-
1
-
-
0002754552
-
-
T. R. Cech and D. Herschlag, Nucleic Acids Mol. Biol. 10, 1 (1996); L. Jaeger, F. Michel, E. Westhof, ibid., p. 34.
-
(1996)
Nucleic Acids Mol. Biol.
, vol.10
, pp. 1
-
-
Cech, T.R.1
Herschlag, D.2
-
2
-
-
7144228298
-
-
T. R. Cech and D. Herschlag, Nucleic Acids Mol. Biol. 10, 1 (1996); L. Jaeger, F. Michel, E. Westhof, ibid., p. 34.
-
Nucleic Acids Mol. Biol.
, pp. 34
-
-
Jaeger, L.1
Michel, F.2
Westhof, E.3
-
3
-
-
0016169138
-
-
D. M. Crothers, P. E. Cole, C. W. Hilbers, R. G. Shulman, J. Mol. Biol. 87, 63 (1974); reviewed in D. E. Draper, Nature Struct. Biol. 3, 397 (1996).
-
(1974)
J. Mol. Biol.
, vol.87
, pp. 63
-
-
Crothers, D.M.1
Cole, P.E.2
Hilbers, C.W.3
Shulman, R.G.4
-
4
-
-
0029877099
-
-
D. M. Crothers, P. E. Cole, C. W. Hilbers, R. G. Shulman, J. Mol. Biol. 87, 63 (1974); reviewed in D. E. Draper, Nature Struct. Biol. 3, 397 (1996).
-
(1996)
Nature Struct. Biol.
, vol.3
, pp. 397
-
-
Draper, D.E.1
-
5
-
-
0027991626
-
-
P. P. Zarrinkar and J. R. Williamson, Science 265, 918 (1994); Nature Struct. Biol. 3, 432 (1996); D. K. Treiber, M. S. Rook, P. P. Zarrinkar, J. R. Williamson, Science 279, 1943 (1998).
-
(1994)
Science
, vol.265
, pp. 918
-
-
Zarrinkar, P.P.1
Williamson, J.R.2
-
6
-
-
0029874598
-
-
P. P. Zarrinkar and J. R. Williamson, Science 265, 918 (1994); Nature Struct. Biol. 3, 432 (1996); D. K. Treiber, M. S. Rook, P. P. Zarrinkar, J. R. Williamson, Science 279, 1943 (1998).
-
(1996)
Nature Struct. Biol.
, vol.3
, pp. 432
-
-
-
7
-
-
0032549735
-
-
P. P. Zarrinkar and J. R. Williamson, Science 265, 918 (1994); Nature Struct. Biol. 3, 432 (1996); D. K. Treiber, M. S. Rook, P. P. Zarrinkar, J. R. Williamson, Science 279, 1943 (1998).
-
(1998)
Science
, vol.279
, pp. 1943
-
-
Treiber, D.K.1
Rook, M.S.2
Zarrinkar, P.P.3
Williamson, J.R.4
-
8
-
-
0031576334
-
-
J. Pan, D. Thirumalai, S. A. Woodson, J. Mol. Biol. 273, 7 (1997); D. Thirumalai and S. A. Woodson, Acc. Chem. Res. 29, 433 (1996).
-
(1997)
J. Mol. Biol.
, vol.273
, pp. 7
-
-
Pan, J.1
Thirumalai, D.2
Woodson, S.A.3
-
9
-
-
0001103473
-
-
J. Pan, D. Thirumalai, S. A. Woodson, J. Mol. Biol. 273, 7 (1997); D. Thirumalai and S. A. Woodson, Acc. Chem. Res. 29, 433 (1996).
-
(1996)
Acc. Chem. Res.
, vol.29
, pp. 433
-
-
Thirumalai, D.1
Woodson, S.A.2
-
11
-
-
0027940350
-
-
V. L. Emerick and S. A. Woodson, Proc. Natl. Acad. Sci. U.S.A. 91, 9675 (1994); P. P. Zarrinkar, J. Wang, J. R. Williamson, RNA 2, 564 (1996).
-
(1994)
Proc. Natl. Acad. Sci. U.S.A.
, vol.91
, pp. 9675
-
-
Emerick, V.L.1
Woodson, S.A.2
-
12
-
-
0029958503
-
-
V. L. Emerick and S. A. Woodson, Proc. Natl. Acad. Sci. U.S.A. 91, 9675 (1994); P. P. Zarrinkar, J. Wang, J. R. Williamson, RNA 2, 564 (1996).
-
(1996)
RNA
, vol.2
, pp. 564
-
-
Zarrinkar, P.P.1
Wang, J.2
Williamson, J.R.3
-
13
-
-
0031566962
-
-
B. Sclavi, S. A. Woodson, M. Sullivan, M. R. Chance, M. Brenowitz, J. Mol. Biol. 266, 144 (1997).
-
(1997)
J. Mol. Biol.
, vol.266
, pp. 144
-
-
Sclavi, B.1
Woodson, S.A.2
Sullivan, M.3
Chance, M.R.4
Brenowitz, M.5
-
14
-
-
0031571086
-
-
Reviewed in M. R. Chance, B. Sclavi, S. A. Woodson, M. Brenowitz, Structure 5, 865 (1997).
-
(1997)
Structure
, vol.5
, pp. 865
-
-
Chance, M.R.1
Sclavi, B.2
Woodson, S.A.3
Brenowitz, M.4
-
16
-
-
0024359787
-
-
T. D. Tullius and B. A. Dombroski, Proc. Natl. Acad. Sci. U.S.A. 83, 5469 (1986); J. A. Latham and T. R. Cech, Science 245, 276 (1989).
