메뉴 건너뛰기




Volumn 35, Issue 6, 2010, Pages 352-360

Multitasking with ubiquitin through multivalent interactions

Author keywords

[No Author keywords available]

Indexed keywords

ATM PROTEIN; CYCLINE; DAXX PROTEIN; DNA; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; PROTEIN MDM2; PROTEIN P50; PROTEIN P52; UBIQUITIN; UBIQUITIN PROTEIN LIGASE E3;

EID: 77954757965     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2010.01.002     Document Type: Review
Times cited : (52)

References (100)
  • 1
    • 0019174693 scopus 로고
    • Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes
    • Wilkinson K.D., et al. Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. J. Biol. Chem. 1980, 255:7529-7532.
    • (1980) J. Biol. Chem. , vol.255 , pp. 7529-7532
    • Wilkinson, K.D.1
  • 2
    • 70349441058 scopus 로고    scopus 로고
    • Ubiquitin-binding domains - from structures to functions
    • Dikic I., et al. Ubiquitin-binding domains - from structures to functions. Nat. Rev. Mol. Cell Biol. 2009, 10:659-671.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 659-671
    • Dikic, I.1
  • 3
    • 1442323729 scopus 로고    scopus 로고
    • N-terminal ubiquitination: more protein substrates join in
    • Ciechanover A., Ben-Saadon R. N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol. 2004, 14:103-106.
    • (2004) Trends Cell Biol. , vol.14 , pp. 103-106
    • Ciechanover, A.1    Ben-Saadon, R.2
  • 4
    • 34249042608 scopus 로고    scopus 로고
    • Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3
    • Wang X., et al. Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J. Cell Biol. 2007, 177:613-624.
    • (2007) J. Cell Biol. , vol.177 , pp. 613-624
    • Wang, X.1
  • 5
    • 21744433861 scopus 로고    scopus 로고
    • Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase
    • Cadwell K., Coscoy L. Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 2005, 309:127-130.
    • (2005) Science , vol.309 , pp. 127-130
    • Cadwell, K.1    Coscoy, L.2
  • 6
    • 33947539481 scopus 로고    scopus 로고
    • Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue
    • Ravid T., Hochstrasser M. Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue. Nat. Cell Biol. 2007, 9:422-427.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 422-427
    • Ravid, T.1    Hochstrasser, M.2
  • 7
    • 0041706156 scopus 로고    scopus 로고
    • A proteomics approach to understanding protein ubiquitination
    • Peng J., et al. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 2003, 21:921-926.
    • (2003) Nat. Biotechnol. , vol.21 , pp. 921-926
    • Peng, J.1
  • 8
    • 33750219981 scopus 로고    scopus 로고
    • A ubiquitin ligase complex assembles linear polyubiquitin chains
    • Kirisako T., et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 2006, 25:4877-4887.
    • (2006) EMBO J. , vol.25 , pp. 4877-4887
    • Kirisako, T.1
  • 9
    • 33645703441 scopus 로고    scopus 로고
    • A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivocross-linking
    • Tagwerker C., et al. A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivocross-linking. Mol. Cell Proteomics 2006, 5:737-748.
    • (2006) Mol. Cell Proteomics , vol.5 , pp. 737-748
    • Tagwerker, C.1
  • 10
    • 34547130325 scopus 로고    scopus 로고
    • Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages
    • Kim H.T., et al. Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J. Biol. Chem. 2007, 282:17375-17386.
    • (2007) J. Biol. Chem. , vol.282 , pp. 17375-17386
    • Kim, H.T.1
  • 11
    • 71449095149 scopus 로고    scopus 로고
    • Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain
    • Kulathu Y., et al. Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain. Nat. Struct. Mol. Biol. 2009, 16:1328-1330.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 1328-1330
    • Kulathu, Y.1
  • 12
    • 33847056330 scopus 로고    scopus 로고
    • Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH
    • Eddins M.J., et al. Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH. J. Mol. Biol. 2007, 367:204-211.
    • (2007) J. Mol. Biol. , vol.367 , pp. 204-211
    • Eddins, M.J.1
  • 13
    • 1342304089 scopus 로고    scopus 로고
    • Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling
    • Varadan R., et al. Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling. J. Biol. Chem. 2004, 279:7055-7063.
