13
, pp. 1758-1767
-
-
Veleri, S.1
Brandes, C.2
Helfrich-Forster, C.3
Hall, J.C.4
Stanewsky, R.5
-
84
-
-
33847128320
-
A subset of dorsal neurons modulates circadian behavior and light responses in Drosophila.
-
Murad A, Emery-Le M, Emery P. A subset of dorsal neurons modulates circadian behavior and light responses in Drosophila. Neuron 2007, 53:689-701.
-
(2007)
Neuron
, vol.53
, pp. 689-701
-
-
Murad, A.1
Emery-Le, M.2
Emery, P.3
-
85
-
-
33847098901
-
The Drosophila circadian network is a seasonal timer.
-
Stoleru D, Nawathean P, Fernandez MP, Menet JS, Ceriani MF, Rosbash M. The Drosophila circadian network is a seasonal timer. Cell 2007, 129:207-219.
-
(2007)
Cell
, vol.129
, pp. 207-219
-
-
Stoleru, D.1
Nawathean, P.2
Fernandez, M.P.3
Menet, J.S.4
Ceriani, M.F.5
Rosbash, M.6
-
86
-
-
33744937073
-
Electrophysiological and anatomical characterization of PDF-positive clock neurons in the intact adult Drosophila brain.
-
Park D, Griffith LC. Electrophysiological and anatomical characterization of PDF-positive clock neurons in the intact adult Drosophila brain. J Neurophysiol 2006, 95:3955-3960.
-
(2006)
J Neurophysiol
, vol.95
, pp. 3955-3960
-
-
Park, D.1
Griffith, L.C.2
-
87
-
-
38149040998
-
Circadian- and light-dependent regulation of resting membrane potential and spontaneous action potential firing of Drosophila circadian pacemaker neurons.
-
Sheeba V, Gu H, Sharma VK, O'Dowd DK, Holmes TC. Circadian- and light-dependent regulation of resting membrane potential and spontaneous action potential firing of Drosophila circadian pacemaker neurons. J Neurophysiol 2008, 99:976-988.
-
(2008)
J Neurophysiol
, vol.99
, pp. 976-988
-
-
Sheeba, V.1
Gu, H.2
Sharma, V.K.3
O'Dowd, D.K.4
Holmes, T.C.5
-
89
-
-
70350183790
-
Temperature entrainment of Drosophila's circadian clock involves the gene nocte and signaling from peripheral sensory tissues to the brain.
-
Sehadova H, Glaser FT, Gentile C, Simoni A, Giesecke A, Albert JT, Stanewsky R. Temperature entrainment of Drosophila's circadian clock involves the gene nocte and signaling from peripheral sensory tissues to the brain. Neuron 2009, 64:251-266.
-
(2009)
Neuron
, vol.64
, pp. 251-266
-
-
Sehadova, H.1
Glaser, F.T.2
Gentile, C.3
Simoni, A.4
Giesecke, A.5
Albert, J.T.6
Stanewsky, R.7
-
90
-
-
55449106027
-
Analysis of gene regulatory networks in the mammalian circadian rhythm.
-
Yan J, Wang H, Liu Y, Shao C. Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput Biol 2008, 4:e1000193.
-
(2008)
PLoS Comput Biol
, vol.4
-
-
Yan, J.1
Wang, H.2
Liu, Y.3
Shao, C.4
-
91
-
-
73949101875
-
Dissecting differential gene expression within the circadian neuronal circuit of Drosophila.
-
Nagoshi E, Sugino K, Kula E, Okazaki E, Tachibana T, Nelson S, Rosbash M. Dissecting differential gene expression within the circadian neuronal circuit of Drosophila. Nat Neurosci 2010, 13:60-68.
-
(2010)
Nat Neurosci
, vol.13
, pp. 60-68
-
-
Nagoshi, E.1
Sugino, K.2
Kula, E.3
Okazaki, E.4
Tachibana, T.5
Nelson, S.6
Rosbash, M.7
|