-
1
-
-
24644437810
-
RNA structure: Reading the ribosome
-
Noller HF. RNA structure: reading the ribosome. Science 2005; 309:1508-14.
-
(2005)
Science
, vol.309
, pp. 1508-1514
-
-
Noller, H.F.1
-
2
-
-
60149088848
-
Origins and Mechanisms of miRNAs and siRNAs
-
Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009; 136:642-55.
-
(2009)
Cell
, vol.136
, pp. 642-655
-
-
Carthew, R.W.1
Sontheimer, E.J.2
-
3
-
-
60349104299
-
The spliceosome: Design principles of a dynamic RNP machine
-
Wahl MC, Will CL, Luhrmann R. The spliceosome: design principles of a dynamic RNP machine. Cell 2009; 136:701-18.
-
(2009)
Cell
, vol.136
, pp. 701-718
-
-
Wahl, M.C.1
Will, C.L.2
Luhrmann, R.3
-
4
-
-
33745862398
-
The biogenesis and regulation of telomerase holoenzymes
-
Collins K. The biogenesis and regulation of telomerase holoenzymes. Nat Rev Mol Cell Biol 2006; 7:484-94.
-
(2006)
Nat Rev Mol Cell Biol
, vol.7
, pp. 484-494
-
-
Collins, K.1
-
5
-
-
77956049347
-
Of proteins and RNA: The RNase P/MRP family
-
Esakova O, Krasilnikov AS. Of proteins and RNA: The RNase P/MRP family. RNA 2010.
-
(2010)
RNA
-
-
Esakova, O.1
Krasilnikov, A.S.2
-
6
-
-
3943099373
-
Structural insights into the signal recognition particle
-
Doudna JA, Batey RT. Structural insights into the signal recognition particle. Annu Rev Biochem 2004; 73:539-57.
-
(2004)
Annu Rev Biochem
, vol.73
, pp. 539-557
-
-
Doudna, J.A.1
Batey, R.T.2
-
7
-
-
45549088326
-
The transcriptional landscape of the yeast genome defined by RNA sequencing
-
Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 2008; 320:1344-9.
-
(2008)
Science
, vol.320
, pp. 1344-1349
-
-
Nagalakshmi, U.1
Wang, Z.2
Waern, K.3
Shou, C.4
Raha, D.5
Gerstein, M.6
-
9
-
-
62249133709
-
Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals
-
Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009; 458:223-7.
-
(2009)
Nature
, vol.458
, pp. 223-227
-
-
Guttman, M.1
Amit, I.2
Garber, M.3
French, C.4
Lin, M.F.5
Feldser, D.6
-
10
-
-
71449114713
-
Exceptional structured noncoding RNAs revealed by bacterial metagenome analysis
-
Weinberg Z, Perreault J, Meyer MM, Breaker RR. Exceptional structured noncoding RNAs revealed by bacterial metagenome analysis. Nature 2009; 462:656-9.
-
(2009)
Nature
, vol.462
, pp. 656-659
-
-
Weinberg, Z.1
Perreault, J.2
Meyer, M.M.3
Breaker, R.R.4
-
11
-
-
0016422633
-
An analysis of the structure of tRNA
-
Sigler PB. An analysis of the structure of tRNA. Annu Rev Biophys Bioeng 1975; 4:477-527.
-
(1975)
Annu Rev Biophys Bioeng
, vol.4
, pp. 477-527
-
-
Sigler, P.B.1
-
12
-
-
0029163563
-
RNA chaperones and the RNA folding problem
-
Herschlag D. RNA chaperones and the RNA folding problem. J Biol Chem 1995; 270:20871-4.
-
(1995)
J Biol Chem
, vol.270
, pp. 20871-20874
-
-
Herschlag, D.1
-
14
-
-
23144448275
-
Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: Critical role in reverse transcription and molecular mechanism
-
Levin JG, Guo J, Rouzina I, Musier-Forsyth K. Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. Prog Nucleic Acid Res Mol Biol 2005; 80:217-86.
-
(2005)
Prog Nucleic Acid Res Mol Biol
, vol.80
, pp. 217-286
-
-
Levin, J.G.1
Guo, J.2
Rouzina, I.3
Musier-Forsyth, K.4
-
15
-
-
39049131090
-
RNA chaperones, RNA annealers and RNA helicases
-
Rajkowitsch L, Chen D, Stampfl S, Semrad K, Waldsich C, Mayer O, et al. RNA chaperones, RNA annealers and RNA helicases. RNA Biol 2007; 4:118-30.
-
(2007)
RNA Biol
, vol.4
, pp. 118-130
-
-
Rajkowitsch, L.1
Chen, D.2
Stampfl, S.3
Semrad, K.4
Waldsich, C.5
Mayer, O.6
-
16
-
-
38449108345
-
RNA misfolding and the action of chaperones
-
Russell R. RNA misfolding and the action of chaperones. Front Biosci 2008; 13:1-20.
-
(2008)
Front Biosci
, vol.13
, pp. 1-20
-
-
Russell, R.1
-
18
-
-
33749139723
-
Dead-box proteins: A family affair - Active and passive players in RNP-remodeling
-
Linder P. Dead-box proteins: a family affair - active and passive players in RNP-remodeling. Nucleic Acids Res 2006; 34:4168-80.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 4168-4180
-
-
Linder, P.1
-
19
-
-
34347385000
-
RNA helicases - One fold for many functions
-
Jankowsky E, Fairman ME. RNA helicases - one fold for many functions. Curr Opin Struct Biol 2007; 17:316-24.
-
(2007)
Curr Opin Struct Biol
, vol.17
, pp. 316-324
-
-
Jankowsky, E.1
Fairman, M.E.2
-
24
-
-
69749126977
-
Structure of the yeast DEAD box protein Mss116p reveals two wedges that crimp RNA
-
Del Campo M, Lambowitz AM. Structure of the yeast DEAD box protein Mss116p reveals two wedges that crimp RNA. Mol Cell 2009; 35:598-609.
-
(2009)
Mol Cell
, vol.35
, pp. 598-609
-
-
Del Campo, M.1
Lambowitz, A.M.2
-
25
-
-
33646017369
-
Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa
-
Sengoku T, Nureki O, Nakamura A, Kobayashi S, Yokoyama S. Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 2006; 125:287-300.
-
(2006)
Cell
, vol.125
, pp. 287-300
-
-
Sengoku, T.1
Nureki, O.2
Nakamura, A.3
Kobayashi, S.4
Yokoyama, S.5
-
26
-
-
33747182255
-
The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA
-
Bono F, Ebert J, Lorentzen E, Conti E. The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 2006; 126:713-25.
-
(2006)
Cell
, vol.126
, pp. 713-725
-
-
Bono, F.1
Ebert, J.2
Lorentzen, E.3
Conti, E.4
-
27
-
-
62049084648
-
The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner
-
von Moeller H, Basquin C, Conti E. The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner. Nat Struct Mol Biol 2009; 16:247-54.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 247-254
-
-
Von Moeller, H.1
Basquin, C.2
Conti, E.3
-
28
-
-
33749332762
-
Structure of the exon junction core complex with a trapped DEAD-Box ATPase bound to RNA
-
DOI 10.1126/science.1131981
-
Andersen CB, Ballut L, Johansen JS, Chamieh H, Nielsen KH, Oliveira CL, et al. Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 2006; 313:1968-72. (Pubitemid 44498005)
-
(2006)
Science
, vol.313
, Issue.5795
, pp. 1968-1972
-
-
Andersen, C.B.F.1
Ballut, L.2
Johansen, J.S.3
Chamieh, H.4
Nielsen, K.H.5
Oliveira, C.L.P.6
Pedersen, J.S.7
Seraphin, B.8
Hir, H.L.9
Andersen, G.R.10
-
29
-
-
67449105353
-
The DEXD/H-box RNA helicase DDX19 is regulated by an {alpha}-helical switch
-
Collins R, Karlberg T, Lehtio L, Schutz P, van den Berg S, Dahlgren LG, et al. The DEXD/H-box RNA helicase DDX19 is regulated by an {alpha}-helical switch. J Biol Chem 2009; 284:10296-300.