    • (2004) J. Biol. Chem. , vol.279 , pp. 7055-7063
    • Varadan, R.1
  • 14
    • 67349231313 scopus 로고    scopus 로고
    • Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains
    • Komander D., et al. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep. 2009, 10:466-473.
    • (2009) EMBO Rep. , vol.10 , pp. 466-473
    • Komander, D.1
  • 15
    • 73649116305 scopus 로고    scopus 로고
    • Exploring the Linkage Dependence of Polyubiquitin Conformations Using Molecular Modeling
    • Fushman D., Walker O. Exploring the Linkage Dependence of Polyubiquitin Conformations Using Molecular Modeling. J. Mol. Biol. 2010, 395:803-814.
    • (2010) J. Mol. Biol. , vol.395 , pp. 803-814
    • Fushman, D.1    Walker, O.2
  • 16
    • 20444391345 scopus 로고    scopus 로고
    • Structural determinants for selective recognition of a Lys48-linked polyubiquitin chain by a UBA domain
    • Varadan R., et al. Structural determinants for selective recognition of a Lys48-linked polyubiquitin chain by a UBA domain. Mol. Cell 2005, 18:687-698.
    • (2005) Mol. Cell , vol.18 , pp. 687-698
    • Varadan, R.1
  • 17
    • 33846548206 scopus 로고    scopus 로고
    • Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity
    • Huang D.T., et al. Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity. Nature 2007, 445:394-398.
    • (2007) Nature , vol.445 , pp. 394-398
    • Huang, D.T.1
  • 18
    • 28944435024 scopus 로고    scopus 로고
    • Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34
    • Petroski M.D., Deshaies R.J. Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34. Cell 2005, 123:1107-1120.
    • (2005) Cell , vol.123 , pp. 1107-1120
    • Petroski, M.D.1    Deshaies, R.J.2
  • 19
    • 0033525582 scopus 로고    scopus 로고
    • Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair
    • Hofmann R.M., Pickart C.M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 1999, 96:645-653.
    • (1999) Cell , vol.96 , pp. 645-653
    • Hofmann, R.M.1    Pickart, C.M.2
  • 20
    • 33749506057 scopus 로고    scopus 로고
    • Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation
    • Eddins M.J., et al. Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat. Struct. Mol. Biol. 2006, 13:915-920.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 915-920
    • Eddins, M.J.1
  • 22
    • 29244447753 scopus 로고    scopus 로고
    • Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis
    • Wang M., Pickart C.M. Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis. EMBO J. 2005, 24:4324-4333.
    • (2005) EMBO J. , vol.24 , pp. 4324-4333
    • Wang, M.1    Pickart, C.M.2
  • 23
    • 67649227630 scopus 로고    scopus 로고
    • Polyubiquitination by HECT E3s and the determinants of chain type specificity
    • Kim H.C., Huibregtse J.M. Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol. Cell Biol. 2009, 29:3307-3318.
    • (2009) Mol. Cell Biol. , vol.29 , pp. 3307-3318
    • Kim, H.C.1    Huibregtse, J.M.2
  • 24
    • 0037068455 scopus 로고    scopus 로고
    • RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO
    • Hoege C., et al. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 2002, 419:135-141.
    • (2002) Nature , vol.419 , pp. 135-141
    • Hoege, C.1
  • 25
    • 0034600851 scopus 로고    scopus 로고
    • Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair
    • Ulrich H.D., Jentsch S. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 2000, 19:3388-3397.
    • (2000) EMBO J. , vol.19 , pp. 3388-3397
    • Ulrich, H.D.1    Jentsch, S.2
  • 26
    • 77954758752 scopus 로고    scopus 로고
    • The regulation of MDM2 by multisite phosphorylation-Opportunities for molecular-based intervention to target tumours?
    • Meek D.W., Hupp T.R. The regulation of MDM2 by multisite phosphorylation-Opportunities for molecular-based intervention to target tumours?. Semin. Cancer Biol. 2009.
    • (2009) Semin. Cancer Biol.
