-
1
-
-
0034677535
-
Transcriptional silencing and longevity protein SIR2 is an NAD-dependent histone deacetylase
-
n One of the first reports to show that sirtuins are NAD+-dependent deacetylases
-
Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein SIR2 is an NAD-dependent histone deacetylase. Nature 403, 795-800 (2000). n One of the first reports to show that sirtuins are NAD+-dependent deacetylases.
-
(2000)
Nature
, vol.403
, pp. 795-800
-
-
Imai, S.1
Armstrong, C.M.2
Kaeberlein, M.3
Guarente, L.4
-
2
-
-
0034705129
-
The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases
-
n One of the first reports to show that sirtuins are NAD+-dependent deacetylases
-
Landry J, Sutton A, Tafrov, ST et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl Acad. Sci. USA 97, 5807-5811 (2000). n One of the first reports to show that sirtuins are NAD+-dependent deacetylases.
-
(2000)
Proc. Natl Acad. Sci. USA
, vol.97
, pp. 5807-5811
-
-
Landry, J.1
Sutton, A.2
Tafrov, S.T.3
-
3
-
-
0037066738
-
Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+- dependent deacetylases
-
Borra MT, O'Neill FJ, Jackson MD et al. Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+- dependent deacetylases. J. Biol. Chem. 277, 12632-12641 (2002).
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 12632-12641
-
-
Borra, M.T.1
O'Neill, F.J.2
Jackson, M.D.3
-
4
-
-
33746228121
-
Sirtuins in aging and age-related disease
-
Longo VD, Kennedy BK. Sirtuins in aging and age-related disease. Cell 126, 257-268 (2006).
-
(2006)
Cell
, vol.126
, pp. 257-268
-
-
Longo, V.D.1
Kennedy, B.K.2
-
5
-
-
47549088250
-
The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
Nakahata Y, Kaluzova M, Grimaldi B et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329-340 (2008).
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
Kaluzova, M.2
Grimaldi, B.3
-
6
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher G, Gatfield D, Stratmann M et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317-328 (2008).
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
Gatfield, D.2
Stratmann, M.3
-
7
-
-
0037207475
-
The mammalian SIR2a protein has a role in embryogenesis and gametogenesis
-
McBurney MW, Yang X, Jardine K et al. The mammalian SIR2a protein has a role in embryogenesis and gametogenesis. Mol. Cell. Biol. 23, 38-54 (2003).
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 38-54
-
-
McBurney, M.W.1
Yang, X.2
Jardine, K.3
-
8
-
-
36248975293
-
SIRT1 transgenic mice show phenotypes resembling calorie restriction
-
Bordone L, Cohen D, Robinson A et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6, 759-767 (2007).
-
(2007)
Aging Cell
, vol.6
, pp. 759-767
-
-
Bordone, L.1
Cohen, D.2
Robinson, A.3
-
9
-
-
47749128879
-
SIRT1 protects against high-fat diet-induced metabolic damage
-
Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M, Tschöp MH. SIRT1 protects against high-fat diet-induced metabolic damage. Proc. Natl Acad. Sci. USA 105, 9793-9798 (2008).
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 9793-9798
-
-
Pfluger, P.T.1
Herranz, D.2
Velasco-Miguel, S.3
Serrano, M.4
Tschöp, M.H.5
-
10
-
-
52749091816
-
SIRT1 gain of function increases energy efficiency and prevents diabetes in mice
-
Banks AS, Kon N, Knight C et al. SIRT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 8, 333-341 (2008).
-
(2008)
Cell Metab.
, vol.8
, pp. 333-341
-
-
Banks, A.S.1
Kon, N.2
Knight, C.3
-
12
-
-
25444484672
-
Small molecule regulation of SIR2 protein deacetylases
-
Grubisha O, Smith BC, Denu JM. Small molecule regulation of SIR2 protein deacetylases. FEBS J. 272, 4607-4616 (2005).
-
(2005)
FEBS J.
, vol.272
, pp. 4607-4616
-
-
Grubisha, O.1
Smith, B.C.2
Denu, J.M.3
-
13
-
-
29144501185
-
Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1
-
Napper AD, Hixon J, McDonagh T et al. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J. Med. Chem. 48, 8045-8054 (2005).