-
(2009)
J Biol Chem
, vol.284
, pp. 10296-10300
-
-
Collins, R.1
Karlberg, T.2
Lehtio, L.3
Schutz, P.4
Van Den Berg, S.5
Dahlgren, L.G.6
-
30
-
-
0037252143
-
The Q motif: A newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis
-
Tanner NK, Cordin O, Banroques J, Doere M, Linder P. The Q motif: a newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol Cell 2003; 11:127-38.
-
(2003)
Mol Cell
, vol.11
, pp. 127-138
-
-
Tanner, N.K.1
Cordin, O.2
Banroques, J.3
Doere, M.4
Linder, P.5
-
31
-
-
3342957251
-
The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity
-
Cordin O, Tanner NK, Doere M, Linder P, Banroques J. The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity. EMBO J 2004; 23:2478-87.
-
(2004)
EMBO J
, vol.23
, pp. 2478-2487
-
-
Cordin, O.1
Tanner, N.K.2
Doere, M.3
Linder, P.4
Banroques, J.5
-
32
-
-
77950349699
-
Motif III in superfamily 2 "helicases" helps convert the binding energy of ATP into a high-affinity RNA binding site in the yeast DEAD-box protein Ded1
-
Banroques J, Doere M, Dreyfus M, Linder P, Tanner NK. Motif III in superfamily 2 "helicases" helps convert the binding energy of ATP into a high-affinity RNA binding site in the yeast DEAD-box protein Ded1. J Mol Biol 2010; 396:949-66.
-
(2010)
J Mol Biol
, vol.396
, pp. 949-966
-
-
Banroques, J.1
Doere, M.2
Dreyfus, M.3
Linder, P.4
Tanner, N.K.5
-
33
-
-
0032562239
-
The DEAD box protein eIF4A. (1) a minimal kinetic and thermodynamic framework reveals coupled binding of RNA and nucleotide
-
Lorsch JR, Herschlag D. The DEAD box protein eIF4A. (1) A minimal kinetic and thermodynamic framework reveals coupled binding of RNA and nucleotide. Biochemistry 1998; 37:2180-93.
-
(1998)
Biochemistry
, vol.37
, pp. 2180-2193
-
-
Lorsch, J.R.1
Herschlag, D.2
-
34
-
-
0037133527
-
Cooperative binding of ATP and RNA substrates to the DEAD/H protein DbpA
-
Polach KJ, Uhlenbeck OC. Cooperative binding of ATP and RNA substrates to the DEAD/H protein DbpA. Biochemistry 2002; 41:3693-702.
-
(2002)
Biochemistry
, vol.41
, pp. 3693-3702
-
-
Polach, K.J.1
Uhlenbeck, O.C.2
-
35
-
-
38649106732
-
Cooperative binding of ATP and RNA induces a closed conformation in a DEAD box RNA helicase
-
Theissen B, Karow AR, Kohler J, Gubaev A, Klostermeier D. Cooperative binding of ATP and RNA induces a closed conformation in a DEAD box RNA helicase. Proc Natl Acad Sci USA 2008; 105:548-53.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 548-553
-
-
Theissen, B.1
Karow, A.R.2
Kohler, J.3
Gubaev, A.4
Klostermeier, D.5
-
36
-
-
67949115632
-
A conformational change in the helicase core is necessary but not sufficient for RNA unwinding by the DEAD box helicase YxiN
-
Karow AR, Klostermeier D. A conformational change in the helicase core is necessary but not sufficient for RNA unwinding by the DEAD box helicase YxiN. Nucleic Acids Res 2009; 37:4464-71.
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 4464-4471
-
-
Karow, A.R.1
Klostermeier, D.2
-
37
-
-
77749239820
-
Pathway of ATP utilization and duplex rRNA unwinding by the DEADbox helicase, DbpA
-
Henn A, Cao W, Licciardello N, Heitkamp SE, Hackney DD, De La Cruz EM. Pathway of ATP utilization and duplex rRNA unwinding by the DEADbox helicase, DbpA. Proc Natl Acad Sci USA 2010; 107:4046-50.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 4046-4050
-
-
Henn, A.1
Cao, W.2
Licciardello, N.3
Heitkamp, S.E.4
Hackney, D.D.5
De La Cruz, E.M.6
-
38
-
-
39649096274
-
The ATPase cycle mechanism of the DEAD-box rRNA helicase, DbpA
-
Henn A, Cao W, Hackney DD, De La Cruz EM. The ATPase cycle mechanism of the DEAD-box rRNA helicase, DbpA. J Mol Biol 2008; 377:193-205.
-
(2008)
J Mol Biol
, vol.377
, pp. 193-205
-
-
Henn, A.1
Cao, W.2
Hackney, D.D.3
De La Cruz, E.M.4
-
39
-
-
34548638261
-
Structure and mechanism of helicases and nucleic acid translocases
-
Singleton MR, Dillingham MS, Wigley DB. Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 2007; 76:23-50.
-
(2007)
Annu Rev Biochem
, vol.76
, pp. 23-50
-
-
Singleton, M.R.1
Dillingham, M.S.2
Wigley, D.B.3
-
40
-
-
42449141601
-
Non-hexameric DNA helicases and translocases: Mechanisms and regulation
-
Lohman TM, Tomko EJ, Wu CG. Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nat Rev Mol Cell Biol 2008; 9:391-401.
-
(2008)
Nat Rev Mol Cell Biol
, vol.9
, pp. 391-401
-
-
Lohman, T.M.1
Tomko, E.J.2
Wu, C.G.3
-
41
-
-
2542510120
-
Rearrangement of structured RNA via branch migration structures catalysed by the highly related DEAD-box proteins p68 and p72
-
Rossler OG, Straka A, Stahl H. Rearrangement of structured RNA via branch migration structures catalysed by the highly related DEAD-box proteins p68 and p72. Nucleic Acids Res 2001; 29:2088-96.
-
(2001)
Nucleic Acids Res
, vol.29
, pp. 2088-2096
-
-
Rossler, O.G.1
Straka, A.2
Stahl, H.3
-
42
-
-
12544250752
-
RNA structural rearrangement via unwinding and annealing by the cyanobacterial RNA helicase, CrhR
-
Chamot D, Colvin KR, Kujat-Choy SL, Owttrim GW. RNA structural rearrangement via unwinding and annealing by the cyanobacterial RNA helicase, CrhR. J Biol Chem 2005; 280:2036-44.
-
(2005)
J Biol Chem
, vol.280
, pp. 2036-2044
-
-
Chamot, D.1
Colvin, K.R.2
Kujat-Choy, S.L.3
Owttrim, G.W.4
-
43
-
-
0040142238
-
Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A
-
Rogers GW Jr, Richter NJ, Merrick WC. Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A. J Biol Chem 1999; 274:12236-44.