    • Meek, D.W.1    Hupp, T.R.2
  • 27
    • 72449125109 scopus 로고    scopus 로고
    • ATM activates p53 by regulating MDM2 oligomerization and E3 processivity
    • Cheng Q., et al. ATM activates p53 by regulating MDM2 oligomerization and E3 processivity. EMBO J. 2009, 28:3857-3867.
    • (2009) EMBO J. , vol.28 , pp. 3857-3867
    • Cheng, Q.1
  • 28
    • 0030905284 scopus 로고    scopus 로고
    • Mdm2 promotes the rapid degradation of p53
    • Haupt Y., et al. Mdm2 promotes the rapid degradation of p53. Nature 1997, 387:296-299.
    • (1997) Nature , vol.387 , pp. 296-299
    • Haupt, Y.1
  • 29
    • 71749107527 scopus 로고    scopus 로고
    • Polo-like kinase-1 phosphorylates MDM2 at Ser260 and stimulates MDM2-mediated p53 turnover
    • Dias S.S., et al. Polo-like kinase-1 phosphorylates MDM2 at Ser260 and stimulates MDM2-mediated p53 turnover. FEBS Lett. 2009, 583:3543-3548.
    • (2009) FEBS Lett. , vol.583 , pp. 3543-3548
    • Dias, S.S.1
  • 30
    • 33746648187 scopus 로고    scopus 로고
    • Critical role for Daxx in regulating Mdm2
    • Tang J., et al. Critical role for Daxx in regulating Mdm2. Nat. Cell Biol. 2006, 8:855-862.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 855-862
    • Tang, J.1
  • 31
    • 1842421376 scopus 로고    scopus 로고
    • A dynamic role of HAUSP in the p53-Mdm2 pathway
    • Li M., et al. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol. Cell 2004, 13:879-886.
    • (2004) Mol. Cell , vol.13 , pp. 879-886
    • Li, M.1
  • 32
    • 0034708458 scopus 로고    scopus 로고
    • Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53
    • Fang S., et al. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 2000, 275:8945-8951.
    • (2000) J. Biol. Chem. , vol.275 , pp. 8945-8951
    • Fang, S.1
  • 33
    • 46949093338 scopus 로고    scopus 로고
    • The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex
    • Song M.S., et al. The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex. EMBO J. 2008, 27:1863-1874.
    • (2008) EMBO J. , vol.27 , pp. 1863-1874
    • Song, M.S.1
  • 34
    • 0034737438 scopus 로고    scopus 로고
    • Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding
    • Sakaguchi K., et al. Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J. Biol. Chem. 2000, 275:9278-9283.
    • (2000) J. Biol. Chem. , vol.275 , pp. 9278-9283
    • Sakaguchi, K.1
  • 35
    • 70450227424 scopus 로고    scopus 로고
    • Stress-induced phosphorylation of S. pombe Atf1 abrogates its interaction with F box protein Fbh1
    • Lawrence C.L., et al. Stress-induced phosphorylation of S. pombe Atf1 abrogates its interaction with F box protein Fbh1. Curr. Biol. 2009, 19:1907-1911.
    • (2009) Curr. Biol. , vol.19 , pp. 1907-1911
    • Lawrence, C.L.1
  • 36
    • 68049084674 scopus 로고    scopus 로고
    • Breaking the chains: structure and function of the deubiquitinases
    • Komander D., et al. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 2009, 10:550-563.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 550-563
    • Komander, D.1
  • 37
    • 67649634849 scopus 로고    scopus 로고
    • Defining the human deubiquitinating enzyme interaction landscape
    • Sowa M.E., et al. Defining the human deubiquitinating enzyme interaction landscape. Cell 2009, 138:389-403.
    • (2009) Cell , vol.138 , pp. 389-403
    • Sowa, M.E.1
  • 38
    • 55549086868 scopus 로고    scopus 로고
    • The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits Lys63 linkages in mixed linkage ubiquitin chains
    • Winborn B.J., et al. The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits Lys63 linkages in mixed linkage ubiquitin chains. J. Biol. Chem. 2008, 283:26436-26443.