-
(1989)
Science
, vol.245
, pp. 276
-
-
Latham, J.A.1
Cech, T.R.2
-
17
-
-
0029820625
-
-
J. H. Cate et al., Science 273, 1678 (1996).
-
(1996)
Science
, vol.273
, pp. 1678
-
-
Cate, J.H.1
-
23
-
-
0025963132
-
-
D. W. Celander and T. R. Cech, Science 251, 401 (1991); W. D. Downs and T. R. Cech, RNA 2, 718 (1996).
-
(1991)
Science
, vol.251
, pp. 401
-
-
Celander, D.W.1
Cech, T.R.2
-
24
-
-
0029904022
-
-
D. W. Celander and T. R. Cech, Science 251, 401 (1991); W. D. Downs and T. R. Cech, RNA 2, 718 (1996).
-
(1996)
RNA
, vol.2
, pp. 718
-
-
Downs, W.D.1
Cech, T.R.2
-
25
-
-
7144254843
-
-
note
-
A three-syringe quench-flow device (Kin-Tek, State College, PA) was modified to incorporate an x-ray exposure chamber. Details of the design, installation, and beamline configuration will appear elsewhere (30). The configuration of beamline X-9A allows for footprinting to be conducted with substantially shorter x-ray exposures than previously reported (7).
-
-
-
-
26
-
-
7144252823
-
-
note
-
9-fold greater concentration of water molecules.
-
-
-
-
27
-
-
0024285808
-
-
2 in CE using two syringes of the stopped-flow apparatus (17) and sampled reactions at times from 20 ms to 8 min. Samples within a single experiment were exposed to the X-9A beam for an identical time. Exposure times (10 to 50 ms) were adjusted so that 10 to 30% of the RNA was cleaved, to ensure that molecules were cleaved no more than once on average. RNA samples (70 μl final volume) were precipitated after the addition of 15 μl of 1.5 M Na-acetate (pH 5), carrier tRNA (0.25 mg/ml), and 300 μl of ethanol and analyzed by denaturing gel electrophoresis (7).
-
(1988)
Biochemistry
, vol.27
, pp. 8924
-
-
Zaug, A.J.1
Grosshans, C.A.2
Cech, T.R.3
-
28
-
-
7144252824
-
-
note
-
-1) was the same as the rate of hydroxyl radical protection of residues in the catalytic center.
-
-
-
-
29
-
-
7144261418
-
-
note
-
-1; with 65% confidence limits in parentheses) are as follows: nucleotides 45 to 48, 0.42 (-0.1, +0.15); 57 to 59, 0.20 (±0.05); 81 to 83, 0.15 (-0.05, +0.06); 93 to 97, 0.16 (-0.02, +0.04); 105 to 106, 0.3 (±0.1); 109 to 112, 0.8 (±0.4); 118 to 121, 0.3 (±0,2); 125 to 126, 0.9 (±0.5); 139 to 140, 0.9 (±0.4); 153 to 155, 1.3 (±0.5); 163 to 164, 1.6 (-0.7, +0.9); 167 to 170, 2.0 (-0.6, +0.8); 174 to 175, 2.7 (-1.3, +1.8); 180 to 181, 1.8 (±0.6); 183 to 189, 0.9 (±0.3); 200 to 203, 1.0 (-0.4, +0.6); 204 to 208, 0.3 (±0.1); 212 to 215, 0.9 (±0.5); 220 to 222, 0.03; 263 to 268, 0.05; 272 to 276, 0.06; 280 to 283, 0.1 (-0.2, +0.3); 300 to 306, 0.03; 327 to 331, 0.02 (-0.006, +0.02); and 342 to 347, 0.3 (-0.1, +0.2).
-
-
-
-
30
-
-
7144226941
-
-
note
-
2+ was observed within the dead time of the experiment (20 ms). Because a similar result was obtained with 0.5 to 1.0 M KCI, we attribute this decrease to either a general electrostatic effect on ribose oxidation or a decrease in the steady-state concentration of hydroxyl radical, rather than to any specific folding transition in the RNA. However, it is possible that monovalent cations induce a conformational change within the first 20 ms (28).
-
-
-
-
35
-
-
0030452773
-
-
V. Lehnert, L. Jaeger, F. Michel, E. Westhof, Chem. Biol. 3, 993 (1996).
-
(1996)
Chem. Biol.
, vol.3
, pp. 993
-
-
Lehnert, V.1
Jaeger, L.2
Michel, F.3
Westhof, E.4
-
38
-
-
7144226307
-
-
in press
-
B. Sclavi, S. A. Woodson, M. Sullivan, M. R. Chance, M. Brenowitz, Methods Enzymol., in press.
-
Methods Enzymol.
-
-
Sclavi, B.1
Woodson, S.A.2
Sullivan, M.3
Chance, M.R.4
Brenowitz, M.5
-
39
-
-
7144262780
-
-
note
-
Supported by grants from NIH (GM39929, GM51506, and GM52348), the Molecular Biophysics Training Program (GM08572), NSF (MCB-9410748 and MCB-9601148), and the Hirschl Weill-Caulier Trust. S.W. acknowledges the Pew Scholars Program and the Henry and Camille Dreyfus Foundation. The construction and operation of beamline X-9A are supported by the National Center for Research Resources, Biomedical Technology Program (P41-RR01633). The NSLS is supported by the Department of Energy, Division of Materials Sciences. The data in this paper are from a thesis to be submitted by B.S. in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Sue Golding Graduate Division of Medical Sciences, Albert Einstein College of Medicine.
-
-
-
|