-
(1999)
J Biol Chem
, vol.274
, pp. 12236-12244
-
-
Rogers Jr., G.W.1
Richter, N.J.2
Merrick, W.C.3
-
44
-
-
0035918241
-
Further characterization of the helicase activity of eIF4A. Substrate specificity
-
Rogers GW Jr, Lima WF, Merrick WC. Further characterization of the helicase activity of eIF4A. Substrate specificity. J Biol Chem 2001; 276:12598-608.
-
(2001)
J Biol Chem
, vol.276
, pp. 12598-12608
-
-
Rogers Jr., G.W.1
Lima, W.F.2
Merrick, W.C.3
-
45
-
-
58149503706
-
DEAD-box proteins can completely separate an RNA duplex using a single ATP
-
Chen Y, Potratz JP, Tijerina P, Del Campo M, Lambowitz AM, Russell R. DEAD-box proteins can completely separate an RNA duplex using a single ATP. Proc Natl Acad Sci USA 2008; 105:20203-8.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 20203-20208
-
-
Chen, Y.1
Potratz, J.P.2
Tijerina, P.3
Del Campo, M.4
Lambowitz, A.M.5
Russell, R.6
-
46
-
-
58149481225
-
ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding
-
Liu F, Putnam A, Jankowsky E. ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Proc Natl Acad Sci USA 2008; 105:20209-14.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 20209-20214
-
-
Liu, F.1
Putnam, A.2
Jankowsky, E.3
-
48
-
-
0033571623
-
Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease-helicase
-
Yao N, Reichert P, Taremi SS, Prosise WW, Weber PC. Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease-helicase. Structure 1999; 7:1353-63.
-
(1999)
Structure
, vol.7
, pp. 1353-1363
-
-
Yao, N.1
Reichert, P.2
Taremi, S.S.3
Prosise, W.W.4
Weber, P.C.5
-
49
-
-
34447132375
-
Structural basis for DNA duplex separation by a superfamily-2 helicase
-
Buttner K, Nehring S, Hopfner KP. Structural basis for DNA duplex separation by a superfamily-2 helicase. Nat Struct Mol Biol 2007; 14:647-52.
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 647-652
-
-
Buttner, K.1
Nehring, S.2
Kp, H.3
-
50
-
-
77649269768
-
Structural basis for the function of DEAH helicases
-
He Y, Andersen GR, Nielsen KH. Structural basis for the function of DEAH helicases. EMBO Rep 2010; 11:180-6.
-
(2010)
EMBO Rep
, vol.11
, pp. 180-186
-
-
He, Y.1
Andersen, G.R.2
Nielsen, K.H.3
-
51
-
-
77954952539
-
The crystal structure of Mtr4 reveals a novel arch domain required for rRNA processing
-
Jackson RN, Klauer AA, Hintze BJ, Robinson H, van Hoof A, Johnson SJ. The crystal structure of Mtr4 reveals a novel arch domain required for rRNA processing. EMBO J 2010; 29:2205-16.
-
(2010)
EMBO J
, vol.29
, pp. 2205-2216
-
-
Jackson, R.N.1
Klauer, A.A.2
Hintze, B.J.3
Robinson, H.4
Van Hoof, A.5
Johnson, S.J.6
-
52
-
-
77955453339
-
Structural analysis reveals the characteristic features of Mtr4, a DExH helicase involved in nuclear RNA processing and surveillance
-
Weir JR, Bonneau F, Hentschel J, Conti E. Structural analysis reveals the characteristic features of Mtr4, a DExH helicase involved in nuclear RNA processing and surveillance. Proc Natl Acad Sci USA 2010; 107:12139-44.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 12139-12144
-
-
Weir, J.R.1
Bonneau, F.2
Hentschel, J.3
Conti, E.4
-
53
-
-
0035903136
-
Modulation of the helicase activity of eIF4A by eIF4B, eIF4H and eIF4F
-
Rogers GW Jr, Richter NJ, Lima WF, Merrick WC. Modulation of the helicase activity of eIF4A by eIF4B, eIF4H and eIF4F. J Biol Chem 2001; 276:30914-22.
-
(2001)
J Biol Chem
, vol.276
, pp. 30914-30922
-
-
Rogers Jr., G.W.1
Richter, N.J.2
Lima, W.F.3
Merrick, W.C.4
-
54
-
-
2942754127
-
Studies on three E. coli DEAD-box helicases point to an unwinding mechanism different from that of model DNA helicases
-
Bizebard T, Ferlenghi I, Iost I, Dreyfus M. Studies on three E. coli DEAD-box helicases point to an unwinding mechanism different from that of model DNA helicases. Biochemistry 2004; 43:7857-66.
-
(2004)
Biochemistry
, vol.43
, pp. 7857-7866
-
-
Bizebard, T.1
Ferlenghi, I.2
Iost, I.3
Dreyfus, M.4
-
55
-
-
33750936780
-
Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone
-
Tijerina P, Bhaskaran H, Russell R. Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone. Proc Natl Acad Sci USA 2006; 103:16698-703.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 16698-16703
-
-
Tijerina, P.1
Bhaskaran, H.2
Russell, R.3
-
56
-
-
33750593917
-
The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases
-
DOI 10.1038/nsmb1165, PII NSMB1165
-
Yang Q, Jankowsky E. The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases. Nat Struct Mol Biol 2006; 13:981-6. (Pubitemid 44684849)
-
(2006)
Nature Structural and Molecular Biology
, vol.13
, Issue.11
, pp. 981-986
-
-
Yang, Q.1
Jankowsky, E.2
-
57
-
-
33947362880
-
Probing the mechanisms of DEAD-box proteins as general RNA chaperones: The C-terminal domain of CYT-19 mediates general recognition of RNA
-
Grohman JK, Del Campo M, Bhaskaran H, Tijerina P, Lambowitz AM, Russell R. Probing the mechanisms of DEAD-box proteins as general RNA chaperones: the C-terminal domain of CYT-19 mediates general recognition of RNA. Biochemistry 2007; 46:3013-22.
-
(2007)
Biochemistry
, vol.46
, pp. 3013-3022
-
-
Grohman, J.K.1
Del Campo, M.2
Bhaskaran, H.3
Tijerina, P.4
Lambowitz, A.M.5
Russell, R.6
-
58
-
-
37749022256
-
Function of the C-terminal domain of the DEAD-box protein Mss116p analyzed in vivo and in vitro
-
Mohr G, Del Campo M, Mohr S, Yang Q, Jia H, Jankowsky E, et al. Function of the C-terminal domain of the DEAD-box protein Mss116p analyzed in vivo and in vitro. J Mol Biol 2008; 375:1344-64.
-
(2008)
J Mol Biol
, vol.375
, pp. 1344-1364
-
-
Mohr, G.1
Del Campo, M.2
Mohr, S.3
Yang, Q.4
Jia, H.5
Jankowsky, E.6
-
59
-
-
0035476705
-
Escherichia coli DbpA is an RNA helicase that requires hairpin 92 of 23S rRNA
-
Diges CM, Uhlenbeck OC. Escherichia coli DbpA is an RNA helicase that requires hairpin 92 of 23S rRNA. EMBO J 2001; 20:5503-12.
-
(2001)
EMBO J
, vol.20
, pp. 5503-5512
-
-
Diges, C.M.1
Uhlenbeck, O.C.2
-
60
-
-
33646883060
-
The domain of the Bacillus subtilis DEAD-box helicase YxiN that is responsible for specific binding of 23S rRNA has an RNA recognition motif fold
-
Wang S, Hu Y, Overgaard MT, Karginov FV, Uhlenbeck OC, McKay DB. The domain of the Bacillus subtilis DEAD-box helicase YxiN that is responsible for specific binding of 23S rRNA has an RNA recognition motif fold. RNA 2006; 12:959-67.