    • (2008) J. Biol. Chem. , vol.283 , pp. 26436-26443
    • Winborn, B.J.1
  • 39
    • 11844251985 scopus 로고    scopus 로고
    • A20 inhibits NF-kappaB activation by dual ubiquitin-editing functions
    • Heyninck K., Beyaert R. A20 inhibits NF-kappaB activation by dual ubiquitin-editing functions. Trends Biochem. Sci. 2005, 30:1-4.
    • (2005) Trends Biochem. Sci. , vol.30 , pp. 1-4
    • Heyninck, K.1    Beyaert, R.2
  • 40
    • 33646034316 scopus 로고    scopus 로고
    • Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO
    • Ea C.K., et al. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 2006, 22:245-257.
    • (2006) Mol. Cell , vol.22 , pp. 245-257
    • Ea, C.K.1
  • 41
    • 3943054838 scopus 로고    scopus 로고
    • De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling
    • Wertz I.E., et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004, 430:694-699.
    • (2004) Nature , vol.430 , pp. 694-699
    • Wertz, I.E.1
  • 42
    • 34249949779 scopus 로고    scopus 로고
    • RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites
    • Sobhian B., et al. RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 2007, 316:1198-1202.
    • (2007) Science , vol.316 , pp. 1198-1202
    • Sobhian, B.1
  • 43
    • 62549161305 scopus 로고    scopus 로고
    • Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80
    • Sims J.J., Cohen R.E. Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80. Mol. Cell 2009, 33:775-783.
    • (2009) Mol. Cell , vol.33 , pp. 775-783
    • Sims, J.J.1    Cohen, R.E.2
  • 44
    • 69149088033 scopus 로고    scopus 로고
    • Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80
    • Sato Y., et al. Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80. EMBO J. 2009, 28:2461-2468.
    • (2009) EMBO J. , vol.28 , pp. 2461-2468
    • Sato, Y.1
  • 45
    • 62549155321 scopus 로고    scopus 로고
    • Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation
    • Rahighi S., et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 2009, 136:1098-1109.
    • (2009) Cell , vol.136 , pp. 1098-1109
    • Rahighi, S.1
  • 46
    • 61649103747 scopus 로고    scopus 로고
    • Structural basis for recognition of diubiquitins by NEMO
    • Lo Y.C., et al. Structural basis for recognition of diubiquitins by NEMO. Mol. Cell 2009, 33:602-615.
    • (2009) Mol. Cell , vol.33 , pp. 602-615
    • Lo, Y.C.1
  • 47
    • 70349995780 scopus 로고    scopus 로고
    • Crystal structure of the NEMO ubiquitin-binding domain in complex with Lys 63-linked di-ubiquitin
    • Yoshikawa A., et al. Crystal structure of the NEMO ubiquitin-binding domain in complex with Lys 63-linked di-ubiquitin. FEBS Lett. 2009, 583:3317-3322.
    • (2009) FEBS Lett. , vol.583 , pp. 3317-3322
    • Yoshikawa, A.1
  • 48
    • 0034254546 scopus 로고    scopus 로고
    • Developmentally regulated, alternative splicing of the Rpn10 gene generates multiple forms of 26S proteasomes
    • Kawahara H., et al. Developmentally regulated, alternative splicing of the Rpn10 gene generates multiple forms of 26S proteasomes. EMBO J. 2000, 19:4144-4153.
    • (2000) EMBO J. , vol.19 , pp. 4144-4153
    • Kawahara, H.1
  • 49
    • 17144417404 scopus 로고    scopus 로고
    • Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition
    • Wang Q., et al. Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition. J. Mol. Biol. 2005, 348:727-739.
    • (2005) J. Mol. Biol. , vol.348 , pp. 727-739
    • Wang, Q.1
  • 50
    • 68349135106 scopus 로고    scopus 로고
    • Structure of the S5a:K48-linked diubiquitin complex and its interactions with Rpn13
    • Zhang N., et al. Structure of the S5a:K48-linked diubiquitin complex and its interactions with Rpn13. Mol. Cell 2009, 35:280-290.
