메뉴 건너뛰기




Volumn 15, Issue 9, 2011, Pages 1833-1846

Class IIa HDACs: From important roles in differentiation to possible implications in tumourigenesis

Author keywords

Apoptosis; Cancer; Chromatin; Differentiation; Epigenetic; HDAC4; HDAC5; HDAC7; HDAC9; MEF2; RUNX2

Indexed keywords

HISTONE DEACETYLASE;

EID: 80052180405     PISSN: 15821838     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1582-4934.2011.01321.x     Document Type: Review
Times cited : (98)

References (145)
  • 1
    • 73349092441 scopus 로고    scopus 로고
    • Histones: annotating chromatin
    • Campos EI, Reinberg D. Histones: annotating chromatin. Annu Rev Genet. 2009; 43: 559-99.
    • (2009) Annu Rev Genet. , vol.43 , pp. 559-599
    • Campos, E.I.1    Reinberg, D.2
  • 2
    • 34547897023 scopus 로고    scopus 로고
    • Histone deacetylases and cancer
    • Glozak MA, Seto E. Histone deacetylases and cancer. Oncogene. 2007; 26: 5420-32.
    • (2007) Oncogene. , vol.26 , pp. 5420-5432
    • Glozak, M.A.1    Seto, E.2
  • 3
    • 34547911052 scopus 로고    scopus 로고
    • Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design
    • Hodawadekar SC, Marmorstein R. Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene. 2007; 26: 5528-40.
    • (2007) Oncogene. , vol.26 , pp. 5528-5540
    • Hodawadekar, S.C.1    Marmorstein, R.2
  • 4
    • 0037444803 scopus 로고    scopus 로고
    • Histone deacetylases (HDACs): characterization of the classical HDAC family
    • de Ruijter AJ, van Gennip AH, Caron HN, et al. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003; 370: 737-49.
    • (2003) Biochem J. , vol.370 , pp. 737-749
    • de Ruijter, A.J.1    van Gennip, A.H.2    Caron, H.N.3
  • 5
    • 16244366803 scopus 로고    scopus 로고
    • Class II histone deacetylases: from sequence to function, regulation, and clinical implication
    • Yang XJ, Gregoire S. Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol Cell Biol. 2005; 25: 2873-84.
    • (2005) Mol Cell Biol. , vol.25 , pp. 2873-2884
    • Yang, X.J.1    Gregoire, S.2
  • 6
    • 57749170458 scopus 로고    scopus 로고
    • The many roles of histone deacetylases in development and physiology: implications for disease and therapy
    • Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009; 10: 32-42.
    • (2009) Nat Rev Genet. , vol.10 , pp. 32-42
    • Haberland, M.1    Montgomery, R.L.2    Olson, E.N.3
  • 7
    • 39749127166 scopus 로고    scopus 로고
    • The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men
    • Yang XJ, Seto E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol. 2008; 9: 206-18.
    • (2008) Nat Rev Mol Cell Biol. , vol.9 , pp. 206-218
    • Yang, X.J.1    Seto, E.2
  • 8
    • 0035929621 scopus 로고    scopus 로고
    • Human HDAC7 histone deacetylase activity is associated with HDAC3in vivo
    • Fischle W, Dequiedt F, Fillion M, et al. Human HDAC7 histone deacetylase activity is associated with HDAC3in vivo. J Biol Chem. 2001; 276: 35826-35.
    • (2001) J Biol Chem. , vol.276 , pp. 35826-35835
    • Fischle, W.1    Dequiedt, F.2    Fillion, M.3
  • 9
    • 0036161439 scopus 로고    scopus 로고
    • Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR
    • Fischle W, Dequiedt F, Hendzel MJ, et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell. 2002; 9: 45-57.
    • (2002) Mol Cell. , vol.9 , pp. 45-57
    • Fischle, W.1    Dequiedt, F.2    Hendzel, M.J.3
  • 10
    • 0034898560 scopus 로고    scopus 로고
    • Histone deacetylase 4 possesses intrinsic nuclear import and export signals
    • Wang AH, Yang XJ. Histone deacetylase 4 possesses intrinsic nuclear import and export signals. Mol Cell Biol. 2001; 21: 5992-6005.
    • (2001) Mol Cell Biol. , vol.21 , pp. 5992-6005
    • Wang, A.H.1    Yang, X.J.2
  • 11
    • 0035724044 scopus 로고    scopus 로고
    • Identification of a signal-responsive nuclear export sequence in class II histone deacetylases
    • McKinsey TA, Zhang CL, Olson EN. Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol Cell Biol. 2001; 21: 6312-21.
    • (2001) Mol Cell Biol. , vol.21 , pp. 6312-6321
    • McKinsey, T.A.1    Zhang, C.L.2    Olson, E.N.3
  • 12
    • 0033568028 scopus 로고    scopus 로고
    • HDAC4 deacetylase associates with and represses the MEF2 transcription factor
    • Miska EA, Karlsson C, Langley E, et al. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J. 1999; 18: 5099-107.
    • (1999) EMBO J. , vol.18 , pp. 5099-5107
    • Miska, E.A.1    Karlsson, C.2    Langley, E.3
  • 13
    • 0034608955 scopus 로고    scopus 로고
    • Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization
    • Grozinger CM, Schreiber SL. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc Natl Acad Sci USA. 2000; 97: 7835-40.
    • (2000) Proc Natl Acad Sci USA. , vol.97 , pp. 7835-7840
    • Grozinger, C.M.1    Schreiber, S.L.2
  • 14
    • 0033964223 scopus 로고    scopus 로고
    • Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression
    • Kao HY, Downes M, Ordentlich P, et al. Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev. 2000; 14: 55-66.
    • (2000) Genes Dev. , vol.14 , pp. 55-66
    • Kao, H.Y.1    Downes, M.2    Ordentlich, P.3
  • 15
    • 0033811921 scopus 로고    scopus 로고
    • Regulation of histone deacetylase 4 by binding of 14-3-3 proteins
    • Wang AH, Kruhlak MJ, Wu J, et al. Regulation of histone deacetylase 4 by binding of 14-3-3 proteins. Mol Cell Biol. 2000; 20: 6904-12.
    • (2000) Mol Cell Biol. , vol.20 , pp. 6904-6912
    • Wang, A.H.1    Kruhlak, M.J.2    Wu, J.3
  • 16
    • 15444378007 scopus 로고    scopus 로고
    • Activity-dependent and -independent nuclear fluxes of HDAC4 mediated by different kinases in adult skeletal muscle
    • Liu Y, Randall WR, Schneider MF. Activity-dependent and -independent nuclear fluxes of HDAC4 mediated by different kinases in adult skeletal muscle. J Cell Biol. 2005; 168: 887-97.
    • (2005) J Cell Biol. , vol.168 , pp. 887-897
    • Liu, Y.1    Randall, W.R.2    Schneider, M.F.3
  • 17
    • 0034597816 scopus 로고    scopus 로고
    • Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation
    • McKinsey TA, Zhang CL, Lu J, et al. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature. 2000; 408: 106-11.
    • (2000) Nature. , vol.408 , pp. 106-111
    • McKinsey, T.A.1    Zhang, C.L.2    Lu, J.3
  • 18
    • 0037162697 scopus 로고    scopus 로고
    • Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy
    • Zhang CL, McKinsey TA, Chang S, et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell. 2002; 110: 479-88.
    • (2002) Cell. , vol.110 , pp. 479-488
    • Zhang, C.L.1    McKinsey, T.A.2    Chang, S.3
  • 19
    • 33749161207 scopus 로고    scopus 로고
    • New role for hPar-1 kinases EMK and C-TAK1 in regulating localization and activity of class IIa histone deacetylases
    • Dequiedt F, Martin M, Von Blume J, et al. New role for hPar-1 kinases EMK and C-TAK1 in regulating localization and activity of class IIa histone deacetylases. Mol Cell Biol. 2006; 26: 7086-102.
    • (2006) Mol Cell Biol. , vol.26 , pp. 7086-7102
    • Dequiedt, F.1    Martin, M.2    Von Blume, J.3
  • 20
    • 53949090573 scopus 로고    scopus 로고
    • AKAP-Lbc mobilizes a cardiac hypertrophy signaling pathway
    • Carnegie GK, Soughayer J, Smith FD, et al. AKAP-Lbc mobilizes a cardiac hypertrophy signaling pathway. Mol Cell. 2008; 32: 169-79.