-
(2005)
J. Med. Chem.
, vol.48
, pp. 8045-8054
-
-
Napper, A.D.1
Hixon, J.2
McDonagh, T.3
-
14
-
-
0141719702
-
Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
-
n First report that resveratrol activates SIRT1
-
Howitz KT, Bitterman KJ, Cohen HY et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191-196 (2003). n First report that resveratrol activates SIRT1.
-
(2003)
Nature
, vol.425
, pp. 191-196
-
-
Howitz, K.T.1
Bitterman, K.J.2
Cohen, H.Y.3
-
15
-
-
20444431507
-
Substrate specific activation of sirtuins by resveratrol
-
n One of the reports to show that activation of SIRT1 by resveratrol was an artifact of fluorescence assay methods
-
Kaeberlein M, McDonagh T, Heltweg B et al. Substrate specific activation of sirtuins by resveratrol. J. Biol. Chem. 280, 17038-17045 (2005). n One of the reports to show that activation of SIRT1 by resveratrol was an artifact of fluorescence assay methods.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 17038-17045
-
-
Kaeberlein, M.1
McDonagh, T.2
Heltweg, B.3
-
16
-
-
20444444649
-
Mechanism of human SIRT1 activation by resveratrol
-
n One of the reports that showed that activation of SIRT1 by resveratrol was an artifact of fluorescence assay methods
-
Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem. 280, 17187-17195 (2005). n One of the reports that showed that activation of SIRT1 by resveratrol was an artifact of fluorescence assay methods.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 17187-17195
-
-
Borra, M.T.1
Smith, B.C.2
Denu, J.M.3
-
17
-
-
33845399894
-
Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1a
-
Lagouge M, Argmann C, Gerhart-Hines Z et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1a. Cell 127, 1109-1122 (2006).
-
(2006)
Cell
, vol.127
, pp. 1109-1122
-
-
Lagouge, M.1
Argmann, C.2
Gerhart-Hines, Z.3
-
18
-
-
70350524083
-
Resveratrol is not a direct activator of SIRT1 enzyme activity
-
Beher D, Wu J, Cumine S et al. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem. Biol. Drug Des. 74, 619-624 (2009).
-
(2009)
Chem. Biol. Drug Des.
, vol.74
, pp. 619-624
-
-
Beher, D.1
Wu, J.2
Cumine, S.3
-
19
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of Type 2 diabetes
-
n Report of small molecule SIRT1 activators that are more potent than resveratrol
-
Milne JC, Lambert PD, Schenk S et al. Small molecule activators of SIRT1 as therapeutics for the treatment of Type 2 diabetes. Nature 450, 712-716 (2007). n Report of small molecule SIRT1 activators that are more potent than resveratrol.
-
(2007)
Nature
, vol.450
, pp. 712-716
-
-
Milne, J.C.1
Lambert, P.D.2
Schenk, S.3
-
20
-
-
77950246109
-
SRT1720, SRT2183, SRT1460 and resveratrol are not direct activators of SIRT1
-
n Report refuting the claim of [19] that these molecules directly activate SIRT1. As with resveratrol, the results were suggested to be due to fluorescence-based assay artifacts
-
Pacholec M, Chrunyk B, Cunningham D et al. SRT1720, SRT2183, SRT1460 and resveratrol are not direct activators of SIRT1. J. Biol. Chem. 285, 8340-8351 (2010). n Report refuting the claim of [19] that these molecules directly activate SIRT1. As with resveratrol, the results were suggested to be due to fluorescence-based assay artifacts.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 8340-8351
-
-
Pacholec, M.1
Chrunyk, B.2
Cunningham, D.3
-
21
-
-
23944472164
-
Microplate filtration assay for nicotinamide release from NAD using a boronic acid resin
-
McDonagh T, Hixon J, DiStefano PS, Curtis R, Napper AD. Microplate filtration assay for nicotinamide release from NAD using a boronic acid resin. Methods 36, 346-350 (2005).