    • (2009) Mol. Cell , vol.35 , pp. 280-290
    • Zhang, N.1
  • 51
    • 34247349494 scopus 로고    scopus 로고
    • Defining how ubiquitin receptors hHR23a and S5a bind polyubiquitin
    • Kang Y., et al. Defining how ubiquitin receptors hHR23a and S5a bind polyubiquitin. J. Mol. Biol. 2007, 369:168-176.
    • (2007) J. Mol. Biol. , vol.369 , pp. 168-176
    • Kang, Y.1
  • 52
    • 44349116590 scopus 로고    scopus 로고
    • Proteasome subunit Rpn13 is a novel ubiquitin receptor
    • Husnjak K., et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 2008, 453:481-488.
    • (2008) Nature , vol.453 , pp. 481-488
    • Husnjak, K.1
  • 53
    • 0038394715 scopus 로고    scopus 로고
    • Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation
    • Haglund K., et al. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat. Cell Biol. 2003, 5:461-466.
    • (2003) Nat. Cell Biol. , vol.5 , pp. 461-466
    • Haglund, K.1
  • 54
    • 33644852909 scopus 로고    scopus 로고
    • Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain
    • Huang F., et al. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol. Cell 2006, 21:737-748.
    • (2006) Mol. Cell , vol.21 , pp. 737-748
    • Huang, F.1
  • 55
    • 68249135262 scopus 로고    scopus 로고
    • Avid interactions underlie the Lys63-linked polyubiquitin binding specificities observed for UBA domains
    • Sims J.J., et al. Avid interactions underlie the Lys63-linked polyubiquitin binding specificities observed for UBA domains. Nat. Struct. Mol. Biol. 2009, 16:883-889.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 883-889
    • Sims, J.J.1
  • 56
    • 69949093459 scopus 로고    scopus 로고
    • Direct activation of protein kinases by unanchored polyubiquitin chains
    • Xia Z.P., et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 2009, 461:114-119.
    • (2009) Nature , vol.461 , pp. 114-119
    • Xia, Z.P.1
  • 57
    • 65649115267 scopus 로고    scopus 로고
    • Recognition and processing of ubiquitin-protein conjugates by the proteasome
    • Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 2009, 78:477-513.
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 477-513
    • Finley, D.1
  • 58
    • 44349094727 scopus 로고    scopus 로고
    • Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction
    • Schreiner P., et al. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 2008, 453:548-552.
    • (2008) Nature , vol.453 , pp. 548-552
    • Schreiner, P.1
  • 59
    • 33749348820 scopus 로고    scopus 로고
    • A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes
    • Hamazaki J., et al. A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J. 2006, 25:4524-4536.
    • (2006) EMBO J. , vol.25 , pp. 4524-4536
    • Hamazaki, J.1
  • 60
    • 33748188085 scopus 로고    scopus 로고
    • Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1
    • Yao T., et al. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat. Cell Biol. 2006, 8:994-1002.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 994-1002
    • Yao, T.1
  • 61
    • 33845713194 scopus 로고    scopus 로고
    • HRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37
    • Qiu X.B., et al. hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J. 2006, 25:5742-5753.
    • (2006) EMBO J. , vol.25 , pp. 5742-5753
    • Qiu, X.B.1
  • 62
    • 34548259958 scopus 로고    scopus 로고
    • P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
    • Pankiv S., et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 2007, 282:24131-24145.
    • (2007) J. Biol. Chem. , vol.282 , pp. 24131-24145
    • Pankiv, S.1
  • 63
    • 60849099049 scopus 로고    scopus 로고
    • A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
    • Kirkin V., et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 2009, 33:505-516.
    • (2009) Mol. Cell , vol.33 , pp. 505-516
    • Kirkin, V.1
  • 64
    • 70350450808 scopus 로고    scopus 로고
    • The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
    • Thurston T.L., et al. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 2009, 10:1215-1221.
    • (2009) Nat. Immunol. , vol.10 , pp. 1215-1221
    • Thurston, T.L.1
  • 65
    • 0034010261 scopus 로고    scopus 로고
    • Epsin binds to clathrin by associating directly with the clathrin-terminal domain. Evidence for cooperative binding through two discrete sites
    • Drake M.T., et al. Epsin binds to clathrin by associating directly with the clathrin-terminal domain. Evidence for cooperative binding through two discrete sites. J. Biol. Chem. 2000, 275:6479-6489.