-
(2006)
RNA
, vol.12
, pp. 959-967
-
-
Wang, S.1
Hu, Y.2
Overgaard, M.T.3
Karginov, F.V.4
Uhlenbeck, O.C.5
McKay, D.B.6
-
61
-
-
59649110939
-
A novel dimerization motif in the C-terminal domain of the Thermus thermophilus DEAD box helicase Hera confers substantial flexibility
-
Klostermeier D, Rudolph MG. A novel dimerization motif in the C-terminal domain of the Thermus thermophilus DEAD box helicase Hera confers substantial flexibility. Nucleic Acids Res 2009; 37:421-30.
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 421-430
-
-
Klostermeier, D.1
Rudolph, M.G.2
-
62
-
-
0027301893
-
DbpA: A DEAD box protein specifically activated by 23S rRNA
-
Fuller-Pace FV, Nicol SM, Reid AD, Lane DP. DbpA: a DEAD box protein specifically activated by 23S rRNA. EMBO J 1993; 12:3619-26.
-
(1993)
EMBO J
, vol.12
, pp. 3619-3626
-
-
Fuller-Pace, F.V.1
Nicol, S.M.2
Reid, A.D.3
Lane, D.P.4
-
63
-
-
71049181356
-
A dominant negative mutant of the E. coli RNA helicase DbpA blocks assembly of the 50S ribosomal subunit
-
Sharpe Elles LM, Sykes MT, Williamson JR, Uhlenbeck OC. A dominant negative mutant of the E. coli RNA helicase DbpA blocks assembly of the 50S ribosomal subunit. Nucleic Acids Res 2009; 37:6503-14.
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 6503-6514
-
-
Sharpe Elles, L.M.1
Sykes, M.T.2
Williamson, J.R.3
Uhlenbeck, O.C.4
-
64
-
-
0029100233
-
Predicting thermodynamic properties of RNA
-
Serra MJ, Turner DH. Predicting thermodynamic properties of RNA. Methods Enzymol 1995; 259:242-61.
-
(1995)
Methods Enzymol
, vol.259
, pp. 242-261
-
-
Serra, M.J.1
Turner, D.H.2
-
67
-
-
70350107532
-
Slow formation of a pseudoknot structure is rate limiting in the productive co-transcriptional folding of the self-splicing Candida intron
-
Zhang L, Bao P, Leibowitz MJ, Zhang Y. Slow formation of a pseudoknot structure is rate limiting in the productive co-transcriptional folding of the self-splicing Candida intron. RNA 2009; 15:1986-92.
-
(2009)
RNA
, vol.15
, pp. 1986-1992
-
-
Zhang, L.1
Bao, P.2
Leibowitz, M.J.3
Zhang, Y.4
-
68
-
-
36248964100
-
Wild-type is the optimal sequence of the HDV ribozyme under cotranscriptional conditions
-
Chadalavada DM, Cerrone-Szakal AL, Bevilacqua PC. Wild-type is the optimal sequence of the HDV ribozyme under cotranscriptional conditions. RNA 2007; 13:2189-201.
-
(2007)
RNA
, vol.13
, pp. 2189-2201
-
-
Chadalavada, D.M.1
Cerrone-Szakal, A.L.2
Bevilacqua, P.C.3
-
69
-
-
0032972986
-
Is protein folding hierarchic? I. Local structure and peptide folding
-
Baldwin RL, Rose GD. Is protein folding hierarchic? I. Local structure and peptide folding. Trends Biochem Sci 1999; 24:26-33.
-
(1999)
Trends Biochem Sci
, vol.24
, pp. 26-33
-
-
Baldwin, R.L.1
Rose, G.D.2
-
70
-
-
0013901577
-
Two interconvertible forms of tryptophanyl sRNA in E. coli
-
Gartland WJ, Sueoka N. Two interconvertible forms of tryptophanyl sRNA in E. coli. Proc Natl Acad Sci USA 1966; 55:948-56.
-
(1966)
Proc Natl Acad Sci USA
, vol.55
, pp. 948-956
-
-
Gartland, W.J.1
Sueoka, N.2
-
71
-
-
0013898917
-
Renaturation of transfer ribonucleic acids through site binding of magnesium
-
Lindahl T, Adams A, Fresco JR. Renaturation of transfer ribonucleic acids through site binding of magnesium. Proc Natl Acad Sci USA 1966; 55:941-8.
-
(1966)
Proc Natl Acad Sci USA
, vol.55
, pp. 941-948
-
-
Lindahl, T.1
Adams, A.2
Fresco, J.R.3
-
72
-
-
0016292239
-
Oligonucleotide binding to the native and denatured conformers of yeast transfer RNA-3 Lea
-
Uhlenbeck OC, Chirikjian JG, Fresco JR. Oligonucleotide binding to the native and denatured conformers of yeast transfer RNA-3 Lea. J Mol Biol 1974; 89:495-504.
-
(1974)
J Mol Biol
, vol.89
, pp. 495-504
-
-
Uhlenbeck, O.C.1
Chirikjian, J.G.2
Fresco, J.R.3
-
73
-
-
0033199205
-
Magnesium-dependent alternative foldings of active and inactive Escherichia coli tRNA(Glu) revealed by chemical probing
-
Madore E, Florentz C, Giege R, Lapointe J. Magnesium-dependent alternative foldings of active and inactive Escherichia coli tRNA(Glu) revealed by chemical probing. Nucleic Acids Res 1999; 27:3583-8.
-
(1999)
Nucleic Acids Res
, vol.27
, pp. 3583-3588
-
-
Madore, E.1
Florentz, C.2
Giege, R.3
Lapointe, J.4
-
74
-
-
0017604507
-
Does 5S RNA function by a switch between two secondary structures?
-
Weidner H, Yuan R, Crothers DM. Does 5S RNA function by a switch between two secondary structures? Nature 1977; 266:193-4.
-
(1977)
Nature
, vol.266
, pp. 193-194
-
-
Weidner, H.1
Yuan, R.2
Crothers, D.M.3
-
75
-
-
0025975586
-
Alternative secondary structures in the 5′ exon affect both forward and reverse self-splicing of the Tetrahymena intervening sequence RNA
-
Woodson SA, Cech TR. Alternative secondary structures in the 5′ exon affect both forward and reverse self-splicing of the Tetrahymena intervening sequence RNA. Biochemistry 1991; 30:2042-50.
-
(1991)
Biochemistry
, vol.30
, pp. 2042-2050
-
-
Woodson, S.A.1
Cech, T.R.2
-
76
-
-
0027473596
-
An alternative helix in the 26S rRNA promotes excision and integration of the Tetrahymena intervening sequence
-
Woodson SA, Emerick VL. An alternative helix in the 26S rRNA promotes excision and integration of the Tetrahymena intervening sequence. Mol Cell Biol 1993; 13:1137-45.
-
(1993)
Mol Cell Biol
, vol.13
, pp. 1137-1145
-
-
Woodson, S.A.1
Emerick, V.L.2
-
77
-
-
0037124090
-
Folding problems of the 5′ splice site containing the P1 stem of the group I thymidylate synthase intron: Substrate binding inhibition in vitro and mis-splicing in vivo
-
Pichler A, Schroeder R. Folding problems of the 5′ splice site containing the P1 stem of the group I thymidylate synthase intron: substrate binding inhibition in vitro and mis-splicing in vivo. J Biol Chem 2002; 277:17987-93.