-
(2005)
Methods
, vol.36
, pp. 346-350
-
-
McDonagh, T.1
Hixon, J.2
DiStefano, P.S.3
Curtis, R.4
Napper, A.D.5
-
22
-
-
33645221885
-
Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage
-
Solomon JM, Pasupuleti R, Xu L et al. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol. Cell. Biol. 26, 28-38 (2006).
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 28-38
-
-
Solomon, J.M.1
Pasupuleti, R.2
Xu, L.3
-
23
-
-
0034672126
-
Application of a fluorescent histone acetyltransferase assay to probe the substrate specificity of the human p300/CBP-associated factor
-
Trievel RC, Li FY, Marmorstein R. Application of a fluorescent histone acetyltransferase assay to probe the substrate specificity of the human p300/CBP-associated factor. Anal. Biochem. 287, 319-328 (2000).
-
(2000)
Anal. Biochem.
, vol.287
, pp. 319-328
-
-
Trievel, R.C.1
Li, F.Y.2
Marmorstein, R.3
-
24
-
-
77958488312
-
SIRT1 activation by small molecules - kinetic and biophysical evidence for direct interaction of enzyme and activator
-
Epub
-
Dai H, Kustigian L, Carney D et al. SIRT1 activation by small molecules - kinetic and biophysical evidence for direct interaction of enzyme and activator. J. Biol. Chem. 285(43), 32695-32703 (2010) (Epub).
-
(2010)
J. Biol. Chem.
, vol.285
, Issue.43
, pp. 32695-32703
-
-
Dai, H.1
Kustigian, L.2
Carney, D.3
-
25
-
-
55749084738
-
A role for the mitochondrial deacetylase SIRT3 in regulating energy homeostasis
-
Ahn B-H, Kim H-S, Song S et al. A role for the mitochondrial deacetylase SIRT3 in regulating energy homeostasis. Proc. Natl Acad. Sci. USA 105, 14447-14452 (2008).
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 14447-14452
-
-
Ahn, B.-H.1
Kim, H.-S.2
Song, S.3
-
26
-
-
75349111140
-
Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
-
Cimen H, Han MJ, Tong Q, Koc H, Koc EC. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 49, 304-311 (2010).
-
(2010)
Biochemistry
, vol.49
, pp. 304-311
-
-
Cimen, H.1
Han, M.J.2
Tong, Q.3
Koc, H.4
Koc, E.C.5
-
27
-
-
33745889628
-
Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
-
Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl Acad. Sci. USA 103, 10224-10229 (2006).
-
(2006)
Proc. Natl Acad. Sci. USA
, vol.103
, pp. 10224-10229
-
-
Schwer, B.1
Bunkenborg, J.2
Verdin, R.O.3
Andersen, J.S.4
Verdin, E.5
-
28
-
-
33745931074
-
Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
-
Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl Acad. Sci. USA 103, 10230-10235 (2006).
-
(2006)
Proc. Natl Acad. Sci. USA
, vol.103
, pp. 10230-10235
-
-
Hallows, W.C.1
Lee, S.2
Denu, J.M.3
-
29
-
-
77951235122
-
NAD+- dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10
-
Yang Y, Cimen H, Han M-J et al. NAD+- dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10. J. Biol. Chem. 285, 7414-7429 (2010).
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 7414-7429
-
-
Yang, Y.1
Cimen, H.2
Han, M.-J.3
-
30
-
-
74049094817
-
SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
-
Kim HS, Patel K, Muldoon-Jacobs K et al. SIRT3 is a mitochondria- localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17, 41-52 (2010).
-
(2010)
Cancer Cell
, vol.17
, pp. 41-52
-
-
Kim, H.S.1
Patel, K.2
Muldoon-Jacobs, K.3
-
31
-
-
0035913911
-
Negative control of p53 by SIR2a promotes cell survival under stress
-
Luo J, Nikolaev AY, Imai S-I et al. Negative control of p53 by SIR2a promotes cell survival under stress. Cell 107, 137-148 (2001).
-
(2001)
Cell
, vol.107
, pp. 137-148
-
-
Luo, J.1
Nikolaev, A.Y.2
Imai, S.-I.3
-
32
-
-
0035913903
-
HSIR2 (SIRT1) functions as an NADdependent p53 deacetylase
-
Vaziri H, Dessain SK, Eaton EN et al. hSIR2 (SIRT1) functions as an NADdependent p53 deacetylase. Cell 107, 149-159 (2001).
