-
1
-
-
78649353919
-
Neuroprotection in acute ischemic stroke-current status
-
Auriel E, Bornstein NM. Neuroprotection in acute ischemic stroke-current status. J Cell Mol Med 2010;14:2200-2
-
(2011)
J. Cell Mol. Med.
, vol.14
, pp. 2200-2202
-
-
Auriel, E.1
Bornstein, N.M.2
-
2
-
-
0032425112
-
Steroids and spinal cord injury: Revisiting the NASCIS 2 and NASCIS 3 trials
-
Nesathurai S. Steroids and spinal cord injury: revisiting the NASCIS 2 and NASCIS 3 trials. J Trauma 1998;45:1088-93
-
(1998)
J. Trauma.
, vol.45
, pp. 1088-1093
-
-
Nesathurai, S.1
-
3
-
-
55749108341
-
Neuroprotection in traumatic brain injury
-
Jain KK. Neuroprotection in traumatic brain injury. Drug Discov Today 2008;13:1082-9
-
(2008)
Drug Discov. Today
, vol.13
, pp. 1082-1089
-
-
Jain, K.K.1
-
4
-
-
79952117976
-
New approaches to neuroprotective drug development
-
Fisher M. New approaches to neuroprotective drug development. Stroke 2011;42:S24-7
-
(2011)
Stroke
, vol.42
-
-
Fisher, M.1
-
5
-
-
37249034561
-
The past and future of neuroprotection in cerebral ischaemic stroke
-
Shuaib A, Hussain MS. The past and future of neuroprotection in cerebral ischaemic stroke. Eur Neurol 2008;59:4-14
-
(2008)
Eur. Neurol.
, vol.59
, pp. 4-14
-
-
Shuaib, A.1
Hussain, M.S.2
-
6
-
-
0038054469
-
Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury
-
Lu P, Jones LL, Snyder EY, Tuszynski MH. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 2003;181:115-29
-
(2003)
Exp. Neurol.
, vol.181
, pp. 115-129
-
-
Lu, P.1
Jones, L.L.2
Snyder, E.Y.3
Tuszynski, M.H.4
-
7
-
-
34247632230
-
Transplantation of bone marrow-derived stem cells: A promising therapy for stroke
-
Tang Y, Yasuhara T, Hara K, et al. Transplantation of bone marrow-derived stem cells: a promising therapy for stroke. Cell Transplant 2007;16:159-69
-
(2007)
Cell Transplant
, vol.16
, pp. 159-169
-
-
Tang, Y.1
Yasuhara, T.2
Hara, K.3
-
8
-
-
0036842501
-
The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue
-
Park KI, Teng YD, Snyder EY. The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol 2002;20:1111-17
-
(2002)
Nat. Biotechnol.
, vol.20
, pp. 1111-1117
-
-
Park, K.I.1
Teng, Y.D.2
Snyder, E.Y.3
-
9
-
-
77649133015
-
Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury
-
Cao Q, He Q, Wang Y, et al. Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury. J Neurosci 2010;30:2989-3001
-
(2011)
J. Neurosci.
, vol.30
, pp. 2989-3001
-
-
Cao, Q.1
He, Q.2
Wang, Y.3
-
11
-
-
0036098072
-
Neurotrophic factors gene therapy and neural stem cells for spinal cord repair
-
Blesch A, Lu P, Tuszynski MH. Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair. Brain Res Bull 2002;57:833-8
-
(2002)
Brain Res. Bull.
, vol.57
, pp. 833-838
-
-
Blesch, A.1
Lu, P.2
Tuszynski, M.H.3
-
12
-
-
77949376588
-
Cell based-gene delivery approaches for the treatment of spinal cord injury and neurodegenerative disorders
-
Taha MF. Cell based-gene delivery approaches for the treatment of spinal cord injury and neurodegenerative disorders. Curr Stem Cell Res Ther 2010;5:23-36
-
(2011)
Curr. Stem. Cell Res. Ther.
, vol.5
, pp. 23-36
-
-
Taha, M.F.1
-
13
-
-
0036414676
-
Pharmacological cell and gene therapy strategies to promote spinal cord regeneration
-
Blits B, Boer GJ, Verhaagen J. Pharmacological, cell, and gene therapy strategies to promote spinal cord regeneration. Cell Transplant 2002;11:593-613
-
(2002)
Cell Transplant
, vol.11
, pp. 593-613
-
-
Blits, B.1
Boer, G.J.2
Verhaagen, J.3
-
14
-
-
38049187707
-
Reprogramming of human somatic cells to pluripotency with defined factors
-
Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008;451:141-6
-
(2008)
Nature
, vol.451
, pp. 141-146
-
-
Park, I.H.1
Zhao, R.2
West, J.A.3
-
15
-
-
36248966518
-
Induction of pluripotent stem cells from adult human fibroblasts by defined factors
-
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-72
-
(2007)
Cell
, vol.131
, pp. 861-872
-
-
Takahashi, K.1
Tanabe, K.2
Ohnuki, M.3
-
16
-
-
77649336367
-
Recent advancements in stem cell and gene therapies for neurological disorders and intractable epilepsy
-
Naegele JR, Maisano X, Yang J, et al. Recent advancements in stem cell and gene therapies for neurological disorders and intractable epilepsy. Neuropharmacology 2010;58:855-64
-
(2011)
Neuropharmacology
, vol.58
, pp. 855-864
-
-
Naegele, J.R.1
Maisano, X.2
Yang, J.3
-
17
-
-
79952155004
-
Concise review: Bone marrow for the treatment of spinal cord injury: Mechanisms and clinical applications
-
Wright KT, El Masri W, Osman A, et al. Concise review: bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications. Stem Cells 2011;29:169-78
-
(2011)
Stem Cells
, vol.29
, pp. 169-178
-
-
Wright, K.T.1
El Masri, W.2
Osman, A.3
-
18
-
-
79954692758
-
Ex vivo gene transfer and correction for cell-based therapies
-
Naldini L. Ex vivo gene transfer and correction for cell-based therapies. Nat Rev Genet 2011;5:301-15
-
(2011)
Nat. Rev. Genet.