-
(2002)
J Biol Chem
, vol.277
, pp. 17987-17993
-
-
Pichler, A.1
Schroeder, R.2
-
78
-
-
49749103581
-
SHAPE analysis of long-range interactions reveals extensive and thermodynamically preferred misfolding in a fragile group I intron RNA
-
Duncan CD, Weeks KM. SHAPE analysis of long-range interactions reveals extensive and thermodynamically preferred misfolding in a fragile group I intron RNA. Biochemistry 2008; 47:8504-13.
-
(2008)
Biochemistry
, vol.47
, pp. 8504-8513
-
-
Duncan, C.D.1
Weeks, K.M.2
-
79
-
-
0036289258
-
The folding pathway of the genomic hepatitis delta virus ribozyme is dominated by slow folding of the pseudoknots
-
Chadalavada DM, Senchak SE, Bevilacqua PC. The folding pathway of the genomic hepatitis delta virus ribozyme is dominated by slow folding of the pseudoknots. J Mol Biol 2002; 317:559-75.
-
(2002)
J Mol Biol
, vol.317
, pp. 559-575
-
-
Chadalavada, D.M.1
Senchak, S.E.2
Bevilacqua, P.C.3
-
80
-
-
67650713931
-
The structural and functional diversity of metabolite-binding riboswitches
-
Roth A, Breaker RR. The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 2009; 78:305-34.
-
(2009)
Annu Rev Biochem
, vol.78
, pp. 305-334
-
-
Roth, A.1
Breaker, R.R.2
-
82
-
-
0032489021
-
Mechanical devices of the spliceosome: Motors, clocks, springs and things
-
Staley JP, Guthrie C. Mechanical devices of the spliceosome: motors, clocks, springs and things. Cell 1998; 92:315-26.
-
(1998)
Cell
, vol.92
, pp. 315-326
-
-
Staley, J.P.1
Guthrie, C.2
-
83
-
-
0029871680
-
Identification of novel genes required for yeast pre-mRNA splicing by means of cold-sensitive mutations
-
Noble SM, Guthrie C. Identification of novel genes required for yeast pre-mRNA splicing by means of cold-sensitive mutations. Genetics 1996; 143:67-80.
-
(1996)
Genetics
, vol.143
, pp. 67-80
-
-
Noble, S.M.1
Guthrie, C.2
-
84
-
-
0033864702
-
Dominant negative mutants of the yeast splicing factor Prp2 map to a putative cleft region in the helicase domain of DExD/H-box proteins
-
Edwalds-Gilbert G, Kim DH, Kim SH, Tseng YH, Yu Y, Lin RJ. Dominant negative mutants of the yeast splicing factor Prp2 map to a putative cleft region in the helicase domain of DExD/H-box proteins. RNA 2000; 6:1106-19.
-
(2000)
RNA
, vol.6
, pp. 1106-1119
-
-
Edwalds-Gilbert, G.1
Kim, D.H.2
Kim, S.H.3
Tseng, Y.H.4
Yu, Y.5
Lin, R.J.6
-
85
-
-
77149180424
-
Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing
-
Lardelli RM, Thompson JX, Yates JR, 3rd, Stevens SW. Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing. RNA 2010; 16:516-28.
-
(2010)
RNA
, vol.16
, pp. 516-528
-
-
Lardelli, R.M.1
Thompson, J.X.2
Yates III, J.R.3
Stevens, S.W.4
-
86
-
-
0033010430
-
An RNA switch at the 5′ splice site requires ATP and the DEAD box protein Prp28p
-
Staley JP, Guthrie C. An RNA switch at the 5′ splice site requires ATP and the DEAD box protein Prp28p. Mol Cell 1999; 3:55-64.
-
(1999)
Mol Cell
, vol.3
, pp. 55-64
-
-
Staley, J.P.1
Guthrie, C.2
-
87
-
-
0035105921
-
Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor
-
Chen JY, Stands L, Staley JP, Jackups RR Jr, Latus LJ, Chang TH. Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor. Mol Cell 2001; 7:227-32.
-
(2001)
Mol Cell
, vol.7
, pp. 227-232
-
-
Chen, J.Y.1
Stands, L.2
Staley, J.P.3
Jackups Jr., R.R.4
Latus, L.J.5
Chang, T.H.6
-
88
-
-
32444443532
-
Repositioning of the reaction intermediate within the catalytic center of the spliceosome
-
Konarska MM, Vilardell J, Query CC. Repositioning of the reaction intermediate within the catalytic center of the spliceosome. Mol Cell 2006; 21:543-53.
-
(2006)
Mol Cell
, vol.21
, pp. 543-553
-
-
Konarska, M.M.1
Vilardell, J.2
Query, C.C.3
-
89
-
-
67649354912
-
Evidence that U2/U6 helix I promotes both catalytic steps of pre-mRNA splicing and rearranges in between these steps
-
Mefford MA, Staley JP. Evidence that U2/U6 helix I promotes both catalytic steps of pre-mRNA splicing and rearranges in between these steps. RNA 2009; 15:1386-97.
-
(2009)
RNA
, vol.15
, pp. 1386-1397
-
-
Mefford, M.A.1
Staley, J.P.2
-
90
-
-
44949117567
-
A Conformational Rearrangement in the Spliceosome Sets the Stage for Prp22-Dependent mRNA Release
-
DOI 10.1016/j.molcel.2008.05.003, PII S1097276508003316
-
Schwer B. A conformational rearrangement in the spliceosome sets the stage for Prp22-dependent mRNA release. Mol Cell 2008; 30:743-54. (Pubitemid 351815129)
-
(2008)
Molecular Cell
, vol.30
, Issue.6
, pp. 743-754
-
-
Schwer, B.1
-
91
-
-
0032537739
-
RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2
-
Raghunathan PL, Guthrie C. RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2. Curr Biol 1998; 8:847-55.
-
(1998)
Curr Biol
, vol.8
, pp. 847-855
-
-
Raghunathan, P.L.1
Guthrie, C.2
-
92
-
-
2942571539
-
The comparative RNA web (CRW) site: An online database of comparative sequence and structure information for ribosomal, intron and other RNAs
-
Cannone JJ, Subramanian S, Schnare MN, Collett JR, D'Souza LM, Du Y, et al. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron and other RNAs. BMC Bioinformatics 2002; 3:2.
-
(2002)
BMC Bioinformatics
, vol.3
, pp. 2
-
-
Cannone, J.J.1
Subramanian, S.2
Schnare, M.N.3
Collett, J.R.4
D'Souza, L.M.5
Du, Y.6
-
94
-
-
23044431628
-
Docking kinetics and equilibrium of a GAAA tetraloop-receptor motif probed by single-molecule FRET
-
Hodak JH, Downey CD, Fiore JL, Pardi A, Nesbitt DJ. Docking kinetics and equilibrium of a GAAA tetraloop-receptor motif probed by single-molecule FRET. Proc Natl Acad Sci USA 2005; 102:10505-10.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 10505-10510
-
-
Hodak, J.H.1
Downey, C.D.2
Fiore, J.L.3
Pardi, A.4
Nesbitt, D.J.5
-
95
-
-
64849085465
-
Enthalpy-driven RNA folding: Single-molecule thermodynamics of tetraloop-receptor tertiary interaction
-
Fiore JL, Kraemer B, Koberling F, Edmann R, Nesbitt DJ. Enthalpy-driven RNA folding: single-molecule thermodynamics of tetraloop-receptor tertiary interaction. Biochemistry 2009; 48:2550-8.