    • (2008) Mol Cell. , vol.32 , pp. 169-179
    • Carnegie, G.K.1    Soughayer, J.2    Smith, F.D.3
  • 22
    • 0034687741 scopus 로고    scopus 로고
    • Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5
    • McKinsey TA, Zhang CL, Olson EN. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci USA. 2000; 97: 14400-5.
    • (2000) Proc Natl Acad Sci USA. , vol.97 , pp. 14400-14405
    • McKinsey, T.A.1    Zhang, C.L.2    Olson, E.N.3
  • 23
    • 0035861739 scopus 로고    scopus 로고
    • Mechanism for nucleocytoplasmic shuttling of histone deacetylase 7
    • Kao HY, Verdel A, Tsai CC, et al. Mechanism for nucleocytoplasmic shuttling of histone deacetylase 7. J Biol Chem. 2001; 276: 47496-507.
    • (2001) J Biol Chem. , vol.276 , pp. 47496-47507
    • Kao, H.Y.1    Verdel, A.2    Tsai, C.C.3
  • 24
    • 0037379709 scopus 로고    scopus 로고
    • Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5
    • Chawla S, Vanhoutte P, Arnold FJ, et al. Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J Neurochem. 2003; 85: 151-9.
    • (2003) J Neurochem. , vol.85 , pp. 151-159
    • Chawla, S.1    Vanhoutte, P.2    Arnold, F.J.3
  • 25
    • 0037805720 scopus 로고    scopus 로고
    • Calcium/calmodulin-dependent protein kinase activates serum response factor transcription activity by its dissociation from histone deacetylase, HDAC4. Implications in cardiac muscle gene regulation during hypertrophy
    • Davis FJ, Gupta M, Camoretti-Mercado B, et al. Calcium/calmodulin-dependent protein kinase activates serum response factor transcription activity by its dissociation from histone deacetylase, HDAC4. Implications in cardiac muscle gene regulation during hypertrophy. J Biol Chem. 2003; 278: 20047-58.
    • (2003) J Biol Chem. , vol.278 , pp. 20047-20058
    • Davis, F.J.1    Gupta, M.2    Camoretti-Mercado, B.3
  • 26
    • 0036787922 scopus 로고    scopus 로고
    • Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation
    • Zhang CL, McKinsey TA, Olson EN. Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol Cell Biol. 2002; 22: 7302-12.
    • (2002) Mol Cell Biol. , vol.22 , pp. 7302-7312
    • Zhang, C.L.1    McKinsey, T.A.2    Olson, E.N.3
  • 27
    • 43249121693 scopus 로고    scopus 로고
    • Histone deacetylase 5 acquires calcium/calmodulin-dependent kinase II responsiveness by oligomerization with histone deacetylase 4
    • Backs J, Backs T, Bezprozvannaya S, et al. Histone deacetylase 5 acquires calcium/calmodulin-dependent kinase II responsiveness by oligomerization with histone deacetylase 4. Mol Cell Biol. 2008; 28: 3437-45.
    • (2008) Mol Cell Biol. , vol.28 , pp. 3437-3445
    • Backs, J.1    Backs, T.2    Bezprozvannaya, S.3
  • 28
    • 0038339419 scopus 로고    scopus 로고
    • Genomic analysis of the eukaryotic protein kinase superfamily: a perspective
    • Hanks SK. Genomic analysis of the eukaryotic protein kinase superfamily: a perspective. Genome Biol. 2003; 4: 111-7.
    • (2003) Genome Biol. , vol.4 , pp. 111-117
    • Hanks, S.K.1
  • 29
    • 33846889551 scopus 로고    scopus 로고
    • Derepression of pathological cardiac genes by members of the CaM kinase superfamily
    • McKinsey TA. Derepression of pathological cardiac genes by members of the CaM kinase superfamily. Cardiovasc Res. 2007; 73: 667-77.
    • (2007) Cardiovasc Res. , vol.73 , pp. 667-677
    • McKinsey, T.A.1
  • 30
    • 0029964752 scopus 로고    scopus 로고
    • Protein kinase D (PKD) activation in intact cells through a protein kinase C-dependent signal transduction pathway
    • Zugaza JL, Sinnett-Smith J, Van Lint J, et al. Protein kinase D (PKD) activation in intact cells through a protein kinase C-dependent signal transduction pathway. EMBO J. 1996; 15: 6220-30.
    • (1996) EMBO J. , vol.15 , pp. 6220-6230
    • Zugaza, J.L.1    Sinnett-Smith, J.2    Van Lint, J.3
  • 31
    • 0030771317 scopus 로고    scopus 로고
    • Bombesin, vasopressin, endothelin, bradykinin, and platelet-derived growth factor rapidly activate protein kinase D through a protein kinase C-dependent signal transduction pathway
    • Zugaza JL, Waldron RT, Sinnett-Smith J, et al. Bombesin, vasopressin, endothelin, bradykinin, and platelet-derived growth factor rapidly activate protein kinase D through a protein kinase C-dependent signal transduction pathway. J Biol Chem. 1997; 272: 23952-60.
    • (1997) J Biol Chem. , vol.272 , pp. 23952-23960
    • Zugaza, J.L.1    Waldron, R.T.2    Sinnett-Smith, J.3
  • 32
    • 17144414861 scopus 로고    scopus 로고
    • Protein kinase D1 phosphorylates HDAC7 and induces its nuclear export after T-cell receptor activation
    • Parra M, Kasler H, McKinsey TA, et al. Protein kinase D1 phosphorylates HDAC7 and induces its nuclear export after T-cell receptor activation. J Biol Chem. 2005; 280: 13762-70.
    • (2005) J Biol Chem. , vol.280 , pp. 13762-13770
    • Parra, M.1    Kasler, H.2    McKinsey, T.A.3
  • 33
    • 45549101405 scopus 로고    scopus 로고
    • Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7
    • Wang S, Li X, Parra M, et al. Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7. Proc Natl Acad Sci U S A. 2008; 105: 7738-43.
    • (2008) Proc Natl Acad Sci U S A. , vol.105 , pp. 7738-7743
    • Wang, S.1    Li, X.2    Parra, M.3
  • 34
    • 15444375044 scopus 로고    scopus 로고
    • Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor-induced Nur77 expression and apoptosis
    • Dequiedt F, Van Lint J, Lecomte E, et al. Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor-induced Nur77 expression and apoptosis. J Exp Med. 2005; 201: 793-804.
    • (2005) J Exp Med. , vol.201 , pp. 793-804
    • Dequiedt, F.1    Van Lint, J.2    Lecomte, E.3
  • 35
    • 32044462036 scopus 로고    scopus 로고
    • Essential role for protein kinase D family kinases in the regulation of class II histone deacetylases in B lymphocytes
    • Matthews SA, Liu P, Spitaler M, et al. Essential role for protein kinase D family kinases in the regulation of class II histone deacetylases in B lymphocytes. Mol Cell Biol. 2006; 26: 1569-77.
    • (2006) Mol Cell Biol. , vol.26 , pp. 1569-1577
    • Matthews, S.A.1    Liu, P.2    Spitaler, M.3
  • 36
    • 4544315655 scopus 로고    scopus 로고
    • Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5
    • Vega RB, Harrison BC, Meadows E, et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol. 2004; 24: 8374-85.
    • (2004) Mol Cell Biol. , vol.24 , pp. 8374-8385
    • Vega, R.B.1    Harrison, B.C.2    Meadows, E.3
  • 37
    • 42949099439 scopus 로고    scopus 로고
    • Requirement of protein kinase D1 for pathological cardiac remodeling
    • Fielitz J, Kim MS, Shelton JM, et al. Requirement of protein kinase D1 for pathological cardiac remodeling. Proc Natl Acad Sci U S A. 2008; 105: 3059-63.
    • (2008) Proc Natl Acad Sci U S A. , vol.105 , pp. 3059-3063
    • Fielitz, J.1    Kim, M.S.2    Shelton, J.M.3
  • 38
    • 44349182652 scopus 로고    scopus 로고
    • Protein kinase D1 stimulates MEF2 activity in skeletal muscle and enhances muscle performance
    • Kim MS, Fielitz J, McAnally J, et al. Protein kinase D1 stimulates MEF2 activity in skeletal muscle and enhances muscle performance. Mol Cell Biol. 2008; 28: 3600-9.
    • (2008) Mol Cell Biol. , vol.28 , pp. 3600-3609
    • Kim, M.S.1    Fielitz, J.2    McAnally, J.3
  • 39
    • 34249664888 scopus 로고    scopus 로고
    • SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes
    • Berdeaux R, Goebel N, Banaszynski L, et al. SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nat Med. 2007; 13: 597-603.
