메뉴 건너뛰기




Volumn 5, Issue 1, 2010, Pages 12-24

The role of the O-GlcNAc modification in regulating eukaryotic gene expression

Author keywords

O GlcNAc; Post translational modification; Review; Transcriptional regulation

Indexed keywords

ACETYLGLUCOSAMINIDASE; BINDING PROTEIN; COACTIVATING ARGININE METHYLTRANSFERASE; CYCLIC AMP RESPONSIVE ELEMENT BINDING PROTEIN; CYCLIC AMP RESPONSIVE ELEMENT BINDING PROTEIN BINDING PROTEIN; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; METHYLTRANSFERASE; N ACETYLGLUCOSAMINE; N ACETYLGLUCOSAMINYLTRANSFERASE; PROTEIN CRTC2; REGULATOR PROTEIN; TANK BINDING KINASE 1 BINDING PROTEIN 1; TRANSCRIPTION FACTOR FKHR; TRANSCRIPTION FACTOR PDX 1; UNCLASSIFIED DRUG; URIDINE DIPHOSPHATE N ACETYLGLUCOSAMINE;

EID: 77951923870     PISSN: 15743624     EISSN: None     Source Type: Journal    
DOI: 10.2174/157436210790226465     Document Type: Article
Times cited : (23)

References (145)
  • 1
    • 0036469065 scopus 로고    scopus 로고
    • Signal transduction and the control of gene expression
    • Brivanlou AH, Darnell JE, Jr. Signal transduction and the control of gene expression. Science 2002; 295: 813-8.
    • (2002) Science , vol.295 , pp. 813-818
    • Brivanlou, A.H.1    Darnell J.E., Jr.2
  • 2
    • 0037154982 scopus 로고    scopus 로고
    • A unified theory of gene expression
    • Orphanides G, Reinberg D. A unified theory of gene expression. Cell 2002; 108: 439-51.
    • (2002) Cell , vol.108 , pp. 439-451
    • Orphanides, G.1    Reinberg, D.2
  • 3
    • 0037819447 scopus 로고    scopus 로고
    • Transcription regulation and animal diversity
    • Levine M, Tjian R. Transcription regulation and animal diversity. Nature 2003; 424: 147-51.
    • (2003) Nature , vol.424 , pp. 147-151
    • Levine, M.1    Tjian, R.2
  • 4
    • 33847298964 scopus 로고    scopus 로고
    • The gateway to transcription: identifying, characterizing and understanding promoters in the eukaryotic genome
    • Heintzman ND, Ren B. The gateway to transcription: identifying, characterizing and understanding promoters in the eukaryotic genome. Cell Mol Life Sci 2007; 64: 386-400.
    • (2007) Cell Mol Life Sci , vol.64 , pp. 386-400
    • Heintzman, N.D.1    Ren, B.2
  • 5
    • 1642543836 scopus 로고    scopus 로고
    • Amolecular switchboard'-covalent modifications to proteins and their impact on transcription
    • Khidekel N, Hsieh-Wilson LC. A 'molecular switchboard'-covalent modifications to proteins and their impact on transcription. Org Biomol Chem 2004; 2: 1-7.
    • (2004) Org Biomol Chem , vol.2 , pp. 1-7
    • Khidekel, N.1    Hsieh-Wilson, L.C.2
  • 6
    • 0021280147 scopus 로고
    • Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes Evidence for O-linked GlcNAc
    • Torres CR, Hart GW. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem 1984; 259: 3308-17.
    • (1984) J Biol Chem , vol.259 , pp. 3308-3317
    • Torres, C.R.1    Hart, G.W.2
  • 7
    • 0023037076 scopus 로고
    • The subcellular distribution of terminal Nacetylglucosamine moieties. Localization of a novel proteinsaccharide linkage, O-linked GlcNAc
    • Holt GD, Hart GW. The subcellular distribution of terminal Nacetylglucosamine moieties. Localization of a novel proteinsaccharide linkage, O-linked GlcNAc. J Biol Chem 1986; 261: 8049-57.
    • (1986) J Biol Chem , vol.261 , pp. 8049-8057
    • Holt, G.D.1    Hart, G.W.2
  • 8
    • 0023615351 scopus 로고
    • Erythrocytes contain cytoplasmic glycoproteins O-linked GlcNAc on Band 4. 1