-
(2009)
Biochemistry
, vol.48
, pp. 2550-2558
-
-
Fiore, J.L.1
Kraemer, B.2
Koberling, F.3
Edmann, R.4
Nesbitt, D.J.5
-
96
-
-
0027991626
-
Kinetic intermediates in RNA folding
-
Zarrinkar PP, Williamson JR. Kinetic intermediates in RNA folding. Science 1994; 265:918-24.
-
(1994)
Science
, vol.265
, pp. 918-924
-
-
Zarrinkar, P.P.1
Williamson, J.R.2
-
97
-
-
0032549780
-
RNA folding at millisecond intervals by synchrotron hydroxyl radical footprinting
-
Sclavi B, Sullivan M, Chance MR, Brenowitz M, Woodson SA. RNA folding at millisecond intervals by synchrotron hydroxyl radical footprinting. Science 1998; 279:1940-3.
-
(1998)
Science
, vol.279
, pp. 1940-1943
-
-
Sclavi, B.1
Sullivan, M.2
Chance, M.R.3
Brenowitz, M.4
Woodson, S.A.5
-
98
-
-
0032575759
-
Fast folding mutants of the Tetrahymena group I ribozyme reveal a rugged folding energy landscape
-
Rook MS, Treiber DK, Williamson JR. Fast folding mutants of the Tetrahymena group I ribozyme reveal a rugged folding energy landscape. J Mol Biol 1998; 281:609-20.
-
(1998)
J Mol Biol
, vol.281
, pp. 609-620
-
-
Rook, M.S.1
Treiber, D.K.2
Williamson, J.R.3
-
99
-
-
0033520410
-
New pathways in folding of the Tetrahymena group I RNA enzyme
-
Russell R, Herschlag D. New pathways in folding of the Tetrahymena group I RNA enzyme. J Mol Biol 1999; 291:1155-67.
-
(1999)
J Mol Biol
, vol.291
, pp. 1155-1167
-
-
Russell, R.1
Herschlag, D.2
-
100
-
-
0034100560
-
Small angle X-ray scattering reveals a compact intermediate in RNA folding
-
Russell R, Millett IS, Doniach S, Herschlag D. Small angle X-ray scattering reveals a compact intermediate in RNA folding. Nat Struct Biol 2000; 7:367-70.
-
(2000)
Nat Struct Biol
, vol.7
, pp. 367-370
-
-
Russell, R.1
Millett, I.S.2
Doniach, S.3
Herschlag, D.4
-
101
-
-
0037039464
-
Exploring the folding landscape of a structured RNA
-
DOI 10.1073/pnas.221593598
-
Russell R, Zhuang X, Babcock HP, Millett IS, Doniach S, Chu S, et al. Exploring the folding landscape of a structured RNA. Proc Natl Acad Sci USA 2002; 99:155-60. (Pubitemid 34060333)
-
(2002)
Proceedings of the National Academy of Sciences of the United States of America
, vol.99
, Issue.1
, pp. 155-160
-
-
Russell, R.1
Zhuang, X.2
Babcock, H.P.3
Millett, I.S.4
Doniach, S.5
Chu, S.6
Herschlag, D.7
-
102
-
-
34249850484
-
Distinct contribution of electrostatics, initial conformational ensemble, and macromolecular stability in RNA folding
-
Laederach A, Shcherbakova I, Jonikas MA, Altman RB, Brenowitz M. Distinct contribution of electrostatics, initial conformational ensemble, and macromolecular stability in RNA folding. Proc Natl Acad Sci USA 2007; 104:7045-50.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 7045-7050
-
-
Laederach, A.1
Shcherbakova, I.2
Jonikas, M.A.3
Altman, R.B.4
Brenowitz, M.5
-
103
-
-
57549096731
-
Energy barriers, pathways and dynamics during folding of large, multidomain RNAs
-
Shcherbakova I, Mitra S, Laederach A, Brenowitz M. Energy barriers, pathways and dynamics during folding of large, multidomain RNAs. Curr Opin Chem Biol 2008; 12:655-66.
-
(2008)
Curr Opin Chem Biol
, vol.12
, pp. 655-666
-
-
Shcherbakova, I.1
Mitra, S.2
Laederach, A.3
Brenowitz, M.4
-
104
-
-
0032563297
-
Folding intermediates of a self-splicing RNA: Mispairing of the catalytic core
-
Pan J, Woodson SA. Folding intermediates of a self-splicing RNA: mispairing of the catalytic core. J Mol Biol 1998; 280:597-609.
-
(1998)
J Mol Biol
, vol.280
, pp. 597-609
-
-
Pan, J.1
Woodson, S.A.2
-
105
-
-
33748936120
-
The paradoxical behavior of a highly structured misfolded intermediate in RNA folding
-
Russell R, Das R, Suh H, Travers KJ, Laederach A, Engelhardt MA, et al. The paradoxical behavior of a highly structured misfolded intermediate in RNA folding. J Mol Biol 2006; 363:531-44.
-
(2006)
J Mol Biol
, vol.363
, pp. 531-544
-
-
Russell, R.1
Das, R.2
Suh, H.3
Travers, K.J.4
Laederach, A.5
Engelhardt, M.A.6
-
106
-
-
77954621718
-
Multiple unfolding events during native folding of the Tetrahymena group I ribozyme
-
Wan Y, Suh H, Russell R, Herschlag D. Multiple unfolding events during native folding of the Tetrahymena group I ribozyme. J Mol Biol 2010; 400:1067-77.
-
(2010)
J Mol Biol
, vol.400
, pp. 1067-1077
-
-
Wan, Y.1
Suh, H.2
Russell, R.3
Herschlag, D.4
-
107
-
-
0032549735
-
Kinetic intermediates trapped by native interactions in RNA folding
-
Treiber DK, Rook MS, Zarrinkar PP, Williamson JR. Kinetic intermediates trapped by native interactions in RNA folding. Science 1998; 279:1943-6.
-
(1998)
Science
, vol.279
, pp. 1943-1946
-
-
Treiber, D.K.1
Rook, M.S.2
Zarrinkar, P.P.3
Williamson, J.R.4
-
108
-
-
33645470334
-
Monovalent cations use multiple mechanisms to resolve ribozyme misfolding
-
Jiang YF, Xiao M, Yin P, Zhang Y. Monovalent cations use multiple mechanisms to resolve ribozyme misfolding. RNA 2006; 12:561-6.
-
(2006)
RNA
, vol.12
, pp. 561-566
-
-
Jiang, Y.F.1
Xiao, M.2
Yin, P.3
Zhang, Y.4
-
109
-
-
77954198215
-
Nonhierarchical ribonucleoprotein assembly suggests a strain-propagation model for protein-facilitated RNA folding
-
Duncan CD, Weeks KM. Nonhierarchical ribonucleoprotein assembly suggests a strain-propagation model for protein-facilitated RNA folding. Biochemistry 2010; 49:5418-25.
-
(2010)
Biochemistry
, vol.49
, pp. 5418-5425
-
-
Duncan, C.D.1
Weeks, K.M.2
-
110
-
-
0037452797
-
Assembly of core helices and rapid tertiary folding of a small bacterial group I ribozyme
-
Rangan P, Masquida B, Westhof E, Woodson SA. Assembly of core helices and rapid tertiary folding of a small bacterial group I ribozyme. Proc Natl Acad Sci USA 2003; 100:1574-9.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 1574-1579
-
-
Rangan, P.1
Masquida, B.2
Westhof, E.3
Woodson, S.A.4
-
111
-
-
27144451444
-
RNA tertiary interactions mediate native collapse of a bacterial group I ribozyme
-
Chauhan S, Caliskan G, Briber RM, Perez-Salas U, Rangan P, Thirumalai D, et al. RNA tertiary interactions mediate native collapse of a bacterial group I ribozyme. J Mol Biol 2005; 353:1199-209.