, vol.5
, pp. 301-315
-
-
Naldini, L.1
-
19
-
-
19944426191
-
Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway
-
USA
-
Imitola J, Raddassi K, Park KI, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 2004;101:18117-22
-
(2004)
Proc. Natl. Acad. Sci.
, vol.101
, pp. 18117-18122
-
-
Imitola, J.1
Raddassi, K.2
Park, K.I.3
-
20
-
-
0034117480
-
Gene therapy of experimental brain tumors using neural progenitor cells
-
Benedetti S, Pirola B, Pollo B, et al. Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 2000;6:447-50
-
(2000)
Nat. Med.
, vol.6
, pp. 447-450
-
-
Benedetti, S.1
Pirola, B.2
Pollo, B.3
-
21
-
-
0034619328
-
Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas
-
USA
-
Aboody KS, Brown A, Rainov NG, et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000;97:12846-51
-
(2000)
Proc. Natl. Acad. Sci.
, vol.97
, pp. 12846-12851
-
-
Aboody, K.S.1
Brown, A.2
Rainov, N.G.3
-
22
-
-
34347386866
-
In vivo tracking of stem cells in brain and spinal cord injury
-
Sykova E, Jendelova P. In vivo tracking of stem cells in brain and spinal cord injury. Prog Brain Res 2007;161:367-83
-
(2007)
Prog. Brain Res.
, vol.161
, pp. 367-383
-
-
Sykova, E.1
Jendelova, P.2
-
23
-
-
77951600246
-
The chemokine SDF-1/CXCL12 contributes to the homing of umbilical cord blood cells to a hypoxic-ischemic lesion in the rat brain
-
Rosenkranz K, Kumbruch S, Lebermann K, et al. The chemokine SDF-1/CXCL12 contributes to the homing' of umbilical cord blood cells to a hypoxic-ischemic lesion in the rat brain. J Neurosci Res 2010;88:1223-33
-
(2011)
J. Neurosci. Res.
, vol.88
, pp. 1223-1233
-
-
Rosenkranz, K.1
Kumbruch, S.2
Lebermann, K.3
-
24
-
-
80053480063
-
A comparative study of neural and mesenchymal stem cell-based carriers for oncolytic adenovirus in a model of malignant glioma
-
Ahmed AU, Tyler MA, Thaci B, et al. A comparative study of neural and mesenchymal stem cell-based carriers for oncolytic adenovirus in a model of malignant glioma. Mol Pharm 2011;8:1559-72
-
(2011)
Mol. Pharm.
, vol.8
, pp. 1559-1572
-
-
Ahmed, A.U.1
Tyler, M.A.2
Thaci, B.3
-
25
-
-
80051544206
-
Cograft of neural stem cells and Schwann cells overexpressing TrkC and neurotrophin-3 respectively after rat spinal cord transection
-
Wang JM, Zeng YS, Wu JL, et al. Cograft of neural stem cells and Schwann cells overexpressing TrkC and neurotrophin-3 respectively after rat spinal cord transection. Biomaterials 2011;32:7454-68
-
(2011)
Biomaterials
, vol.32
, pp. 7454-7468
-
-
Wang, J.M.1
Zeng, Y.S.2
Wu, J.L.3
-
26
-
-
79953015414
-
Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord
-
Bonner JF, Connors TM, Silverman WF, et al. Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J Neurosci 2011;31:4675-86
-
(2011)
J. Neurosci.
, vol.31
, pp. 4675-4686
-
-
Bonner, J.F.1
Connors, T.M.2
Silverman, W.F.3
-
27
-
-
34447274187
-
Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model
-
Lee HJ, Kim KS, Park IH, Kim SU. Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS One 2007;2:e156
-
(2007)
PLoS One
, vol.2
-
-
Lee, H.J.1
Kim, K.S.2
Park, I.H.3
Kim, S.U.4
-
28
-
-
80555143329
-
Combination of multifaceted strategies to maximize the therapeutic benefits of neural stem cell transplantation for spinal cord repair
-
published online 1 July 2011: 10.3727/096368910X557155
-
Hwang DH, Kim HM, Kang YM, et al. Combination of multifaceted strategies to maximize the therapeutic benefits of neural stem cell transplantation for spinal cord repair. Cell Transplant 2011;published online 1 July 2011; doi: 10.3727/096368910X557155
-
(2011)
Cell Transplant
-
-
Hwang, D.H.1
Kim, H.M.2
Kang, Y.M.3
-
29
-
-
70449504963
-
Overexpression of Bcl-XL in human neural stem cells promotes graft survival and functional recovery following transplantation in spinal cord injury
-
Lee SI, Kim BG, Hwang DH, et al. Overexpression of Bcl-XL in human neural stem cells promotes graft survival and functional recovery following transplantation in spinal cord injury. J Neurosci Res 2009;87:3186-97
-
(2009)