    • (2000) J. Biol. Chem. , vol.275 , pp. 6479-6489
    • Drake, M.T.1
  • 66
    • 0037179662 scopus 로고    scopus 로고
    • Curvature of clathrin-coated pits driven by epsin
    • Ford M.G., et al. Curvature of clathrin-coated pits driven by epsin. Nature 2002, 419:361-366.
    • (2002) Nature , vol.419 , pp. 361-366
    • Ford, M.G.1
  • 67
    • 58549096725 scopus 로고    scopus 로고
    • Epsin 1 is involved in recruitment of ubiquitinated EGF receptors into clathrin-coated pits
    • Kazazic M., et al. Epsin 1 is involved in recruitment of ubiquitinated EGF receptors into clathrin-coated pits. Traffic 2009, 10:235-245.
    • (2009) Traffic , vol.10 , pp. 235-245
    • Kazazic, M.1
  • 68
    • 36248991778 scopus 로고    scopus 로고
    • ESCRTing proteins in the endocytic pathway
    • Saksena S., et al. ESCRTing proteins in the endocytic pathway. Trends Biochem. Sci. 2007, 32:561-573.
    • (2007) Trends Biochem. Sci. , vol.32 , pp. 561-573
    • Saksena, S.1
  • 69
    • 39149132089 scopus 로고    scopus 로고
    • ESCRT complexes and the biogenesis of multivesicular bodies
    • Hurley J.H. ESCRT complexes and the biogenesis of multivesicular bodies. Curr. Opin. Cell Biol. 2008, 20:4-11.
    • (2008) Curr. Opin. Cell Biol. , vol.20 , pp. 4-11
    • Hurley, J.H.1
  • 70
    • 33750532531 scopus 로고    scopus 로고
    • Molecular mechanisms of coupled monoubiquitination
    • Woelk T., et al. Molecular mechanisms of coupled monoubiquitination. Nat. Cell Biol. 2006, 8:1246-1254.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 1246-1254
    • Woelk, T.1
  • 71
    • 33746594215 scopus 로고    scopus 로고
    • A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling
    • Fallon L., et al. A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat. Cell Biol. 2006, 8:834-842.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 834-842
    • Fallon, L.1
  • 72
    • 33645148675 scopus 로고    scopus 로고
    • Regulation of ubiquitin-binding proteins by monoubiquitination
    • Hoeller D., et al. Regulation of ubiquitin-binding proteins by monoubiquitination. Nat. Cell Biol. 2006, 8:163-169.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 163-169
    • Hoeller, D.1
  • 73
    • 34247504273 scopus 로고    scopus 로고
    • Evidence for a direct role of the Doa4 deubiquitinating enzyme in protein sorting into the MVB pathway
    • Nikko E., Andre B. Evidence for a direct role of the Doa4 deubiquitinating enzyme in protein sorting into the MVB pathway. Traffic 2007, 8:566-581.
    • (2007) Traffic , vol.8 , pp. 566-581
    • Nikko, E.1    Andre, B.2
  • 74
    • 33745754789 scopus 로고    scopus 로고
    • A deubiquitinating enzyme UBPY regulates the level of protein ubiquitination on endosomes
    • Mizuno E., et al. A deubiquitinating enzyme UBPY regulates the level of protein ubiquitination on endosomes. Traffic 2006, 7:1017-1031.
    • (2006) Traffic , vol.7 , pp. 1017-1031
    • Mizuno, E.1
  • 75
    • 4344559454 scopus 로고    scopus 로고
    • An unstructured initiation site is required for efficient proteasome-mediated degradation
    • Prakash S., et al. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat. Struct. Mol. Biol. 2004, 11:830-837.
    • (2004) Nat. Struct. Mol. Biol. , vol.11 , pp. 830-837
    • Prakash, S.1
  • 76
    • 57749102552 scopus 로고    scopus 로고
    • Substrate selection by the proteasome during degradation of protein complexes
    • Prakash S., et al. Substrate selection by the proteasome during degradation of protein complexes. Nat. Chem. Biol. 2009, 5:29-36.