-
(2005)
J Mol Biol
, vol.353
, pp. 1199-1209
-
-
Chauhan, S.1
Caliskan, G.2
Briber, R.M.3
Perez-Salas, U.4
Rangan, P.5
Thirumalai, D.6
-
112
-
-
60149088502
-
Structural rearrangements linked to global folding pathways of the Azoarcus group I ribozyme
-
Chauhan S, Behrouzi R, Rangan P, Woodson SA. Structural rearrangements linked to global folding pathways of the Azoarcus group I ribozyme. J Mol Biol 2009; 386:1167-78.
-
(2009)
J Mol Biol
, vol.386
, pp. 1167-1178
-
-
Chauhan, S.1
Behrouzi, R.2
Rangan, P.3
Woodson, S.A.4
-
113
-
-
77955815291
-
Multistage collapse of a bacterial ribozyme observed by time-resolved small-angle x-ray scattering
-
Roh JH, Guo L, Kilburn JD, Briber RM, Irving T, Woodson SA. Multistage collapse of a bacterial ribozyme observed by time-resolved small-angle x-ray scattering. J Am Chem Soc 2010; 132:10148-54.
-
(2010)
J Am Chem Soc
, vol.132
, pp. 10148-10154
-
-
Roh, J.H.1
Guo, L.2
Kilburn, J.D.3
Briber, R.M.4
Irving, T.5
Woodson, S.A.6
-
114
-
-
0028276865
-
Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaperones
-
Coetzee T, Herschlag D, Belfort M. Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaperones. Genes Dev 1994; 8:1575-88.
-
(1994)
Genes Dev
, vol.8
, pp. 1575-1588
-
-
Coetzee, T.1
Herschlag, D.2
Belfort, M.3
-
115
-
-
0033169013
-
Assaying RNA chaperone activity in vivo using a novel RNA folding trap
-
DOI 10.1093/emboj/18.13.3776
-
Clodi E, Semrad K, Schroeder R. Assaying RNA chaperone activity in vivo using a novel RNA folding trap. EMBO J 1999; 18:3776-82. (Pubitemid 29308856)
-
(1999)
EMBO Journal
, vol.18
, Issue.13
, pp. 3776-3782
-
-
Clodi, E.1
Semrad, K.2
Schroeder, R.3
-
117
-
-
0036712305
-
RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo
-
Waldsich C, Grossberger R, Schroeder R. RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo. Genes Dev 2002; 16:2300-12.
-
(2002)
Genes Dev
, vol.16
, pp. 2300-2312
-
-
Waldsich, C.1
Grossberger, R.2
Schroeder, R.3
-
120
-
-
0037077127
-
A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing
-
Mohr S, Stryker JM, Lambowitz AM. A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing. Cell 2002; 109:769-79.
-
(2002)
Cell
, vol.109
, pp. 769-779
-
-
Mohr, S.1
Stryker, J.M.2
Lambowitz, A.M.3
-
121
-
-
11844297811
-
The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function
-
Huang HR, Rowe CE, Mohr S, Jiang Y, Lambowitz AM, Perlman PS. The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function. Proc Natl Acad Sci USA 2005; 102:163-8.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 163-168
-
-
Huang, H.R.1
Rowe, C.E.2
Mohr, S.3
Jiang, Y.4
Lambowitz, A.M.5
Perlman, P.S.6
-
122
-
-
0024961642
-
Mitochondrial splicing requires a protein from a novel helicase family
-
Seraphin B, Simon M, Boulet A, Faye G. Mitochondrial splicing requires a protein from a novel helicase family. Nature 1989; 337:84-7.
-
(1989)
Nature
, vol.337
, pp. 84-87
-
-
Seraphin, B.1
Simon, M.2
Boulet, A.3
Faye, G.4
-
123
-
-
33644852160
-
A DEAD-box protein alone promotes group II intron splicing and reverse splicing by acting as an RNA chaperone
-
Mohr S, Matsuura M, Perlman PS, Lambowitz AM. A DEAD-box protein alone promotes group II intron splicing and reverse splicing by acting as an RNA chaperone. Proc Natl Acad Sci USA 2006; 103:3569-74.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 3569-3574
-
-
Mohr, S.1
Matsuura, M.2
Perlman, P.S.3
Lambowitz, A.M.4
-
124
-
-
52949136970
-
A DExH/D-box protein coordinates the two steps of splicing in a group I intron
-
Bifano AL, Caprara MG. A DExH/D-box protein coordinates the two steps of splicing in a group I intron. J Mol Biol 2008; 383:667-82.
-
(2008)
J Mol Biol
, vol.383
, pp. 667-682
-
-
Bifano, A.L.1
Caprara, M.G.2
-
125
-
-
35548989806
-
Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone
-
DOI 10.1038/nature06235, PII NATURE06235
-
Bhaskaran H, Russell R. Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone. Nature 2007; 449:1014-8. (Pubitemid 350014602)
-
(2007)
Nature
, vol.449
, Issue.7165
, pp. 1014-1018
-
-
Bhaskaran, H.1
Russell, R.2
-
126
-
-
34948833173
-
Do DEAD-box proteins promote group II intron splicing without unwinding RNA?
-
Del Campo M, Tijerina P, Bhaskaran H, Mohr S, Yang Q, Jankowsky E, et al. Do DEAD-box proteins promote group II intron splicing without unwinding RNA? Mol Cell 2007; 28:159-66.
-
(2007)
Mol Cell
, vol.28
, pp. 159-166
-
-
Del Campo, M.1
Tijerina, P.2
Bhaskaran, H.3
Mohr, S.4
Yang, Q.5
Jankowsky, E.6
-
127
-
-
34147111663
-
DEAD-box-protein-assisted RNA structure conversion towards and against thermodynamic equilibrium values
-
Yang Q, Fairman ME, Jankowsky E. DEAD-box-protein-assisted RNA structure conversion towards and against thermodynamic equilibrium values. J Mol Biol 2007; 368:1087-100.
-
(2007)
J Mol Biol
, vol.368
, pp. 1087-1100
-
-
Yang, Q.1
Fairman, M.E.2
Jankowsky, E.3
-
128
-
-
0026595140
-
Different conformations for the same polypeptide bound to chaperones DnaK and GroEL
-
Landry SJ, Jordan R, McMacken R, Gierasch LM. Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Nature 1992; 355:455-7.
-
(1992)
Nature
, vol.355
, pp. 455-457
-
-
Landry, S.J.1
Jordan, R.2
McMacken, R.3
Gierasch, L.M.4
-
129
-
-
0029937037
-
Structural analysis of substrate binding by the molecular chaperone DnaK
-
Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, Gottesman ME, et al. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 1996; 272:1606-14.
-
(1996)
Science
, vol.272
, pp. 1606-1614
-
-
Zhu, X.1
Zhao, X.2
Burkholder, W.F.3
Gragerov, A.4
Ogata, C.M.5
Gottesman, M.E.6
-
131
-
-
0024978377
-
Heat shock protein-mediated disassembly of nucleoprotein structures is required for the initiation of bacteriophage lambda DNA replication
-
Alfano C, McMacken R. Heat shock protein-mediated disassembly of nucleoprotein structures is required for the initiation of bacteriophage lambda DNA replication. J Biol Chem 1989; 264:10709-18.