J. Neurosci. Res.
, vol.87
, pp. 3186-3197
-
-
Lee, S.I.1
Kim, B.G.2
Hwang, D.H.3
-
30
-
-
70249116026
-
Human neural stem cells overexpressing glial cell line-derived neurotrophic factor in experimental cerebral hemorrhage
-
Lee HJ, Park IH, Kim HJ, Kim SU. Human neural stem cells overexpressing glial cell line-derived neurotrophic factor in experimental cerebral hemorrhage. Gene Ther 2009;16:1066-76
-
(2009)
Gene. Ther.
, vol.16
, pp. 1066-1076
-
-
Lee, H.J.1
Park, I.H.2
Kim, H.J.3
Kim, S.U.4
-
31
-
-
19944406772
-
Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model
-
Kurozumi K, Nakamura K, Tamiya T, et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 2005;11:96-104
-
(2005)
Mol. Ther.
, vol.11
, pp. 96-104
-
-
Kurozumi, K.1
Nakamura, K.2
Tamiya, T.3
-
32
-
-
10744229598
-
BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model
-
Kurozumi K, Nakamura K, Tamiya T, et al. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther 2004;9:189-97
-
(2004)
Mol. Ther.
, vol.9
, pp. 189-197
-
-
Kurozumi, K.1
Nakamura, K.2
Tamiya, T.3
-
33
-
-
11844273931
-
BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury
-
Lu P, Jones LL, Tuszynski MH. BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol 2005;191:344-60
-
(2005)
Exp. Neurol.
, vol.191
, pp. 344-360
-
-
Lu, P.1
Jones, L.L.2
Tuszynski, M.H.3
-
34
-
-
72449122797
-
BDNF-hypersecreting human mesenchymal stem cells promote functional recovery axonal sprouting and protection of corticospinal neurons after spinal cord injury
-
Sasaki M, Radtke C, Tan AM, et al. BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J Neurosci 2009;29:14932-41
-
(2009)
J. Neurosci.
, vol.29
, pp. 14932-14941
-
-
Sasaki, M.1
Radtke, C.2
Tan, A.M.3
-
35
-
-
0034660331
-
Extensive sprouting of sensory afferents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord
-
Romero MI, Rangappa N, Li L, et al. Extensive sprouting of sensory afferents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord. J Neurosci 2000;20:4435-45
-
(2000)
J. Neurosci.
, vol.20
, pp. 4435-4445
-
-
Romero, M.I.1
Rangappa, N.2
Li, L.3
-
36
-
-
18044391661
-
Spinal cord injury is accompanied by chronic progressive demyelination
-
Totoiu MO, Keirstead HS. Spinal cord injury is accompanied by chronic progressive demyelination. J Comp Neurol 2005;486:373-83
-
(2005)
J. Comp. Neurol.
, vol.486
, pp. 373-383
-
-
Totoiu, M.O.1
Keirstead, H.S.2
-
37
-
-
18644384444
-
Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury
-
Keirstead HS, Nistor G, Bernal G, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 2005;25:4694-705
-
(2005)
J. Neurosci.
, vol.25
, pp. 4694-4705
-
-
Keirstead, H.S.1
Nistor, G.2
Bernal, G.3
-
38
-
-
63449139550
-
Ex vivo VEGF delivery by neural stem cells enhances proliferation of glial progenitors angiogenesis and tissue sparing after spinal cord injury
-
Kim HM, Hwang DH, Lee JE, et al. Ex vivo VEGF delivery by neural stem cells enhances proliferation of glial progenitors, angiogenesis, and tissue sparing after spinal cord injury. PLoS One 2009;4:e4987
-
(2009)
PLoS One
, vol.4
-
-
Kim, H.M.1
Hwang, D.H.2
Lee, J.E.3
-
39
-
-
0037061426
-
Chondroitinase ABC promotes functional recovery after spinal cord injury
-
Bradbury EJ, Moon LD, Popat RJ, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 2002;416:636-40
-
(2002)
Nature
, vol.416
, pp. 636-640
-
-
Bradbury, E.J.1
Moon, L.D.2
Popat, R.J.3
-
40
-
-
79951851076
-
Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury
-
Hellal F, Hurtado A, Ruschel J, et al. Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science 2011;331:928-31
-
(2011)
Science
, vol.331
, pp. 928-931
-
-
Hellal, F.1
Hurtado, A.2
Ruschel, J.3
-
41
-
-
0034175517
-
Neurocan is upregulated in injured brain and in cytokine-treated astrocytes
-
Asher RA, Morgenstern DA, Fidler PS, et al. Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J Neurosci 2000;20:2427-38
-
(2000)
J. Neurosci.
, vol.20
, pp. 2427-2438
-
-
Asher, R.A.1
Morgenstern, D.A.2
Fidler, P.S.3
-
42
-
-
0033046894
-
Inhibition of glial scarring in the injured rat brain by a recombinant human monoclonal antibody to transforming growth factor-beta2
-
Logan A, Green J, Hunter A, et al. Inhibition of glial scarring in the injured rat brain by a recombinant human monoclonal antibody to transforming growth factor-beta2. Eur J Neurosci 1999;11:2367-74
-
(1999)
Eur J. Neurosci.