    • (2009) Nat. Chem. Biol. , vol.5 , pp. 29-36
    • Prakash, S.1
  • 77
    • 0026523562 scopus 로고
    • Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-kappa B subunit
    • Henkel T., et al. Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-kappa B subunit. Cell 1992, 68:1121-1133.
    • (1992) Cell , vol.68 , pp. 1121-1133
    • Henkel, T.1
  • 78
    • 0034745420 scopus 로고    scopus 로고
    • NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100
    • Xiao G., et al. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol. Cell 2001, 7:401-409.
    • (2001) Mol. Cell , vol.7 , pp. 401-409
    • Xiao, G.1
  • 79
    • 0027980321 scopus 로고
    • The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B
    • Palombella V.J., et al. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 1994, 78:773-785.
    • (1994) Cell , vol.78 , pp. 773-785
    • Palombella, V.J.1
  • 80
    • 0041856286 scopus 로고    scopus 로고
    • Stability of the Rel homology domain is critical for generation of NF-kappa B p50 subunit
    • Lin L., Kobayashi M. Stability of the Rel homology domain is critical for generation of NF-kappa B p50 subunit. J. Biol. Chem. 2003, 278:31479-31485.
    • (2003) J. Biol. Chem. , vol.278 , pp. 31479-31485
    • Lin, L.1    Kobayashi, M.2
  • 81
    • 0035266072 scopus 로고    scopus 로고
    • ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal
    • Lee C., et al. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell 2001, 7:627-637.
    • (2001) Mol. Cell , vol.7 , pp. 627-637
    • Lee, C.1
  • 82
    • 0029924035 scopus 로고    scopus 로고
    • A glycine-rich region in NF-kappaB p105 functions as a processing signal for the generation of the p50 subunit
    • Lin L., Ghosh S. A glycine-rich region in NF-kappaB p105 functions as a processing signal for the generation of the p50 subunit. Mol. Cell Biol. 1996, 16:2248-2254.
    • (1996) Mol. Cell Biol. , vol.16 , pp. 2248-2254
    • Lin, L.1    Ghosh, S.2
  • 83
    • 56949099243 scopus 로고    scopus 로고
    • Gly-Ala repeats induce position- and substrate-specific regulation of 26 S proteasome-dependent partial processing
    • Daskalogianni C., et al. Gly-Ala repeats induce position- and substrate-specific regulation of 26 S proteasome-dependent partial processing. J. Biol. Chem. 2008, 283:30090-30100.
    • (2008) J. Biol. Chem. , vol.283 , pp. 30090-30100
    • Daskalogianni, C.1
  • 84
    • 33646152750 scopus 로고    scopus 로고
    • Glycine-alanine repeats impair proper substrate unfolding by the proteasome
    • Hoyt M.A., et al. Glycine-alanine repeats impair proper substrate unfolding by the proteasome. EMBO J. 2006, 25:1720-1729.
    • (2006) EMBO J. , vol.25 , pp. 1720-1729
    • Hoyt, M.A.1
  • 85
    • 34547119036 scopus 로고    scopus 로고
    • Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mimics Epstein-Barr virus EBNA1 immune evasion through central repeat domain effects on protein processing
    • Kwun H.J., et al. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mimics Epstein-Barr virus EBNA1 immune evasion through central repeat domain effects on protein processing. J. Virol. 2007, 81:8225-8235.
    • (2007) J. Virol. , vol.81 , pp. 8225-8235
    • Kwun, H.J.1
  • 86
    • 33845223494 scopus 로고    scopus 로고
    • Ubiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damage
    • Guo C., et al. Ubiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damage. Mol. Cell Biol. 2006, 26:8892-8900.