    • (2007) Nat Med. , vol.13 , pp. 597-603
    • Berdeaux, R.1    Goebel, N.2    Banaszynski, L.3
  • 40
    • 14244258401 scopus 로고    scopus 로고
    • Mirk/dyrk1B decreases the nuclear accumulation of class II histone deacetylases during skeletal muscle differentiation
    • Deng X, Ewton DZ, Mercer SE, et al. Mirk/dyrk1B decreases the nuclear accumulation of class II histone deacetylases during skeletal muscle differentiation. J Biol Chem. 2005; 280: 4894-905.
    • (2005) J Biol Chem. , vol.280 , pp. 4894-4905
    • Deng, X.1    Ewton, D.Z.2    Mercer, S.E.3
  • 41
    • 33751077081 scopus 로고    scopus 로고
    • Shuttling of HDAC5 in H9C2 cells regulates YY1 function through CaMKIV/PKD and PP2A
    • Sucharov CC, Langer S, Bristow M, et al. Shuttling of HDAC5 in H9C2 cells regulates YY1 function through CaMKIV/PKD and PP2A. Am J Physiol Cell Physiol. 2006; 291: C1029-37.
    • (2006) Am J Physiol Cell Physiol , vol.291
    • Sucharov, C.C.1    Langer, S.2    Bristow, M.3
  • 42
    • 33947311828 scopus 로고    scopus 로고
    • Myosin phosphatase dephosphorylates HDAC7, controls its nucleocytoplasmic shuttling, and inhibits apoptosis in thymocytes
    • Parra M, Mahmoudi T, Verdin E. Myosin phosphatase dephosphorylates HDAC7, controls its nucleocytoplasmic shuttling, and inhibits apoptosis in thymocytes. Genes Dev. 2007; 21: 638-43.
    • (2007) Genes Dev. , vol.21 , pp. 638-643
    • Parra, M.1    Mahmoudi, T.2    Verdin, E.3
  • 43
    • 42449144793 scopus 로고    scopus 로고
    • Protein phosphatase 2A controls the activity of histone deacetylase 7 during T cell apoptosis and angiogenesis
    • Martin M, Potente M, Janssens V, et al. Protein phosphatase 2A controls the activity of histone deacetylase 7 during T cell apoptosis and angiogenesis. Proc Natl Acad Sci USA. 2008; 105: 4727-32.
    • (2008) Proc Natl Acad Sci USA. , vol.105 , pp. 4727-4732
    • Martin, M.1    Potente, M.2    Janssens, V.3
  • 44
    • 0035697117 scopus 로고    scopus 로고
    • The nuclear localization domain of the MEF2 family of transcription factors shows member-specific features and mediates the nuclear import of histone deacetylase 4
    • Borghi S, Molinari S, Razzini G, et al. The nuclear localization domain of the MEF2 family of transcription factors shows member-specific features and mediates the nuclear import of histone deacetylase 4. J Cell Sci. 2001; 114: 4477-83.
    • (2001) J Cell Sci. , vol.114 , pp. 4477-4483
    • Borghi, S.1    Molinari, S.2    Razzini, G.3
  • 45
    • 70350547780 scopus 로고    scopus 로고
    • Parathyroid hormone-related peptide represses chondrocyte hypertrophy through a protein phosphatase 2A/histone deacetylase 4/MEF2 pathway
    • Kozhemyakina E, Cohen T, Yao TP, et al. Parathyroid hormone-related peptide represses chondrocyte hypertrophy through a protein phosphatase 2A/histone deacetylase 4/MEF2 pathway. Mol Cell Biol. 2009; 29: 5751-62.
    • (2009) Mol Cell Biol. , vol.29 , pp. 5751-5762
    • Kozhemyakina, E.1    Cohen, T.2    Yao, T.P.3
  • 46
    • 77957261983 scopus 로고    scopus 로고
    • PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy
    • Ha CH, Kim JY, Zhao J, et al. PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A. 2010; 107: 15467-72.
    • (2010) Proc Natl Acad Sci U S A. , vol.107 , pp. 15467-15472
    • Ha, C.H.1    Kim, J.Y.2    Zhao, J.3
  • 47
    • 44649184557 scopus 로고    scopus 로고
    • A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy
    • Ago T, Liu T, Zhai P, et al. A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell. 2008; 133: 978-93.
    • (2008) Cell. , vol.133 , pp. 978-993
    • Ago, T.1    Liu, T.2    Zhai, P.3
  • 48
    • 34848858523 scopus 로고    scopus 로고
    • Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers
    • Potthoff MJ, Wu H, Arnold MA, et al. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J Clin Invest. 2007; 117: 2459-67.
    • (2007) J Clin Invest. , vol.117 , pp. 2459-2467
    • Potthoff, M.J.1    Wu, H.2    Arnold, M.A.3
  • 49
    • 78751549574 scopus 로고    scopus 로고
    • Ubiquitin-dependent degradation of HDAC4, a new regulator of random cell motility
    • Cernotta N, Clocchiatti A, Florean C, et al. Ubiquitin-dependent degradation of HDAC4, a new regulator of random cell motility. Mol Biol Cell. 2010; 22: 278-89.
    • (2010) Mol Biol Cell. , vol.22 , pp. 278-289
    • Cernotta, N.1    Clocchiatti, A.2    Florean, C.3
  • 50
    • 2542431137 scopus 로고    scopus 로고
    • Caspase-dependent regulation of histone deacetylase 4 nuclear-cytoplasmic shuttling promotes apoptosis
    • Paroni G, Mizzau M, Henderson C, et al. Caspase-dependent regulation of histone deacetylase 4 nuclear-cytoplasmic shuttling promotes apoptosis. Mol Biol Cell. 2004; 15: 2804-18.
    • (2004) Mol Biol Cell. , vol.15 , pp. 2804-2818
    • Paroni, G.1    Mizzau, M.2    Henderson, C.3
  • 51
    • 18444370302 scopus 로고    scopus 로고
    • The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase
    • Kirsh O, Seeler JS, Pichler A, et al. The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J. 2002; 21: 2682-91.
    • (2002) EMBO J. , vol.21 , pp. 2682-2691
    • Kirsh, O.1    Seeler, J.S.2    Pichler, A.3
  • 52
    • 31944447379 scopus 로고    scopus 로고
    • Regulation of histone deacetylase 4 expression by the SP family of transcription factors
    • Liu F, Pore N, Kim M, et al. Regulation of histone deacetylase 4 expression by the SP family of transcription factors. Mol Biol Cell. 2006; 17: 585-97.
    • (2006) Mol Biol Cell. , vol.17 , pp. 585-597
    • Liu, F.1    Pore, N.2    Kim, M.3
  • 53
    • 31744432337 scopus 로고    scopus 로고
    • The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation
    • Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006; 38: 228-33.
    • (2006) Nat Genet. , vol.38 , pp. 228-233
    • Chen, J.F.1    Mandel, E.M.2    Thomson, J.M.3
  • 54
    • 77954413330 scopus 로고    scopus 로고
    • Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis
    • Sun Y, Ge Y, Drnevich J, et al. Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. J Cell Biol. 2010; 189: 1157-69.
    • (2010) J Cell Biol. , vol.189 , pp. 1157-1169
    • Sun, Y.1    Ge, Y.2    Drnevich, J.3
  • 55
    • 33847183440 scopus 로고    scopus 로고
    • MEF2C transcription factor controls chondrocyte hypertrophy and bone development
    • Arnold MA, Kim Y, Czubryt MP, et al. MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell. 2007; 12: 377-89.
    • (2007) Dev Cell. , vol.12 , pp. 377-389
    • Arnold, M.A.1    Kim, Y.2    Czubryt, M.P.3
  • 56
    • 4544358659 scopus 로고    scopus 로고
    • Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development
    • Chang S, McKinsey TA, Zhang CL, et al. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol. 2004; 24: 8467-76.
    • (2004) Mol Cell Biol. , vol.24 , pp. 8467-8476
    • Chang, S.1    McKinsey, T.A.2    Zhang, C.L.3
  • 57
    • 33746228132 scopus 로고    scopus 로고
    • Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10
    • Chang S, Young BD, Li S, et al. Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell. 2006; 126: 321-34.