, vol.11
, pp. 2367-2374
-
-
Logan, A.1
Green, J.2
Hunter, A.3
-
43
-
-
0035784404
-
Reduction in CNS scar formation without concomitant increase in axon regeneration following treatment of adult rat brain with a combination of antibodies to TGFbeta1 and beta2
-
Moon LD, Fawcett JW. Reduction in CNS scar formation without concomitant increase in axon regeneration following treatment of adult rat brain with a combination of antibodies to TGFbeta1 and beta2. Eur J Neurosci 2001;14:1667-77
-
(2001)
Eur J Neurosci
, vol.14
, pp. 1667-1677
-
-
Moon, L.D.1
Fawcett, J.W.2
-
44
-
-
80555127826
-
Hepatocyte growth factor inhibits glial scar formation and decreases production of chondroitin sulfate proteoglycans after spinal cord injury
-
Program No. 365.5/ CC74 Chicago IL: Society for Neuroscience
-
Jeong SR, Jang DY, Kim SS, et al. Hepatocyte growth factor inhibits glial scar formation and decreases production of chondroitin sulfate proteoglycans after spinal cord injury. Program No. 365.5/ CC74. 2009 Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience, 2009
-
(2009)
Neuroscience Meeting Planner
, vol.2009
-
-
Jeong, S.R.1
Jang, D.Y.2
Kim, S.S.3
-
45
-
-
79958055211
-
A combination immunomodulatory treatment promotes neuroprotection and locomotor recovery after contusion SCI
-
Iannotti CA, Clark M, Horn KP, et al. A combination immunomodulatory treatment promotes neuroprotection and locomotor recovery after contusion SCI. Exp Neurol 2011;1:3-15
-
(2011)
Exp. Neurol.
, vol.1
, pp. 3-15
-
-
Iannotti, C.A.1
Clark, M.2
Horn, K.P.3
-
46
-
-
22444450988
-
Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism
-
Pluchino S, Zanotti L, Rossi B, et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 2005;436:266-71
-
(2005)
Nature
, vol.436
, pp. 266-271
-
-
Pluchino, S.1
Zanotti, L.2
Rossi, B.3
-
47
-
-
37849053110
-
Immunomodulation by neural stem cells
-
Ben-Hur T. Immunomodulation by neural stem cells. J Neurol Sci 2008;265:102-4
-
(2008)
J. Neurol. Sci.
, vol.265
, pp. 102-104
-
-
Ben-Hur, T.1
-
48
-
-
77950475227
-
Modeling the neurovascular niche: Implications for recovery from CNS injury
-
Madri JA. Modeling the neurovascular niche: implications for recovery from CNS injury. J Physiol Pharmacol 2009;60(Suppl 4):95-104
-
(2009)
J. Physiol. Pharmacol.
, vol.60
, Issue.4
, pp. 95-104
-
-
Madri, J.A.1
-
49
-
-
38749116949
-
Stromal cell-derived factor-1alpha promotes neuroprotection angiogenesis and mobilization/homing of bone marrow-derived cells in stroke rats
-
Shyu WC, Lin SZ, Yen PS, et al. Stromal cell-derived factor-1alpha promotes neuroprotection, angiogenesis, and mobilization/homing of bone marrow-derived cells in stroke rats. J Pharmacol Exp Ther 2008;324:834-49
-
(2008)