    • Holt GD, Haltiwanger RS, Torres CR, Hart GW. Erythrocytes contain cytoplasmic glycoproteins. O-linked GlcNAc on Band 4.1. J Biol Chem 1987; 262: 14847-50.
    • (1987) J Biol Chem , vol.262 , pp. 14847-14850
    • Holt, G.D.1    Haltiwanger, R.S.2    Torres, C.R.3    Hart, G.W.4
  • 9
    • 34250373346 scopus 로고    scopus 로고
    • O-linked Nacetylglucosaminyltransferase inhibition prevents G2/M transition in Xenopus laevis oocytes
    • Dehennaut V, Lefebvre T, Sellier C, et al. O-linked Nacetylglucosaminyltransferase inhibition prevents G2/M transition in Xenopus laevis oocytes. J Biol Chem 2007; 282: 12527-36.
    • (2007) J Biol Chem , vol.282 , pp. 12527-12536
    • Dehennaut, V.1    Lefebvre, T.2    Sellier, C.3
  • 10
    • 40849135990 scopus 로고    scopus 로고
    • Microinjection of recombinant O-GlcNAc transferase potentiates Xenopus oocytes M-phase entry
    • Dehennaut V, Hanoulle X, Bodart JF, et al. Microinjection of recombinant O-GlcNAc transferase potentiates Xenopus oocytes M-phase entry. Biochem Biophys Res Commun 2008; 369: 539-46.
    • (2008) Biochem Biophys Res Commun , vol.369 , pp. 539-546
    • Dehennaut, V.1    Hanoulle, X.2    Bodart, J.F.3
  • 11
    • 25444501339 scopus 로고    scopus 로고
    • Perturbations in O-linked beta-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis
    • Slawson C, Zachara NE, Vosseller K, Cheung WD, Lane MD, Hart GW. Perturbations in O-linked beta-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis. J Biol Chem 2005; 280: 32944-56.
    • (2005) J Biol Chem , vol.280 , pp. 32944-32956
    • Slawson, C.1    Zachara, N.E.2    Vosseller, K.3    Cheung, W.D.4    Lane, M.D.5    Hart, G.W.6
  • 12
    • 0037300799 scopus 로고    scopus 로고
    • A role for N-acetylglucosamine as a nutrient sensor and mediator of insulin resistance
    • Wells L, Vosseller K, Hart GW. A role for N-acetylglucosamine as a nutrient sensor and mediator of insulin resistance. Cell Mol Life Sci 2003; 60: 222-8.
    • (2003) Cell Mol Life Sci , vol.60 , pp. 222-228
    • Wells, L.1    Vosseller, K.2    Hart, G.W.3
  • 13
    • 0035937586 scopus 로고    scopus 로고
    • Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc
    • Wells L, Vosseller K, Hart GW. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 2001; 291: 2376-8.
    • (2001) Science , vol.291 , pp. 2376-2378
    • Wells, L.1    Vosseller, K.2    Hart, G.W.3
  • 14
    • 33646581015 scopus 로고    scopus 로고
    • Akt1 is dynamically modified with O-GlcNAc following treatments with PUGNAc and insulinlike growth factor-1
    • Gandy JC, Rountree AE, Bijur GN. Akt1 is dynamically modified with O-GlcNAc following treatments with PUGNAc and insulinlike growth factor-1. FEBS Lett 2006; 580: 3051-8.
    • (2006) FEBS Lett , vol.580 , pp. 3051-3058
    • Gandy, J.C.1    Rountree, A.E.2    Bijur, G.N.3
  • 15
    • 0037117511 scopus 로고    scopus 로고
    • Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes
    • Vosseller K, Wells L, Lane MD, Hart GW. Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes. Proc Natl Acad Sci USA 2002; 99: 5313-8.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 5313-5318
    • Vosseller, K.1    Wells, L.2    Lane, M.D.3    Hart, G.W.4
  • 16
    • 39749104251 scopus 로고    scopus 로고
    • Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance
    • Yang X, Ongusaha PP, Miles PD, et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 2008; 451: 964-9.