    • (2006) Cell. , vol.126 , pp. 321-334
    • Chang, S.1    Young, B.D.2    Li, S.3
  • 58
    • 26844518082 scopus 로고    scopus 로고
    • Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death
    • Bolger TA, Yao TP. Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J Neurosci. 2005; 25: 9544-53.
    • (2005) J Neurosci. , vol.25 , pp. 9544-9553
    • Bolger, T.A.1    Yao, T.P.2
  • 59
    • 35348950607 scopus 로고    scopus 로고
    • Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation
    • Serra C, Palacios D, Mozzetta C, et al. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation. Mol Cell. 2007; 28: 200-13.
    • (2007) Mol Cell. , vol.28 , pp. 200-213
    • Serra, C.1    Palacios, D.2    Mozzetta, C.3
  • 60
    • 14844344773 scopus 로고    scopus 로고
    • Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors
    • Gregoire S, Yang XJ. Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors. Mol Cell Biol. 2005; 25: 2273-87.
    • (2005) Mol Cell Biol. , vol.25 , pp. 2273-2287
    • Gregoire, S.1    Yang, X.J.2
  • 61
    • 0029841389 scopus 로고    scopus 로고
    • Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors
    • Molkentin JD, Olson EN. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc Natl Acad Sci USA. 1996; 93: 9366-73.
    • (1996) Proc Natl Acad Sci USA. , vol.93 , pp. 9366-9373
    • Molkentin, J.D.1    Olson, E.N.2
  • 62
    • 64849110649 scopus 로고    scopus 로고
    • Splicing of HDAC7 modulates the SRF-myocardin complex during stem-cell differentiation towards smooth muscle cells
    • Margariti A, Xiao Q, Zampetaki A, et al. Splicing of HDAC7 modulates the SRF-myocardin complex during stem-cell differentiation towards smooth muscle cells. J Cell Sci. 2009; 122: 460-70.
    • (2009) J Cell Sci. , vol.122 , pp. 460-470
    • Margariti, A.1    Xiao, Q.2    Zampetaki, A.3
  • 63
    • 8344261349 scopus 로고    scopus 로고
    • Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis
    • Vega RB, Matsuda K, Oh J, et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell. 2004; 119: 555-66.
    • (2004) Cell. , vol.119 , pp. 555-566
    • Vega, R.B.1    Matsuda, K.2    Oh, J.3
  • 64
    • 33745196250 scopus 로고    scopus 로고
    • Bone morphogenetic protein-2 stimulates Runx2 acetylation
    • Jeon EJ, Lee KY, Choi NS, et al. Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem. 2006; 281: 16502-11.
    • (2006) J Biol Chem. , vol.281 , pp. 16502-16511
    • Jeon, E.J.1    Lee, K.Y.2    Choi, N.S.3
  • 65
    • 0035496915 scopus 로고    scopus 로고
    • Histone deacetylase 3 associates with and represses the transcription factor GATA-2
    • Ozawa Y, Towatari M, Tsuzuki S, et al. Histone deacetylase 3 associates with and represses the transcription factor GATA-2. Blood. 2001; 98: 2116-23.
    • (2001) Blood. , vol.98 , pp. 2116-2123
    • Ozawa, Y.1    Towatari, M.2    Tsuzuki, S.3
  • 66
    • 0346688568 scopus 로고    scopus 로고
    • Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation
    • Watamoto K, Towatari M, Ozawa Y, et al. Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation. Oncogene. 2003; 22: 9176-84.
    • (2003) Oncogene. , vol.22 , pp. 9176-9184
    • Watamoto, K.1    Towatari, M.2    Ozawa, Y.3
  • 67
    • 65549142268 scopus 로고    scopus 로고
    • FOXP3 up-regulates p21 expression by site-specific inhibition of histone deacetylase 2/histone deacetylase 4 association to the locus
    • Liu R, Wang L, Chen G, et al. FOXP3 up-regulates p21 expression by site-specific inhibition of histone deacetylase 2/histone deacetylase 4 association to the locus. Cancer Res. 2009; 69: 2252-9.
    • (2009) Cancer Res. , vol.69 , pp. 2252-2259
    • Liu, R.1    Wang, L.2    Chen, G.3
  • 68
    • 50849120018 scopus 로고    scopus 로고
    • YY1 restrained cell senescence through repressing the transcription of p16
    • Wang X, Feng Y, Xu L, et al. YY1 restrained cell senescence through repressing the transcription of p16. Biochim Biophys Acta. 2008; 1783: 1876-83.
    • (2008) Biochim Biophys Acta. , vol.1783 , pp. 1876-1883
    • Wang, X.1    Feng, Y.2    Xu, L.3
  • 69
    • 57349169361 scopus 로고    scopus 로고
    • YY1 protects cardiac myocytes from pathologic hypertrophy by interacting with HDAC5
    • Sucharov CC, Dockstader K, McKinsey TA. YY1 protects cardiac myocytes from pathologic hypertrophy by interacting with HDAC5. Mol Biol Cell. 2008; 19: 4141-53.
    • (2008) Mol Biol Cell. , vol.19 , pp. 4141-4153
    • Sucharov, C.C.1    Dockstader, K.2    McKinsey, T.A.3
  • 70
    • 28144433667 scopus 로고    scopus 로고
    • Recruitment of histone deacetylase 4 to the N-terminal region of estrogen receptor alpha
    • Leong H, Sloan JR, Nash PD, et al. Recruitment of histone deacetylase 4 to the N-terminal region of estrogen receptor alpha. Mol Endocrinol. 2005; 19: 2930-42.
    • (2005) Mol Endocrinol. , vol.19 , pp. 2930-2942
    • Leong, H.1    Sloan, J.R.2    Nash, P.D.3
  • 71
    • 74049129003 scopus 로고    scopus 로고
    • Myocyte enhancer factor 2 and class II histone deacetylases control a gender-specific pathway of cardioprotection mediated by the estrogen receptor
    • van Rooij E, Fielitz J, Sutherland LB, et al. Myocyte enhancer factor 2 and class II histone deacetylases control a gender-specific pathway of cardioprotection mediated by the estrogen receptor. Circ Res. 2010; 106: 155-65.
    • (2010) Circ Res. , vol.106 , pp. 155-165
    • van Rooij, E.1    Fielitz, J.2    Sutherland, L.B.3
  • 72
    • 33748207254 scopus 로고    scopus 로고
    • Androgen receptor regulates nuclear trafficking and nuclear domain residency of corepressor HDAC7 in a ligand-dependent fashion
    • Karvonen U, Janne OA, Palvimo JJ. Androgen receptor regulates nuclear trafficking and nuclear domain residency of corepressor HDAC7 in a ligand-dependent fashion. Exp Cell Res. 2006; 312: 3165-83.
    • (2006) Exp Cell Res. , vol.312 , pp. 3165-3183
    • Karvonen, U.1    Janne, O.A.2    Palvimo, J.J.3
  • 73
    • 79955841523 scopus 로고    scopus 로고
    • Inhibition of androgen receptor activity by histone deacetylase 4 through receptor SUMOylation
    • doi:.
    • Yang Y, Tse AK, Li P, et al. Inhibition of androgen receptor activity by histone deacetylase 4 through receptor SUMOylation. Oncogene. 2011; doi:.
    • (2011) Oncogene.
    • Yang, Y.1    Tse, A.K.2    Li, P.3
  • 74
    • 2642511664 scopus 로고    scopus 로고
    • Transcriptional regulation by the repressor of estrogen receptor activityviarecruitment of histone deacetylases
    • Kurtev V, Margueron R, Kroboth K, et al. Transcriptional regulation by the repressor of estrogen receptor activityviarecruitment of histone deacetylases. J Biol Chem. 2004; 279: 24834-43.
    • (2004) J Biol Chem. , vol.279 , pp. 24834-24843
    • Kurtev, V.1    Margueron, R.2    Kroboth, K.3
  • 75
    • 0346656463 scopus 로고    scopus 로고
    • Androgen receptor corepressor-19 kDa (ARR19), a leucine-rich protein that represses the transcriptional activity of androgen receptor through recruitment of histone deacetylase
    • Jeong BC, Hong CY, Chattopadhyay S, et al. Androgen receptor corepressor-19 kDa (ARR19), a leucine-rich protein that represses the transcriptional activity of androgen receptor through recruitment of histone deacetylase. Mol Endocrinol. 2004; 18: 13-25.