J. Pharmacol. Exp. Ther.
, vol.324
, pp. 834-849
-
-
Shyu, W.C.1
Lin, S.Z.2
Yen, P.S.3
-
50
-
-
75349087609
-
Transplantation of embryonic neural stem/precursor cells overexpressing BM88/Cend1 enhances the generation of neuronal cells in the injured mouse cortex
-
Makri G, Lavdas AA, Katsimpardi L, et al. Transplantation of embryonic neural stem/precursor cells overexpressing BM88/Cend1 enhances the generation of neuronal cells in the injured mouse cortex. Stem Cells 2010;28:127-39
-
(2011)
Stem Cells
, vol.28
, pp. 127-139
-
-
Makri, G.1
Lavdas, A.A.2
Katsimpardi, L.3
-
51
-
-
34547752447
-
Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury
-
Papastefanaki F, Chen J, Lavdas AA, et al. Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury. Brain 2007;130:2159-74
-
(2007)
Brain
, vol.130
, pp. 2159-2174
-
-
Papastefanaki, F.1
Chen, J.2
Lavdas, A.A.3
-
52
-
-
55049117801
-
Tenascin-R promotes neuronal differentiation of embryonic stem cells and recruitment of host-derived neural precursor cells after excitotoxic lesion of the mouse striatum
-
Hargus G, Cui Y, Schmid JS, et al. Tenascin-R promotes neuronal differentiation of embryonic stem cells and recruitment of host-derived neural precursor cells after excitotoxic lesion of the mouse striatum. Stem Cells 2008;26:1973-84
-
(2008)
Stem Cells
, vol.26
, pp. 1973-1984
-
-
Hargus, G.1
Cui, Y.2
Schmid, J.S.3
-
53
-
-
23844528472
-
Cell adhesion molecule L1-transfected embryonic stem cells with enhanced survival support regrowth of corticospinal tract axons in mice after spinal cord injury
-
Chen J, Bernreuther C, Dihne M, Schachner M. Cell adhesion molecule L1-transfected embryonic stem cells with enhanced survival support regrowth of corticospinal tract axons in mice after spinal cord injury. J Neurotrauma 2005;22:896-906
-
(2005)
J. Neurotrauma.
, vol.22
, pp. 896-906
-
-
Chen, J.1
Bernreuther, C.2
Dihne, M.3
Schachner, M.4
-
54
-
-
34548845327
-
Vascular endothelial growth factor gene-transferred bone marrow stromal cells engineered with a herpes simplex virus type 1 vector can improve neurological deficits and reduce infarction volume in rat brain ischemia
-
Miki Y, Nonoguchi N, Ikeda N, et al. Vascular endothelial growth factor gene-transferred bone marrow stromal cells engineered with a herpes simplex virus type 1 vector can improve neurological deficits and reduce infarction volume in rat brain ischemia. Neurosurgery 2007;61:586-94
-
(2007)
Neurosurgery
, vol.61
, pp. 586-594
-
-
Miki, Y.1
Nonoguchi, N.2
Ikeda, N.3
-
55
-
-
2342667384
-
New roles for VEGF in nervous tissue - Beyond blood vessels
-
Rosenstein JM, Krum JM. New roles for VEGF in nervous tissue - beyond blood vessels. Exp Neurol 2004;187:246-53
-
(2004)
Exp. Neurol.
, vol.187
, pp. 246-253
-
-
Rosenstein, J.M.1
Krum, J.M.2
-
56
-
-
0037015059
-
Vascular endothelial growth factor VEGF stimulates neurogenesis in vitro and in vivo
-
USA
-
Jin K, Zhu Y, Sun Y, et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 2002;99:11946-50
-
(2002)
Proc. Natl. Acad. Sci.
, vol.99
, pp. 11946-11950
-
-
Jin, K.1
Zhu, Y.2
Sun, Y.3
-
57
-
-
38549154182
-
Therapeutic benefits by human mesenchymal stem cells hMSCs and Ang-1 gene-modified hMSCs after cerebral ischemia
-
Onda T, Honmou O, Harada K, et al. Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab 2008;28:329-40
-
(2008)
J. Cereb. Blood Flow Metab.
, vol.28
, pp. 329-340
-
-
Onda, T.1
Honmou, O.2
Harada, K.3
-
58
-
-
33749455560
-
Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia
-
Liu H, Honmou O, Harada K, et al. Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain 2006;129:2734-45
-
(2006)
Brain
, vol.129
, pp. 2734-2745
-
-
Liu, H.1
Honmou, O.2
Harada, K.3
-
59
-
-
59749103836
-
Therapeutic benefits of angiogenetic gene-modified human mesenchymal stem cells after cerebral ischemia
-
Toyama K, Honmou O, Harada K, et al. Therapeutic benefits of angiogenetic gene-modified human mesenchymal stem cells after cerebral ischemia. Exp Neurol 2009;216:47-55
-
(2009)
Exp. Neurol.
, vol.216
, pp. 47-55
-
-
Toyama, K.1
Honmou, O.2
Harada, K.3
-
60
-
-
0033362351
-
Hepatocyte growth factor a versatile signal for developing neurons
-
Maina F, Klein R. Hepatocyte growth factor, a versatile signal for developing neurons. Nat Neurosci 1999;2:213-17
-
(1999)
Nat. Neurosci.
, vol.2
, pp. 213-217
-
-
Maina, F.1
Klein, R.2
-
61
-
-
33747624378
-
Novel therapeutic strategy for stroke in rats by bone marrow stromal cells and ex vivo HGF gene transfer with HSV-1 vector
-
Zhao MZ, Nonoguchi N, Ikeda N, et al. Novel therapeutic strategy for stroke in rats by bone marrow stromal cells and ex vivo HGF gene transfer with HSV-1 vector. J Cereb Blood Flow Metab 2006;26:1176-88
-
(2006)