-
(1989)
J Biol Chem
, vol.264
, pp. 10709-10718
-
-
Alfano, C.1
McMacken, R.2
-
132
-
-
0034647887
-
Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery
-
Diamant S, Ben-Zvi AP, Bukau B, Goloubinoff P. Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. J Biol Chem 2000; 275:21107-13.
-
(2000)
J Biol Chem
, vol.275
, pp. 21107-21113
-
-
Diamant, S.1
Ben-Zvi, A.P.2
Bukau, B.3
Goloubinoff, P.4
-
133
-
-
33646127577
-
Molecular chaperones and protein quality control
-
Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control. Cell 2006; 125:443-51.
-
(2006)
Cell
, vol.125
, pp. 443-451
-
-
Bukau, B.1
Weissman, J.2
Horwich, A.3
-
134
-
-
39149143645
-
Chaperone machines in action
-
Saibil HR. Chaperone machines in action. Curr Opin Struct Biol 2008; 18:35-42.
-
(2008)
Curr Opin Struct Biol
, vol.18
, pp. 35-42
-
-
Saibil, H.R.1
-
136
-
-
33646181578
-
Discriminatory RNP remodeling by the DEAD-box protein DED1
-
Bowers HA, Maroney PA, Fairman ME, Kastner B, Luhrmann R, Nilsen TW, et al. Discriminatory RNP remodeling by the DEAD-box protein DED1. RNA 2006; 12:903-12.
-
(2006)
RNA
, vol.12
, pp. 903-912
-
-
Bowers, H.A.1
Maroney, P.A.2
Fairman, M.E.3
Kastner, B.4
Luhrmann, R.5
Nilsen, T.W.6
-
137
-
-
2342443461
-
Protein displacement by DExH/D "RNA helicases" without duplex unwinding
-
Fairman ME, Maroney PA, Wang W, Bowers HA, Gollnick P, Nilsen TW, et al. Protein displacement by DExH/D "RNA helicases" without duplex unwinding. Science 2004; 304:730-4.
-
(2004)
Science
, vol.304
, pp. 730-734
-
-
Fairman, M.E.1
Maroney, P.A.2
Wang, W.3
Bowers, H.A.4
Gollnick, P.5
Nilsen, T.W.6
-
138
-
-
31644440766
-
Ddx42p - A human DEAD box protein with RNA chaperone activities
-
Uhlmann-Schiffler H, Jalal C, Stahl H. Ddx42p - a human DEAD box protein with RNA chaperone activities. Nucleic Acids Res 2006; 34:10-22.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 10-22
-
-
Uhlmann-Schiffler, H.1
Jalal, C.2
Stahl, H.3
-
139
-
-
0345564842
-
ATP requirement for Prp5p function is determined by Cus2p and the structure of U2 small nuclear RNA
-
Perriman R, Barta I, Voeltz GK, Abelson J, Ares M Jr. ATP requirement for Prp5p function is determined by Cus2p and the structure of U2 small nuclear RNA. Proc Natl Acad Sci USA 2003; 100:13857-62.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 13857-13862
-
-
Perriman, R.1
Barta, I.2
Voeltz, G.K.3
Abelson, J.4
Ares Jr., M.5
-
140
-
-
27944474017
-
The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim
-
Lund MK, Guthrie C. The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim. Mol Cell 2005; 20:645-51.
-
(2005)
Mol Cell
, vol.20
, pp. 645-651
-
-
Lund, M.K.1
Guthrie, C.2
-
141
-
-
36749016233
-
The DEAD-box protein Dbp5 controls mRNA export by triggering specific RNA:protein remodeling events
-
Tran EJ, Zhou Y, Corbett AH, Wente SR. The DEAD-box protein Dbp5 controls mRNA export by triggering specific RNA:protein remodeling events. Mol Cell 2007; 28:850-9.
-
(2007)
Mol Cell
, vol.28
, pp. 850-859
-
-
Tran, E.J.1
Zhou, Y.2
Corbett, A.H.3
Wente, S.R.4
-
142
-
-
33846702294
-
Ratcheting mRNA out of the nucleus
-
Stewart M. Ratcheting mRNA out of the nucleus. Mol Cell 2007; 25:327-30.
-
(2007)
Mol Cell
, vol.25
, pp. 327-330
-
-
Stewart, M.1
-
143
-
-
41449091393
-
MRNA export: RNP remodeling by DEAD-box proteins
-
Linder P. mRNA export: RNP remodeling by DEAD-box proteins. Curr Biol 2008; 18:297-9.
-
(2008)
Curr Biol
, vol.18
, pp. 297-299
-
-
Linder, P.1
-
144
-
-
0033569797
-
The RNA export factor Gle1p is located on the cytoplasmic fibrils of the NPC and physically interacts with the FG-nucleoporin Rip1p, the DEAD-box protein Rat8p/Dbp5p and a new protein Ymr 255p
-
Strahm Y, Fahrenkrog B, Zenklusen D, Rychner E, Kantor J, Rosbach M, et al. The RNA export factor Gle1p is located on the cytoplasmic fibrils of the NPC and physically interacts with the FG-nucleoporin Rip1p, the DEAD-box protein Rat8p/Dbp5p and a new protein Ymr 255p. EMBO J 1999; 18:5761-77.
-
(1999)
EMBO J
, vol.18
, pp. 5761-5777
-
-
Strahm, Y.1
Fahrenkrog, B.2
Zenklusen, D.3
Rychner, E.4
Kantor, J.5
Rosbach, M.6
-
145
-
-
33745742173
-
Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export
-
Weirich CS, Erzberger JP, Flick JS, Berger JM, Thorner J, Weis K. Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nat Cell Biol 2006; 8:668-76.
-
(2006)
Nat Cell Biol
, vol.8
, pp. 668-676
-
-
Weirich, C.S.1
Erzberger, J.P.2
Flick, J.S.3
Berger, J.M.4
Thorner, J.5
Weis, K.6
-
146
-
-
26644450709
-
ATP- And ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1
-
DOI 10.1021/bi0508946
-
Yang Q, Jankowsky E. ATP- and ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1. Biochemistry 2005; 44:13591-601. (Pubitemid 41443687)
-
(2005)
Biochemistry
, vol.44
, Issue.41
, pp. 13591-13601
-
-
Yang, Q.1
Jankowsky, E.2
-
147
-
-
33845738802
-
Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity
-
Halls C, Mohr S, Del Campo M, Yang Q, Jankowsky E, Lambowitz AM. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity. J Mol Biol 2007; 365:835-55.
-
(2007)
J Mol Biol
, vol.365
, pp. 835-855
-
-
Halls, C.1
Mohr, S.2
Del Campo, M.3
Yang, Q.4
Jankowsky, E.5
Lambowitz, A.M.6
-
148
-
-
78651303648
-
RNA helicases at work: Binding and rearranging
-
In press
-
Jankowsky E. RNA helicases at work: binding and rearranging. Trends in Biochemical Sciences 2010; In press.
-
(2010)
Trends in Biochemical Sciences
-
-
Jankowsky, E.1
-
149
-
-
0030452773
-
New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: A complete 3D model of the Tetrahymena thermophila ribozyme
-
Lehnert V, Jaeger L, Michel F, Westhof E. New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme. Chem Biol 1996; 3:993-1009.
-
(1996)
Chem Biol
, vol.3
, pp. 993-1009
-
-
Lehnert, V.1
Jaeger, L.2
Michel, F.3
Westhof, E.4
|