    • (2004) Mol Endocrinol. , vol.18 , pp. 13-25
    • Jeong, B.C.1    Hong, C.Y.2    Chattopadhyay, S.3
  • 76
    • 2342457748 scopus 로고    scopus 로고
    • Receptor interacting protein 140 as a thyroid hormone-dependent, negative co-regulator for the induction of cellular retinoic acid binding protein I gene
    • Wei LN, Hu X. Receptor interacting protein 140 as a thyroid hormone-dependent, negative co-regulator for the induction of cellular retinoic acid binding protein I gene. Mol Cell Endocrinol. 2004; 218: 39-48.
    • (2004) Mol Cell Endocrinol. , vol.218 , pp. 39-48
    • Wei, L.N.1    Hu, X.2
  • 77
    • 34248344283 scopus 로고    scopus 로고
    • Crystal structure of a conserved N-terminal domain of histone deacetylase 4 reveals functional insights into glutamine-rich domains
    • Guo L, Han A, Bates DL, et al. Crystal structure of a conserved N-terminal domain of histone deacetylase 4 reveals functional insights into glutamine-rich domains. Proc Natl Acad Sci USA. 2007; 104: 4297-302.
    • (2007) Proc Natl Acad Sci USA. , vol.104 , pp. 4297-4302
    • Guo, L.1    Han, A.2    Bates, D.L.3
  • 78
    • 36849004821 scopus 로고    scopus 로고
    • Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases
    • Lahm A, Paolini C, Pallaoro M, et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc Natl Acad Sci USA. 2007; 104: 17335-40.
    • (2007) Proc Natl Acad Sci USA. , vol.104 , pp. 17335-17340
    • Lahm, A.1    Paolini, C.2    Pallaoro, M.3
  • 79
    • 19444379914 scopus 로고    scopus 로고
    • Theoretical study revealing the functioning of a novel combination of catalytic motifs in histone deacetylase
    • Vanommeslaeghe K, De Proft F, Loverix S, et al. Theoretical study revealing the functioning of a novel combination of catalytic motifs in histone deacetylase. Bioorg Med Chem. 2005; 13: 3987-92.
    • (2005) Bioorg Med Chem. , vol.13 , pp. 3987-3992
    • Vanommeslaeghe, K.1    De Proft, F.2    Loverix, S.3
  • 80
    • 45549095066 scopus 로고    scopus 로고
    • Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity
    • Schuetz A, Min J, Allali-Hassani A, et al. Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J Biol Chem. 2008; 283: 11355-63.
    • (2008) J Biol Chem. , vol.283 , pp. 11355-11363
    • Schuetz, A.1    Min, J.2    Allali-Hassani, A.3
  • 81
    • 55549094833 scopus 로고    scopus 로고
    • Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain
    • Bottomley MJ, Lo Surdo P, Di Giovine P, et al. Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. J Biol Chem. 2008; 283: 26694-704.
    • (2008) J Biol Chem. , vol.283 , pp. 26694-26704
    • Bottomley, M.J.1    Lo Surdo, P.2    Di Giovine, P.3
  • 82
    • 0037252984 scopus 로고    scopus 로고
    • Histone deacetylase dHDAC4 is involved in segmentation of the Drosophila embryo and is regulated by gap and pair-rule genes
    • Zeremski M, Stricker JR, Fischer D, et al. Histone deacetylase dHDAC4 is involved in segmentation of the Drosophila embryo and is regulated by gap and pair-rule genes. Genesis. 2003; 35: 31-8.
    • (2003) Genesis. , vol.35 , pp. 31-38
    • Zeremski, M.1    Stricker, J.R.2    Fischer, D.3
  • 83
    • 33846534356 scopus 로고    scopus 로고
    • KIN-29 SIK regulates chemoreceptor gene expressionviaan MEF2 transcription factor and a class II HDAC
    • van der Linden AM, Nolan KM, Sengupta P. KIN-29 SIK regulates chemoreceptor gene expressionviaan MEF2 transcription factor and a class II HDAC. EMBO J. 2007; 26: 358-70.
    • (2007) EMBO J. , vol.26 , pp. 358-370
    • van der Linden, A.M.1    Nolan, K.M.2    Sengupta, P.3
  • 84
    • 2942548981 scopus 로고    scopus 로고
    • Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression
    • Stein GS, Lian JB, van Wijnen AJ, et al. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene. 2004; 23: 4315-29.
    • (2004) Oncogene. , vol.23 , pp. 4315-4329
    • Stein, G.S.1    Lian, J.B.2    van Wijnen, A.J.3
  • 85
    • 64149118078 scopus 로고    scopus 로고
    • A histone deacetylase 4/myogenin positive feedback loop coordinates denervation-dependent gene induction and suppression
    • Tang H, Macpherson P, Marvin M, et al. A histone deacetylase 4/myogenin positive feedback loop coordinates denervation-dependent gene induction and suppression. Mol Biol Cell. 2009; 20: 1120-31.
    • (2009) Mol Biol Cell. , vol.20 , pp. 1120-1131
    • Tang, H.1    Macpherson, P.2    Marvin, M.3
  • 86
    • 36348988617 scopus 로고    scopus 로고
    • The histone deacetylase HDAC4 connects neural activity to muscle transcriptional reprogramming
    • Cohen TJ, Waddell DS, Barrientos T, et al. The histone deacetylase HDAC4 connects neural activity to muscle transcriptional reprogramming. J Biol Chem. 2007; 282: 33752-9.
    • (2007) J Biol Chem. , vol.282 , pp. 33752-33759
    • Cohen, T.J.1    Waddell, D.S.2    Barrientos, T.3
  • 87
    • 72149131804 scopus 로고    scopus 로고
    • MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice
    • Williams AH, Valdez G, Moresi V, et al. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science. 2009; 326: 1549-54.
    • (2009) Science. , vol.326 , pp. 1549-1554
    • Williams, A.H.1    Valdez, G.2    Moresi, V.3
  • 88
    • 0037417373 scopus 로고    scopus 로고
    • Histone deacetylase 4 interacts with 53BP1 to mediate the DNA damage response
    • Kao GD, McKenna WG, Guenther MG, et al. Histone deacetylase 4 interacts with 53BP1 to mediate the DNA damage response. J Cell Biol. 2003; 160: 1017-27.
    • (2003) J Cell Biol. , vol.160 , pp. 1017-1027
    • Kao, G.D.1    McKenna, W.G.2    Guenther, M.G.3
  • 89
    • 33845741562 scopus 로고    scopus 로고
    • Histone deacetylase (HDAC) inhibitor LBH589 increases duration of gamma-H2AX foci and confines HDAC4 to the cytoplasm in irradiated non-small cell lung cancer
    • Geng L, Cuneo KC, Fu A, et al. Histone deacetylase (HDAC) inhibitor LBH589 increases duration of gamma-H2AX foci and confines HDAC4 to the cytoplasm in irradiated non-small cell lung cancer. Cancer Res. 2006; 66: 11298-304.
    • (2006) Cancer Res. , vol.66 , pp. 11298-11304
    • Geng, L.1    Cuneo, K.C.2    Fu, A.3
  • 90
    • 33749993417 scopus 로고    scopus 로고
    • The consensus coding sequences of human breast and colorectal cancers
    • Sjoblom T, Jones S, Wood LD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006; 314: 268-74.
    • (2006) Science. , vol.314 , pp. 268-274
    • Sjoblom, T.1    Jones, S.2    Wood, L.D.3
  • 91
    • 34047258036 scopus 로고    scopus 로고
    • Genome-wide loss of heterozygosity and copy number analysis in melanoma using high-density single-nucleotide polymorphism arrays
    • Stark M, Hayward N. Genome-wide loss of heterozygosity and copy number analysis in melanoma using high-density single-nucleotide polymorphism arrays. Cancer Res. 2007; 67: 2632-42.
    • (2007) Cancer Res. , vol.67 , pp. 2632-2642
    • Stark, M.1    Hayward, N.2
  • 92
    • 12144289681 scopus 로고    scopus 로고
    • A large-scale RNAi screen in human cells identifies new components of the p53 pathway
    • Berns K, Hijmans EM, Mullenders J, et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature. 2004; 428: 431-7.
    • (2004) Nature. , vol.428 , pp. 431-437
    • Berns, K.1    Hijmans, E.M.2    Mullenders, J.3
  • 93
    • 20244390478 scopus 로고    scopus 로고
    • Direct p53 transcriptional repression:in vivoanalysis of CCAAT-containing G2/M promoters
    • Imbriano C, Gurtner A, Cocchiarella F, et al. Direct p53 transcriptional repression:in vivoanalysis of CCAAT-containing G2/M promoters. Mol Cell Biol. 2005; 25: 3737-51.