J. Cereb. Blood Flow Metab.
, vol.26
, pp. 1176-1188
-
-
Zhao, M.Z.1
Nonoguchi, N.2
Ikeda, N.3
-
62
-
-
78049329501
-
Intrathecal injection of hepatocyte growth factor gene-modified marrow stromal cells attenuates neurologic injury induced by transient spinal cord ischemia in rabbits
-
Shi E, Jiang X, Wang L, et al. Intrathecal injection of hepatocyte growth factor gene-modified marrow stromal cells attenuates neurologic injury induced by transient spinal cord ischemia in rabbits. Anesthesiology 2010;113:1109-17
-
(2011)
Anesthesiology
, vol.113
, pp. 1109-1117
-
-
Shi, E.1
Jiang, X.2
Wang, L.3
-
63
-
-
0027496895
-
Mice carrying null mutations of the genes encoding insulin-like growth factor I Igf-1 and type 1 IGF receptor Igf1r
-
Liu JP, Baker J, Perkins ASL, et al. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r).Cell 1993;75:59-72
-
(1993)
Cell
, vol.75
, pp. 59-72
-
-
Liu, J.P.1
Baker, J.2
Perkins, A.S.L.3
-
64
-
-
33750492639
-
IGF-I specifically enhances axon outgrowth of corticospinal motor neurons
-
Ozdinler PH, Macklis JD. IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat Neurosci 2006;9:1371-81
-
(2006)
Nat. Neurosci.
, vol.9
, pp. 1371-1381
-
-
Ozdinler, P.H.1
Macklis, J.D.2
-
65
-
-
57449092483
-
IGF-I gene delivery promotes corticospinal neuronal survival but not regeneration after adult CNS injury
-
Hollis ER II, Lu P, Blesch A, Tuszynski MH. IGF-I gene delivery promotes corticospinal neuronal survival but not regeneration after adult CNS injury. Exp Neurol 2009;215:53-9
-
(2009)
Exp. Neurol.
, vol.215
, pp. 53-59
-
-
Hollis II, E.R.1
Lu, P.2
Blesch, A.3
Tuszynski, M.H.4
-
66
-
-
0036606914
-
Galectins and their ligands: Amplifiers silencers or tuners of the inflammatory response
-
Rabinovich GA, Baum LG, Tinari N, et al. Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol 2002;23:313-20
-
(2002)
Trends Immunol.
, vol.23
, pp. 313-320
-
-
Rabinovich, G.A.1
Baum, L.G.2
Tinari, N.3
-
67
-
-
34548848245
-
Galectin-1 regulates neurogenesis in the subventricular zone and promotes functional recovery after stroke
-
Ishibashi S, Kuroiwa T, Sakaguchi M, et al. Galectin-1 regulates neurogenesis in the subventricular zone and promotes functional recovery after stroke. Exp Neurol 2007;207:302-13
-
(2007)
Exp. Neurol.
, vol.207
, pp. 302-313
-
-
Ishibashi, S.1
Kuroiwa, T.2
Sakaguchi, M.3
-
68
-
-
10744221890
-
Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy
-
Horie H, Kadoya T, Hikawa N, et al. Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. J Neurosci 2004;24:1873-80
-
(2004)
J. Neurosci.
, vol.24
, pp. 1873-1880
-
-
Horie, H.1
Kadoya, T.2
Hikawa, N.3
-
69
-
-
77952044022
-
Transplantation of galectin-1-expressing human neural stem cells into the injured spinal cord of adult common marmosets
-
Yamane J, Nakamura M, Iwanami A, et al. Transplantation of galectin-1-expressing human neural stem cells into the injured spinal cord of adult common marmosets. J Neurosci Res 2010;88:1394-405
-
(2011)
J. Neurosci. Res.
, vol.88
, pp. 1394-1405
-
-
Yamane, J.1
Nakamura, M.2
Iwanami, A.3
-
70
-
-
38349001224
-
Stem cell-based cell therapy for spinal cord injury
-
Kim BG, Hwang DH, Lee SI, et al. Stem cell-based cell therapy for spinal cord injury. Cell Transplant 2007;16:357-66
-
(2007)
Cell Transplant
, vol.16
, pp. 357-366
-
-
Kim, B.G.1
Hwang, D.H.2
Lee, S.I.3
-
71
-
-
0036734118
-
Limitations in brain repair
-
Snyder EY, Park KI. Limitations in brain repair. Nat Med 2002;8:928-30
-
(2002)
Nat. Med.
, vol.8
, pp. 928-930
-
-
Snyder, E.Y.1
Park, K.I.2
-
72
-
-
27744576838
-
In vivo imaging of engrafted neural stem cells: Its application in evaluating the optimal timing of transplantation for spinal cord injury
-
Okada S, Ishii K, Yamane J, et al. In vivo imaging of engrafted neural stem cells: its application in evaluating the optimal timing of transplantation for spinal cord injury. FASEB J 2005;19:1839-41
-
(2005)
FASEB J.