-
(2001)
Cell
, vol.107
, pp. 149-159
-
-
Vaziri, H.1
Dessain, S.K.2
Eaton, E.N.3
-
33
-
-
0141814680
-
Developmental defects and p53 hyperacetylation in SIR2 homolog (SIRT1)- deficient mice
-
Cheng HL, Mostoslavsky R, Saito S et al. Developmental defects and p53 hyperacetylation in SIR2 homolog (SIRT1)- deficient mice. Proc. Natl Acad. Sci. USA 100, 10794-10799 (2003).
-
(2003)
Proc. Natl Acad. Sci. USA
, vol.100
, pp. 10794-10799
-
-
Cheng, H.L.1
Mostoslavsky, R.2
Saito, S.3
-
34
-
-
77951049870
-
SRT1720 induces mitochondrial biogenesis and rescues mitochondrial function after oxidant injury in renal proximal tubule cells
-
Funk JA, Odejinmi S, Schnellmann RG. SRT1720 induces mitochondrial biogenesis and rescues mitochondrial function after oxidant injury in renal proximal tubule cells. J. Pharmacol. Exp. Ther. 333, 593-601 (2010).
-
(2010)
J. Pharmacol. Exp. Ther.
, vol.333
, pp. 593-601
-
-
Funk, J.A.1
Odejinmi, S.2
Schnellmann, R.G.3
-
35
-
-
0030797585
-
Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain
-
Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595-606 (1997).
-
(1997)
Cell
, vol.90
, pp. 595-606
-
-
Gu, W.1
Roeder, R.G.2
-
36
-
-
56249100986
-
A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange
-
Liu Y, Dentin R, Chen D et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456, 269-273 (2008).
-
(2008)
Nature
, vol.456
, pp. 269-273
-
-
Liu, Y.1
Dentin, R.2
Chen, D.3
-
37
-
-
33744534726
-
GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1a
-
Lerin C, Rodgers JT, Kalume DE, Kim SH, Pandey A, Puigserver P. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1a. Cell Metab. 3, 429-438 (2006).
-
(2006)
Cell Metab.
, vol.3
, pp. 429-438
-
-
Lerin, C.1
Rodgers, J.T.2
Kalume, D.E.3
Kim, S.H.4
Pandey, A.5
Puigserver, P.6
-
38
-
-
70350606061
-
FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states
-
Kemper JK, Xiao Z, Ponugoti B et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 10, 392-404 (2009).
-
(2009)
Cell Metab.
, vol.10
, pp. 392-404
-
-
Kemper, J.K.1
Xiao, Z.2
Ponugoti, B.3
-
39
-
-
0036478904
-
Increased insulin sensitivity despite lipodystrophy in Crebbp heterozygous mice
-
Yamauchi T, Oike Y, Kamon J et al. Increased insulin sensitivity despite lipodystrophy in Crebbp heterozygous mice. Nature Genetics 30, 221-226 (2002).
-
(2002)
Nature Genetics
, vol.30
, pp. 221-226
-
-
Yamauchi, T.1
Oike, Y.2
Kamon, J.3
-
40
-
-
10944243759
-
Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferasedependent chromatin transcription
-
Balasubramanyam K, Varier RA, Altaf M et al. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferasedependent chromatin transcription. J. Biol. Chem. 279, 51163-51171 (2004).
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 51163-51171
-
-
Balasubramanyam, K.1
Varier, R.A.2
Altaf, M.3
-
41
-
-
46349088791
-
Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity
-
Weisberg SP, Leibel R, Tortoriello DV. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinol. 149, 3549-3558 (2008).
-
(2008)
Endocrinol.
, vol.149
, pp. 3549-3558
-
-
Weisberg, S.P.1
Leibel, R.2
Tortoriello, D.V.3
-
42
-
-
54849425547
-
Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
-
Feige JN, Lagouge M, Canto C et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 8, 347-358 (2008).
-
(2008)
Cell Metab.
, vol.8
, pp. 347-358
-
-
Feige, J.N.1
Lagouge, M.2
Canto, C.3
|