    • (2005) Mol Cell Biol. , vol.25 , pp. 3737-3751
    • Imbriano, C.1    Gurtner, A.2    Cocchiarella, F.3
  • 94
    • 33644859838 scopus 로고    scopus 로고
    • DNA damage promotes histone deacetylase 4 nuclear localization and repression of G2/M promoters,viap53 C-terminal lysines
    • Basile V, Mantovani R, Imbriano C. DNA damage promotes histone deacetylase 4 nuclear localization and repression of G2/M promoters, viap53 C-terminal lysines. J Biol Chem. 2006; 281: 2347-57.
    • (2006) J Biol Chem. , vol.281 , pp. 2347-2357
    • Basile, V.1    Mantovani, R.2    Imbriano, C.3
  • 95
    • 68049145906 scopus 로고    scopus 로고
    • Loss of histone deacetylase 4 causes segregation defects during mitosis of p53-deficient human tumor cells
    • Cadot B, Brunetti M, Coppari S, et al. Loss of histone deacetylase 4 causes segregation defects during mitosis of p53-deficient human tumor cells. Cancer Res. 2009; 69: 6074-82.
    • (2009) Cancer Res. , vol.69 , pp. 6074-6082
    • Cadot, B.1    Brunetti, M.2    Coppari, S.3
  • 96
    • 54349100901 scopus 로고    scopus 로고
    • HDAC4 promotes growth of colon cancer cellsviarepression of p21
    • Wilson AJ, Byun DS, Nasser S, et al. HDAC4 promotes growth of colon cancer cellsviarepression of p21. Mol Biol Cell. 2008; 19: 4062-75.
    • (2008) Mol Biol Cell. , vol.19 , pp. 4062-4075
    • Wilson, A.J.1    Byun, D.S.2    Nasser, S.3
  • 97
    • 58249096131 scopus 로고    scopus 로고
    • HDAC4 represses p21(WAF1/Cip1) expression in human cancer cells through a Sp1-dependent, p53-independent mechanism
    • Mottet D, Pirotte S, Lamour V, et al. HDAC4 represses p21(WAF1/Cip1) expression in human cancer cells through a Sp1-dependent, p53-independent mechanism. Oncogene. 2009; 28: 243-56.
    • (2009) Oncogene. , vol.28 , pp. 243-256
    • Mottet, D.1    Pirotte, S.2    Lamour, V.3
  • 98
    • 48549091046 scopus 로고    scopus 로고
    • Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis
    • Datta J, Kutay H, Nasser MW, et al. Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res. 2008; 68: 5049-58.
    • (2008) Cancer Res. , vol.68 , pp. 5049-5058
    • Datta, J.1    Kutay, H.2    Nasser, M.W.3
  • 99
    • 77957982588 scopus 로고    scopus 로고
    • microRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity
    • Zhang J, Yang Y, Yang T, et al. microRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity. Br J Cancer. 2010; 103: 1215-20.
    • (2010) Br J Cancer. , vol.103 , pp. 1215-1220
    • Zhang, J.1    Yang, Y.2    Yang, T.3
  • 100
    • 57749089758 scopus 로고    scopus 로고
    • Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1
    • Nasser MW, Datta J, Nuovo G, et al. Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J Biol Chem. 2008; 283: 33394-405.
    • (2008) J Biol Chem. , vol.283 , pp. 33394-33405
    • Nasser, M.W.1    Datta, J.2    Nuovo, G.3
  • 101
    • 0034687680 scopus 로고    scopus 로고
    • Histone deacetylase 4 associates with extracellular signal-regulated kinases 1 and 2, and its cellular localization is regulated by oncogenic Ras
    • Zhou X, Richon VM, Wang AH, et al. Histone deacetylase 4 associates with extracellular signal-regulated kinases 1 and 2, and its cellular localization is regulated by oncogenic Ras. Proc Natl Acad Sci U S A. 2000; 97: 14329-33.
    • (2000) Proc Natl Acad Sci U S A. , vol.97 , pp. 14329-14333
    • Zhou, X.1    Richon, V.M.2    Wang, A.H.3
  • 102
    • 33749006252 scopus 로고    scopus 로고
    • Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha
    • Qian DZ, Kachhap SK, Collis SJ, et al. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha. Cancer Res. 2006; 66: 8814-21.
    • (2006) Cancer Res. , vol.66 , pp. 8814-8821
    • Qian, D.Z.1    Kachhap, S.K.2    Collis, S.J.3
  • 103
    • 79551550094 scopus 로고    scopus 로고
    • Human Papillomavirus E7 enhances hypoxia-inducible factor 1 mediated transcription by inhibiting binding of histone deacetylases
    • Bodily JM, Mehta KP, Laimins LA. Human Papillomavirus E7 enhances hypoxia-inducible factor 1 mediated transcription by inhibiting binding of histone deacetylases. Cancer Res. 2010; 73: 1187-95.
    • (2010) Cancer Res. , vol.73 , pp. 1187-1195
    • Bodily, J.M.1    Mehta, K.P.2    Laimins, L.A.3
  • 104
    • 57749177692 scopus 로고    scopus 로고
    • Transcriptional activation of hypoxia-inducible factor-1alpha by HDAC4 and HDAC5 involves differential recruitment of p300 and FIH-1
    • Seo HW, Kim EJ, Na H, et al. Transcriptional activation of hypoxia-inducible factor-1alpha by HDAC4 and HDAC5 involves differential recruitment of p300 and FIH-1. FEBS Lett. 2009; 583: 55-60.
    • (2009) FEBS Lett. , vol.583 , pp. 55-60
    • Seo, H.W.1    Kim, E.J.2    Na, H.3
  • 105
    • 4744368147 scopus 로고    scopus 로고
    • Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity
    • Kato H, Tamamizu-Kato S, Shibasaki F. Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity. J Biol Chem. 2004; 279: 41966-74.
    • (2004) J Biol Chem. , vol.279 , pp. 41966-41974
    • Kato, H.1    Tamamizu-Kato, S.2    Shibasaki, F.3
  • 106
    • 0034635987 scopus 로고    scopus 로고
    • Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases
    • Lu J, McKinsey TA, Nicol RL, et al. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci USA. 2000; 97: 4070-5.
    • (2000) Proc Natl Acad Sci USA. , vol.97 , pp. 4070-4075
    • Lu, J.1    McKinsey, T.A.2    Nicol, R.L.3
  • 107
    • 0037673933 scopus 로고    scopus 로고
    • Control of osteoblast function and regulation of bone mass
    • Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature. 2003; 423: 349-55.
    • (2003) Nature. , vol.423 , pp. 349-355
    • Harada, S.1    Rodan, G.A.2
  • 108
    • 23044448510 scopus 로고    scopus 로고
    • Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3
    • Kang JS, Alliston T, Delston R, et al. Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3. EMBO J. 2005; 24: 2543-55.
    • (2005) EMBO J. , vol.24 , pp. 2543-2555
    • Kang, J.S.1    Alliston, T.2    Delston, R.3
  • 109
    • 72849121740 scopus 로고    scopus 로고
    • A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans
    • Li H, Xie H, Liu W, et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest. 2009; 119: 3666-77.
    • (2009) J Clin Invest. , vol.119 , pp. 3666-3677
    • Li, H.1    Xie, H.2    Liu, W.3
  • 110
    • 67049145833 scopus 로고    scopus 로고
    • HDAC5 is a repressor of angiogenesis and determines the angiogenic gene expression pattern of endothelial cells
    • Urbich C, Rossig L, Kaluza D, et al. HDAC5 is a repressor of angiogenesis and determines the angiogenic gene expression pattern of endothelial cells. Blood. 2009; 113: 5669-79.
    • (2009) Blood. , vol.113 , pp. 5669-5679
    • Urbich, C.1    Rossig, L.2    Kaluza, D.3
  • 111
    • 45749116898 scopus 로고    scopus 로고
    • Protein kinase D-dependent phosphorylation and nuclear export of histone deacetylase 5 mediates vascular endothelial growth factor-induced gene expression and angiogenesis
    • Ha CH, Wang W, Jhun BS, et al. Protein kinase D-dependent phosphorylation and nuclear export of histone deacetylase 5 mediates vascular endothelial growth factor-induced gene expression and angiogenesis. J Biol Chem. 2008; 283: 14590-9.