, vol.19
, pp. 1839-1841
-
-
Okada, S.1
Ishii, K.2
Yamane, J.3
-
73
-
-
77957302974
-
A calpain inhibitor enhances the survival of Schwann cells in vitro and after transplantation into the injured spinal cord
-
Hill CE, Guller Y, Raffa SJ, et al. A calpain inhibitor enhances the survival of Schwann cells in vitro and after transplantation into the injured spinal cord. J Neurotrauma 2010;27:1685-95
-
(2011)
J. Neurotrauma.
, vol.27
, pp. 1685-1695
-
-
Hill, C.E.1
Guller, Y.2
Raffa, S.J.3
-
74
-
-
33645455547
-
Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury
-
Karimi-Abdolrezaee S, Eftekharpour E, Wang J, et al. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci 2006;26:3377-89
-
(2006)
J. Neurosci.
, vol.26
, pp. 3377-3389
-
-
Karimi-Abdolrezaee, S.1
Eftekharpour, E.2
Wang, J.3
-
75
-
-
29344451629
-
Chondroitinase ABC combined with neural stem/progenitor cell transplantation enhances graft cell migration and outgrowth of growth-associated protein-43-positive fibers after rat spinal cord injury
-
Ikegami T, Nakamura M, Yamane J, et al. Chondroitinase ABC combined with neural stem/progenitor cell transplantation enhances graft cell migration and outgrowth of growth-associated protein-43-positive fibers after rat spinal cord injury. Eur J Neurosci 2005;22:3036-46
-
(2005)
Eur. J. Neurosci.
, vol.22
, pp. 3036-3046
-
-
Ikegami, T.1
Nakamura, M.2
Yamane, J.3
-
76
-
-
33744733410
-
Degradation of chondroitin sulphate proteoglycans potentiates transplant-mediated axonal remodelling and functional recovery after spinal cord injury in adult rats
-
Kim BG, Dai HN, Lynskey JV, et al. Degradation of chondroitin sulphate proteoglycans potentiates transplant-mediated axonal remodelling and functional recovery after spinal cord injury in adult rats. J Comp Neurol 2006;497:182-98
-
(2006)
J. Comp. Neurol.
, vol.497
, pp. 182-198
-
-
Kim, B.G.1
Dai, H.N.2
Lynskey, J.V.3
-
77
-
-
76149105178
-
Synergistic effects of transplanted adult neural stem/ progenitor cells chondroitinase and growth factors promote functional repair and plasticity of the chronically injured spinal cord
-
Karimi-Abdolrezaee S, Eftekharpour E, Wang J, et al. Synergistic effects of transplanted adult neural stem/ progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci 2010;30:1657-76
-
(2011)
J. Neurosci.
, vol.30
, pp. 1657-1676
-
-
Karimi-Abdolrezaee, S.1
Eftekharpour, E.2
Wang, J.3
-
79
-
-
0037022618
-
Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells
-
USA
-
Teng YD, Lavik EB, Qu X, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA 2002;99:3024-9
-
(2002)
Proc. Natl. Acad. Sci.
, vol.99
, pp. 3024-3029
-
-
Teng, Y.D.1
Lavik, E.B.2
Qu, X.3
-
80
-
-
77957322069
-
Implantation of polymer scaffolds seeded with neural stem cells in a canine spinal cord injury model
-
Kim BG, Kang YM, Phi JH, et al. Implantation of polymer scaffolds seeded with neural stem cells in a canine spinal cord injury model. Cytotherapy 2010;12:841-5
-
(2011)
Cytotherapy
, vol.12
, pp. 841-845
-
-
Kim, B.G.1
Kang, Y.M.2
Phi, J.H.3
-
81
-
-
37549030199
-
Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin
-
Hanna J, Wernig M, Markoulaki S, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007;318:1920-3
-
(2007)
Science
, vol.318
, pp. 1920-1923
-
-
Hanna, J.1
Wernig, M.2
Markoulaki, S.3
-
82
-
-
55849117368
-
Generation of mouse induced pluripotent stem cells without viral vectors
-
Okita K, Nakagawa M, Hyenjong H, et al. Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008;322:949-53
-
(2008)
Science
, vol.322
, pp. 949-953
-
-
Okita, K.1
Nakagawa, M.2
Hyenjong, H.3
-
83
-
-
55849115999
-
Induced pluripotent stem cells generated without viral integration
-
Stadtfeld M, Nagaya M, Utikal J, et al. Induced pluripotent stem cells generated without viral integration. Science 2008;322:945-9
-
(2008)
Science
, vol.322
, pp. 945-949
-
-
Stadtfeld, M.1
Nagaya, M.2
Utikal, J.3
-
84
-
-
77958133875
-
Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection
-
Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells 2010;28:1568-70
-
(2011)
Stem Cells
, vol.28
, pp. 1568-15670
-
-
Gutierrez-Aranda, I.1
Ramos-Mejia, V.2
Bueno, C.3
-
85
-
-
76349097362
-
Biomaterial design strategies for the treatment of spinal cord injuries
-
Straley KS, Foo CW, Heilshorn SC. Biomaterial design strategies for the treatment of spinal cord injuries. J Neurotrauma 2009;27:1-19
-
(2009)
J. Neurotrauma.
, vol.27
, pp. 1-19
-
-
Straley, K.S.1
Foo, C.W.2
Heilshorn, S.C.3
-
86
-
-
38449100741
-
Biomimetic material systems for neural progenitor cell-based therapy
-
Potter W, Kalil RE, Kao WJ. Biomimetic material systems for neural progenitor cell-based therapy. Front Biosci 2008;13:806-21
-
(2008)
Front Biosci.