    • (2006) Mol. Cell Biol. , vol.26 , pp. 8892-8900
    • Guo, C.1
  • 87
    • 33847381960 scopus 로고    scopus 로고
    • Contributions of ubiquitin- and PCNA-binding domains to the activity of Polymerase eta in Saccharomyces cerevisiae
    • Parker J.L., et al. Contributions of ubiquitin- and PCNA-binding domains to the activity of Polymerase eta in Saccharomyces cerevisiae. Nucleic Acids Res. 2007, 35:881-889.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 881-889
    • Parker, J.L.1
  • 88
    • 44449138846 scopus 로고    scopus 로고
    • Regulation of polymerase exchange between Poleta and Poldelta by monoubiquitination of PCNA and the movement of DNA polymerase holoenzyme
    • Zhuang Z., et al. Regulation of polymerase exchange between Poleta and Poldelta by monoubiquitination of PCNA and the movement of DNA polymerase holoenzyme. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:5361-5366.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 5361-5366
    • Zhuang, Z.1
  • 89
    • 21044442126 scopus 로고    scopus 로고
    • UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex
    • Sugasawa K., et al. UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 2005, 121:387-400.
    • (2005) Cell , vol.121 , pp. 387-400
    • Sugasawa, K.1
  • 90
    • 0035930582 scopus 로고    scopus 로고
    • UV-damaged DNA-binding proteins are targets of CUL-4A-mediated ubiquitination and degradation
    • Chen X., et al. UV-damaged DNA-binding proteins are targets of CUL-4A-mediated ubiquitination and degradation. J. Biol. Chem. 2001, 276:48175-48182.
    • (2001) J. Biol. Chem. , vol.276 , pp. 48175-48182
    • Chen, X.1
  • 91
    • 57749198023 scopus 로고    scopus 로고
    • Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex
    • Scrima A., et al. Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex. Cell 2008, 135:1213-1223.
    • (2008) Cell , vol.135 , pp. 1213-1223
    • Scrima, A.1
  • 92
    • 17944361949 scopus 로고    scopus 로고
    • Sequential assembly of the nucleotide excision repair factors in vivo
    • Volker M., et al. Sequential assembly of the nucleotide excision repair factors in vivo. Mol. Cell 2001, 8:213-224.
    • (2001) Mol. Cell , vol.8 , pp. 213-224
    • Volker, M.1
  • 93
    • 33744781568 scopus 로고    scopus 로고
    • Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage
    • Wang H., et al. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol. Cell 2006, 22:383-394.
    • (2006) Mol. Cell , vol.22 , pp. 383-394
    • Wang, H.1
  • 94
    • 35148894396 scopus 로고    scopus 로고
    • DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics
    • Ikura T., et al. DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol. Cell Biol. 2007, 27:7028-7040.
    • (2007) Mol. Cell Biol. , vol.27 , pp. 7028-7040
    • Ikura, T.1
  • 95
    • 46149091721 scopus 로고    scopus 로고
    • H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation
    • Fleming A.B., et al. H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation. Mol. Cell 2008, 31:57-66.
    • (2008) Mol. Cell , vol.31 , pp. 57-66
    • Fleming, A.B.1
  • 96
    • 0037019333 scopus 로고    scopus 로고
    • Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast
    • Sun Z.W., Allis C.D. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 2002, 418:104-108.
    • (2002) Nature , vol.418 , pp. 104-108
    • Sun, Z.W.1    Allis, C.D.2
  • 97
    • 70349731733 scopus 로고    scopus 로고
    • Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability
    • Chandrasekharan M.B., et al. Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:16686-16691.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 16686-16691
    • Chandrasekharan, M.B.1
  • 98
    • 32944469894 scopus 로고    scopus 로고
    • Bortezomib: proteasome inhibition as an effective anticancer therapy
    • Richardson P.G., et al. Bortezomib: proteasome inhibition as an effective anticancer therapy. Annu. Rev. Med. 2006, 57:33-47.
    • (2006) Annu. Rev. Med. , vol.57 , pp. 33-47
    • Richardson, P.G.1
  • 99
    • 37649000950 scopus 로고    scopus 로고
    • Tumor cell-selective regulation of NOXA by c-MYC in response to proteasome inhibition
    • Nikiforov M.A., et al. Tumor cell-selective regulation of NOXA by c-MYC in response to proteasome inhibition. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:19488-19493.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 19488-19493
    • Nikiforov, M.A.1
  • 100
    • 60549109872 scopus 로고    scopus 로고
    • ERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells
    • Wang Q., et al. ERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:2200-2205.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 2200-2205
    • Wang, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.