    • (2008) J Biol Chem. , vol.283 , pp. 14590-14599
    • Ha, C.H.1    Wang, W.2    Jhun, B.S.3
  • 112
    • 77953723856 scopus 로고    scopus 로고
    • HDAC5 and HDAC9 in medulloblastoma: novel markers for risk stratification and role in tumor cell growth
    • Milde T, Oehme I, Korshunov A, et al. HDAC5 and HDAC9 in medulloblastoma: novel markers for risk stratification and role in tumor cell growth. Clin Cancer Res. 2010; 16: 3240-52.
    • (2010) Clin Cancer Res. , vol.16 , pp. 3240-3252
    • Milde, T.1    Oehme, I.2    Korshunov, A.3
  • 113
    • 0037093098 scopus 로고    scopus 로고
    • Histone deacetylase 5 is not a p53 target gene, but its overexpression inhibits tumor cell growth and induces apoptosis
    • Huang Y, Tan M, Gosink M, et al. Histone deacetylase 5 is not a p53 target gene, but its overexpression inhibits tumor cell growth and induces apoptosis. Cancer Res. 2002; 62: 2913-22.
    • (2002) Cancer Res. , vol.62 , pp. 2913-2922
    • Huang, Y.1    Tan, M.2    Gosink, M.3
  • 114
    • 49049114940 scopus 로고    scopus 로고
    • Histone deacetylase 5 represses the transcription of cyclin D3
    • Roy S, Shor AC, Bagui TK, et al. Histone deacetylase 5 represses the transcription of cyclin D3. J Cell Biochem. 2008; 104: 2143-54.
    • (2008) J Cell Biochem. , vol.104 , pp. 2143-2154
    • Roy, S.1    Shor, A.C.2    Bagui, T.K.3
  • 115
    • 38849139136 scopus 로고    scopus 로고
    • TBX3 is overexpressed in breast cancer and represses p14 ARF by interacting with histone deacetylases
    • Yarosh W, Barrientos T, Esmailpour T, et al. TBX3 is overexpressed in breast cancer and represses p14 ARF by interacting with histone deacetylases. Cancer Res. 2008; 68: 693-9.
    • (2008) Cancer Res. , vol.68 , pp. 693-699
    • Yarosh, W.1    Barrientos, T.2    Esmailpour, T.3
  • 116
    • 34848818037 scopus 로고    scopus 로고
    • Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation
    • Sun G, Yu RT, Evans RM, et al. Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc Natl Acad Sci U S A. 2007; 104: 15282-7.
    • (2007) Proc Natl Acad Sci U S A. , vol.104 , pp. 15282-15287
    • Sun, G.1    Yu, R.T.2    Evans, R.M.3
  • 117
    • 77950675541 scopus 로고    scopus 로고
    • Histone demethylase LSD1 regulates neural stem cell proliferation
    • Sun G, Alzayady K, Stewart R, et al. Histone demethylase LSD1 regulates neural stem cell proliferation. Mol Cell Biol. 2010; 30: 1997-2005.
    • (2010) Mol Cell Biol. , vol.30 , pp. 1997-2005
    • Sun, G.1    Alzayady, K.2    Stewart, R.3
  • 118
    • 77957271894 scopus 로고    scopus 로고
    • The role of oxysterol binding protein-related protein 5 in pancreatic cancer
    • Ishikawa S, Nagai Y, Masuda T, et al. The role of oxysterol binding protein-related protein 5 in pancreatic cancer. Cancer Sci. 2010; 101: 898-905.
    • (2010) Cancer Sci. , vol.101 , pp. 898-905
    • Ishikawa, S.1    Nagai, Y.2    Masuda, T.3
  • 119
    • 0037728615 scopus 로고    scopus 로고
    • HDAC7, a thymus-specific class II histone deacetylase, regulates Nur77 transcription and TCR-mediated apoptosis
    • Dequiedt F, Kasler H, Fischle W, et al. HDAC7, a thymus-specific class II histone deacetylase, regulates Nur77 transcription and TCR-mediated apoptosis. Immunity. 2003; 18: 687-98.
    • (2003) Immunity. , vol.18 , pp. 687-698
    • Dequiedt, F.1    Kasler, H.2    Fischle, W.3
  • 120
    • 51349162099 scopus 로고    scopus 로고
    • Signal-dependent regulation of transcription by histone deacetylase 7 involves recruitment to promyelocytic leukemia protein nuclear bodies
    • Gao C, Cheng X, Lam M, et al. Signal-dependent regulation of transcription by histone deacetylase 7 involves recruitment to promyelocytic leukemia protein nuclear bodies. Mol Biol Cell. 2008; 19: 3020-7.
    • (2008) Mol Biol Cell. , vol.19 , pp. 3020-3027
    • Gao, C.1    Cheng, X.2    Lam, M.3
  • 121
    • 37349089053 scopus 로고    scopus 로고
    • Histone deacetylase 7 silencing alters endothelial cell migration, a key step in angiogenesis
    • Mottet D, Bellahcene A, Pirotte S, et al. Histone deacetylase 7 silencing alters endothelial cell migration, a key step in angiogenesis. Circ Res. 2007; 101: 1237-46.
    • (2007) Circ Res. , vol.101 , pp. 1237-1246
    • Mottet, D.1    Bellahcene, A.2    Pirotte, S.3
  • 122
    • 59049104478 scopus 로고    scopus 로고
    • Bone morphogenic protein 2 activates protein kinase D to regulate histone deacetylase 7 localization and repression of Runx2
    • Jensen ED, Gopalakrishnan R, Westendorf JJ. Bone morphogenic protein 2 activates protein kinase D to regulate histone deacetylase 7 localization and repression of Runx2. J Biol Chem. 2009; 284: 2225-34.
    • (2009) J Biol Chem. , vol.284 , pp. 2225-2234
    • Jensen, E.D.1    Gopalakrishnan, R.2    Westendorf, J.J.3
  • 123
    • 39749130325 scopus 로고    scopus 로고
    • Histone deacetylase 7 associates with Runx2 and represses its activity during osteoblast maturation in a deacetylation-independent manner
    • Jensen ED, Schroeder TM, Bailey J, et al. Histone deacetylase 7 associates with Runx2 and represses its activity during osteoblast maturation in a deacetylation-independent manner. J Bone Miner Res. 2008; 23: 361-72.
    • (2008) J Bone Miner Res. , vol.23 , pp. 361-372
    • Jensen, E.D.1    Schroeder, T.M.2    Bailey, J.3
  • 124
    • 77951276571 scopus 로고    scopus 로고
    • Histone deacetylase 7 controls endothelial cell growth through modulation of beta-catenin
    • Margariti A, Zampetaki A, Xiao Q, et al. Histone deacetylase 7 controls endothelial cell growth through modulation of beta-catenin. Circ Res. 2010; 106: 1202-11.
    • (2010) Circ Res. , vol.106 , pp. 1202-1211
    • Margariti, A.1    Zampetaki, A.2    Xiao, Q.3
  • 125
    • 73549103097 scopus 로고    scopus 로고
    • Histone deacetylase 7 and FoxA1 in estrogen-mediated repression of RPRM
    • Malik S, Jiang S, Garee JP, et al. Histone deacetylase 7 and FoxA1 in estrogen-mediated repression of RPRM. Mol Cell Biol. 2010; 30: 399-412.
    • (2010) Mol Cell Biol. , vol.30 , pp. 399-412
    • Malik, S.1    Jiang, S.2    Garee, J.P.3
  • 126
    • 67349160499 scopus 로고    scopus 로고
    • HDAC expression and clinical prognosis in human malignancies
    • Weichert W. HDAC expression and clinical prognosis in human malignancies. Cancer Lett. 2009; 280: 168-76.
    • (2009) Cancer Lett. , vol.280 , pp. 168-176
    • Weichert, W.1
  • 127
    • 77956309330 scopus 로고    scopus 로고
    • Differential expression of HDAC3, HDAC7 and HDAC9 is associated with prognosis and survival in childhood acute lymphoblastic leukaemia
    • Moreno DA, Scrideli CA, Cortez MA, et al. Differential expression of HDAC3, HDAC7 and HDAC9 is associated with prognosis and survival in childhood acute lymphoblastic leukaemia. Br J Haematol. 2010; 150: 665-73.
    • (2010) Br J Haematol. , vol.150 , pp. 665-673
    • Moreno, D.A.1    Scrideli, C.A.2    Cortez, M.A.3
  • 128
    • 34748878324 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors selectively suppress expression of HDAC7
    • Dokmanovic M, Perez G, Xu W, et al. Histone deacetylase inhibitors selectively suppress expression of HDAC7. Mol Cancer Ther. 2007; 6: 2525-34.