, vol.13
, pp. 806-821
-
-
Potter, W.1
Kalil, R.E.2
Kao, W.J.3
-
87
-
-
1442281238
-
Selective differentiation of neural progenitor cells by high-epitope density nanofibers
-
Silva GA, Czeisler C, Niece KL, et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004;303:1352-5
-
(2004)
Science
, vol.303
, pp. 1352-1355
-
-
Silva, G.A.1
Czeisler, C.2
Niece, K.L.3
-
88
-
-
21044458854
-
A phase I clinical trial of nerve growthfactor gene therapy for Alzheimer disease
-
Tuszynski MH, Thal L, Pay M, et al. A phase I clinical trial of nerve growthfactor gene therapy for Alzheimer disease.Nat Med 2005;11:551-5
-
(2005)
Nat. Med.
, vol.11
, pp. 551-555
-
-
Tuszynski, M.H.1
Thal, L.2
Pay, M.3
-
89
-
-
0030002982
-
Gene therapy in the adult primate brain: Intraparenchymal grafts of cells genetically modified to produce nerve growth factor prevent cholinergic neuronal degeneration
-
Tuszynski MH, Roberts J, Senut MC, et al. Gene therapy in the adult primate brain: intraparenchymal grafts of cells genetically modified to produce nerve growth factor prevent cholinergic neuronal degeneration. Gene Ther 1996;3:305-14
-
(1996)
Gene. Ther.
, vol.3
, pp. 305-314
-
-
Tuszynski, M.H.1
Roberts, J.2
Senut, M.C.3
-
90
-
-
0035852680
-
Nontropic actions of neurotrophins: Subcortical nerve growth factor gene delivery reverses age-related degeneration of primate cortical cholinergic innervation
-
USA
-
Conner JM, Darracq MA, Roberts J, Tuszynski MH. Nontropic actions of neurotrophins: subcortical nerve growth factor gene delivery reverses age-related degeneration of primate cortical cholinergic innervation. Proc Natl Acad Sci USA 2001;98:1941-6
-
(2001)
Proc. Natl. Acad. Sci.
, vol.98
, pp. 1941-1946
-
-
Conner, J.M.1
Darracq, M.A.2
Roberts, J.3
Tuszynski, M.H.4
-
91
-
-
34447132381
-
Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo
-
Lindholm P, Voutilainen MH, Lauren J, et al. Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature 2007;448:73-7
-
(2007)
Nature
, vol.448
, pp. 73-77
-
-
Lindholm, P.1
Voutilainen, M.H.2
Lauren, J.3
-
92
-
-
0037130466
-
Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons
-
Honma Y, Araki T, Gianino S, et al. Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron 2002;35:267-82
-
(2002)
Neuron
, vol.35
, pp. 267-282
-
-
Honma, Y.1
Araki, T.2
Gianino, S.3
-
93
-
-
77951055266
-
The neuroprotective role of PEDF: Implication for the therapy of neurological disorders
-
Yabe T, Sanagi T, Yamada H. The neuroprotective role of PEDF: implication for the therapy of neurological disorders. Curr Mol Med 2010;10:259-66
-
(2011)
Curr. Mol. Med.
, vol.10
, pp. 259-266
-
-
Yabe, T.1
Sanagi, T.2
Yamada, H.3
-
94
-
-
84859905286
-
Cell-based transplantation strategies to promote plasticity following spinal cord injury
-
published online 17 February 2011 10.1016/j.expneurol.2011.02.010
-
Ruff CA, Wilcox JT, Fehlings MG. Cell-based transplantation strategies to promote plasticity following spinal cord injury. Exp Neurol 2011;published online 17 February 2011; doi:10.1016/j.expneurol.2011.02.010
-
(2011)
Exp Neurol
-
-
Ruff, C.A.1
Wilcox, J.T.2
Fehlings, M.G.3
-
95
-
-
77954833516
-
Efficacy of gene therapy for X-linked severe combined immunodeficiency
-
Hacein-Bey-Abina S, Hauer J, Lim A, et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2010;363:355-64
-
(2011)
N. Engl. J. Med.
, vol.363
, pp. 355-364
-
-
Hacein-Bey-Abina, S.1
Hauer, J.2
Lim, A.3
-
96
-
-
59449098985
-
Gene therapy for immunodeficiency due to adenosine deaminase deficiency
-
Aiuti A, Cattaneo F, Galimberti S, et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 2009;360:447-58
-
(2009)
N. Engl. J. Med.
, vol.360
, pp. 447-458
-
-
Aiuti, A.1
Cattaneo, F.2
Galimberti, S.3
-
97
-
-
51349158298
-
Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients
-
Howe SJ, Mansour MR, Schwarzwaelder K, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008;118:3143-50
-
(2008)
J. Clin. Invest.
, vol.118
, pp. 3143-3150
-
-
Howe, S.J.1
Mansour, M.R.2
Schwarzwaelder, K.3
-
98
-
-
70449427834
-
Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy
-
Cartier N, Hacein-Bey-Abina S, Bartholomae CC, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009;326:818-23
-
(2009)
Science
, vol.326
, pp. 818-823
-
-
Cartier, N.1
Hacein-Bey-Abina, S.2
Bartholomae, C.C.3
|