    • (2007) Mol Cancer Ther. , vol.6 , pp. 2525-2534
    • Dokmanovic, M.1    Perez, G.2    Xu, W.3
  • 129
    • 57749101152 scopus 로고    scopus 로고
    • Specific activity of class II histone deacetylases in human breast cancer cells
    • Duong V, Bret C, Altucci L, et al. Specific activity of class II histone deacetylases in human breast cancer cells. Mol Cancer Res. 2008; 6: 1908-19.
    • (2008) Mol Cancer Res. , vol.6 , pp. 1908-1919
    • Duong, V.1    Bret, C.2    Altucci, L.3
  • 130
    • 77950207236 scopus 로고    scopus 로고
    • Suppression of cyclin D1 by hypoxia-inducible factor-1viadirect mechanism inhibits the proliferation and 5-fluorouracil-induced apoptosis of A549 cells
    • Wen W, Ding J, Sun W, et al. Suppression of cyclin D1 by hypoxia-inducible factor-1viadirect mechanism inhibits the proliferation and 5-fluorouracil-induced apoptosis of A549 cells. Cancer Res. 2010; 70: 2010-9.
    • (2010) Cancer Res. , vol.70 , pp. 2010-2019
    • Wen, W.1    Ding, J.2    Sun, W.3
  • 131
    • 65449134812 scopus 로고    scopus 로고
    • Cotreatment with BCL-2 antagonist sensitizes cutaneous T-cell lymphoma to lethal action of HDAC7-Nur77-based mechanism
    • Chen J, Fiskus W, Eaton K, et al. Cotreatment with BCL-2 antagonist sensitizes cutaneous T-cell lymphoma to lethal action of HDAC7-Nur77-based mechanism. Blood. 2009; 113: 4038-48.
    • (2009) Blood. , vol.113 , pp. 4038-4048
    • Chen, J.1    Fiskus, W.2    Eaton, K.3
  • 132
    • 50349095215 scopus 로고    scopus 로고
    • Caspase-8 cleaves histone deacetylase 7 and abolishes its transcription repressor function
    • Scott FL, Fuchs GJ, Boyd SE, et al. Caspase-8 cleaves histone deacetylase 7 and abolishes its transcription repressor function. J Biol Chem. 2008; 283: 19499-510.
    • (2008) J Biol Chem. , vol.283 , pp. 19499-19510
    • Scott, F.L.1    Fuchs, G.J.2    Boyd, S.E.3
  • 133
    • 78449294626 scopus 로고    scopus 로고
    • PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice
    • Rad R, Rad L, Wang W, et al. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science. 2010; 330: 1104-7.
    • (2010) Science. , vol.330 , pp. 1104-1107
    • Rad, R.1    Rad, L.2    Wang, W.3
  • 134
    • 0035845539 scopus 로고    scopus 로고
    • Cloning and characterization of a histone deacetylase, HDAC9
    • Zhou X, Marks PA, Rifkind RA, et al. Cloning and characterization of a histone deacetylase, HDAC9. Proc Natl Acad Sci U S A. 2001; 98: 10572-7.
    • (2001) Proc Natl Acad Sci U S A. , vol.98 , pp. 10572-10577
    • Zhou, X.1    Marks, P.A.2    Rifkind, R.A.3
  • 135
    • 0038521295 scopus 로고    scopus 로고
    • The histone deacetylase 9 gene encodes multiple protein isoforms
    • Petrie K, Guidez F, Howell L, et al. The histone deacetylase 9 gene encodes multiple protein isoforms. J Biol Chem. 2003; 278: 16059-72.
    • (2003) J Biol Chem. , vol.278 , pp. 16059-16072
    • Petrie, K.1    Guidez, F.2    Howell, L.3
  • 136
    • 0033568492 scopus 로고    scopus 로고
    • MEF-2 function is modified by a novel co-repressor, MITR
    • Sparrow DB, Miska EA, Langley E, et al. MEF-2 function is modified by a novel co-repressor, MITR. EMBO J. 1999; 18: 5085-98.
    • (1999) EMBO J. , vol.18 , pp. 5085-5098
    • Sparrow, D.B.1    Miska, E.A.2    Langley, E.3
  • 137
    • 33846139305 scopus 로고    scopus 로고
    • Regulation of HDAC9 gene expression by MEF2 establishes a negative-feedback loop in the transcriptional circuitry of muscle differentiation
    • Haberland M, Arnold MA, McAnally J, et al. Regulation of HDAC9 gene expression by MEF2 establishes a negative-feedback loop in the transcriptional circuitry of muscle differentiation. Mol Cell Biol. 2007; 27: 518-25.
    • (2007) Mol Cell Biol. , vol.27 , pp. 518-525
    • Haberland, M.1    Arnold, M.A.2    McAnally, J.3
  • 138
    • 14544273663 scopus 로고    scopus 로고
    • Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression
    • Mejat A, Ramond F, Bassel-Duby R, et al. Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression. Nat Neurosci. 2005; 8: 313-21.
    • (2005) Nat Neurosci. , vol.8 , pp. 313-321
    • Mejat, A.1    Ramond, F.2    Bassel-Duby, R.3
  • 139
    • 77951863880 scopus 로고    scopus 로고
    • Nucleocytoplasmic translocation of HDAC9 regulates gene expression and dendritic growth in developing cortical neurons
    • Sugo N, Oshiro H, Takemura M, et al. Nucleocytoplasmic translocation of HDAC9 regulates gene expression and dendritic growth in developing cortical neurons. Eur J Neurosci. 2010; 31: 1521-32.
    • (2010) Eur J Neurosci. , vol.31 , pp. 1521-1532
    • Sugo, N.1    Oshiro, H.2    Takemura, M.3
  • 140
    • 35948980739 scopus 로고    scopus 로고
    • Deacetylase inhibition promotes the generation and function of regulatory T cells
    • Tao R, de Zoeten EF, Ozkaynak E, et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med. 2007; 13: 1299-307.
    • (2007) Nat Med. , vol.13 , pp. 1299-1307
    • Tao, R.1    de Zoeten, E.F.2    Ozkaynak, E.3
  • 141
    • 52249090461 scopus 로고    scopus 로고
    • Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas
    • Lucio-Eterovic AK, Cortez MA, Valera ET, et al. Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas. BMC Cancer. 2008; 8: 243-52.
    • (2008) BMC Cancer. , vol.8 , pp. 243-252
    • Lucio-Eterovic, A.K.1    Cortez, M.A.2    Valera, E.T.3
  • 142
    • 62149105212 scopus 로고    scopus 로고
    • A role of DNA-PK for the metabolic gene regulation in response to insulin
    • Wong RH, Chang I, Hudak CS, et al. A role of DNA-PK for the metabolic gene regulation in response to insulin. Cell. 2009; 136: 1056-72.
    • (2009) Cell. , vol.136 , pp. 1056-1072
    • Wong, R.H.1    Chang, I.2    Hudak, C.S.3
  • 143
    • 78649848838 scopus 로고    scopus 로고
    • Histone deacetylase 9 (HDAC9) regulates the functions of the ATDC (TRIM29) protein
    • Yuan Z, Peng L, Radhakrishnan R, et al. Histone deacetylase 9 (HDAC9) regulates the functions of the ATDC (TRIM29) protein. J Biol Chem. 2010; 285: 39329-38.
    • (2010) J Biol Chem. , vol.285 , pp. 39329-39338
    • Yuan, Z.1    Peng, L.2    Radhakrishnan, R.3
  • 144
    • 0037291214 scopus 로고    scopus 로고
    • The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
    • North BJ, Marshall BL, Borra MT, et al. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell. 2003; 11: 437-44.
    • (2003) Mol Cell. , vol.11 , pp. 437-444
    • North, B.J.1    Marshall, B.L.2    Borra, M.T.3
  • 145
    • 0037099624 scopus 로고    scopus 로고
    • Cancer-related serological recognition of human colon cancer: identification of potential diagnostic and immunotherapeutic targets
    • Scanlan MJ, Welt S, Gordon CM, et al. Cancer-related serological recognition of human colon cancer: identification of potential diagnostic and immunotherapeutic targets. Cancer Res. 2002; 62: 4041-7.
    • (2002) Cancer Res. , vol.62 , pp. 4041-4047
    • Scanlan, M.J.1    Welt, S.2    Gordon, C.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.