    • (2008) Nature , vol.451 , pp. 964-969
    • Yang, X.1    Ongusaha, P.P.2    Miles, P.D.3
  • 17
    • 53349165578 scopus 로고    scopus 로고
    • A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly
    • Ohn T, Kedersha N, Hickman T, Tisdale S, Anderson P. A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly. Nat Cell Biol 2008; 10: 1224-31.
    • (2008) Nat Cell Biol , vol.10 , pp. 1224-1231
    • Ohn, T.1    Kedersha, N.2    Hickman, T.3    Tisdale, S.4    Anderson, P.5
  • 18
    • 3042613480 scopus 로고    scopus 로고
    • O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress
    • Zachara NE, Hart GW. O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim Biophys Acta 2004; 1673: 13-28.
    • (2004) Biochim Biophys Acta , vol.1673 , pp. 13-28
    • Zachara, N.E.1    Hart, G.W.2
  • 19
    • 0032734974 scopus 로고    scopus 로고
    • O-GlcNAc and the control of gene expression
    • Comer FI, Hart GW. O-GlcNAc and the control of gene expression. Biochim Biophys Acta 1999; 1473: 161-71.
    • (1999) Biochim Biophys Acta , vol.1473 , pp. 161-171
    • Comer, F.I.1    Hart, G.W.2
  • 20
    • 35348866703 scopus 로고    scopus 로고
    • O-GlcNAc modification in diabetes and Alzheimer's disease
    • Dias WB, Hart GW. O-GlcNAc modification in diabetes and Alzheimer's disease. Mol Biosyst 2007; 3: 766-72.
    • (2007) Mol Biosyst , vol.3 , pp. 766-772
    • Dias, W.B.1    Hart, G.W.2
  • 21
    • 33644874204 scopus 로고    scopus 로고
    • The hexosamine signaling pathway: deciphering the "O-GlcNAc code"
    • Love DC, Hanover JA. The hexosamine signaling pathway: deciphering the "O-GlcNAc code". Sci STKE 2005; 2005: re13.
    • (2005) Sci STKE , vol.2005
    • Love, D.C.1    Hanover, J.A.2
  • 22
    • 0036898933 scopus 로고    scopus 로고
    • Diverse regulation of protein function by O-GlcNAc: a nuclear and cytoplasmic carbohydrate post-translational modification
    • Vosseller K, Sakabe K, Wells L, Hart GW. Diverse regulation of protein function by O-GlcNAc: a nuclear and cytoplasmic carbohydrate post-translational modification. Curr Opin Chem Biol 2002; 6: 851-7.
    • (2002) Curr Opin Chem Biol , vol.6 , pp. 851-857
    • Vosseller, K.1    Sakabe, K.2    Wells, L.3    Hart, G.W.4
  • 23
    • 33745272509 scopus 로고    scopus 로고
    • Cell signaling, the essential role of OGlcNAc!
    • Zachara NE, Hart GW. Cell signaling, the essential role of OGlcNAc! Biochim Biophys Acta 2006; 1761: 599-617.
    • (2006) Biochim Biophys Acta , vol.1761 , pp. 599-617
    • Zachara, N.E.1    Hart, G.W.2
  • 24
    • 0025193520 scopus 로고
    • Enzymatic addition of OGlcNAc to nuclear and cytoplasmic proteins Identification of a uridine diphospho-N-acetylglucosamine: peptide beta-Nacetylglucosaminyltransferase
    • Haltiwanger RS, Holt GD, Hart GW. Enzymatic addition of OGlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine: peptide beta-Nacetylglucosaminyltransferase. J Biol Chem 1990; 265: 2563-8.
    • (1990) J Biol Chem , vol.265 , pp. 2563-2568
    • Haltiwanger, R.S.1    Holt, G.D.2    Hart, G.W.3
  • 25
    • 0030959555 scopus 로고    scopus 로고
    • Dynamic glycosylation of nuclear and cytosolic proteins Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats
    • Kreppel LK, Blomberg MA, Hart GW. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem 1997; 272: 9308-15.
    • (1997) J Biol Chem , vol.272 , pp. 9308-9315
    • Kreppel, L.K.1    Blomberg, M.A.2    Hart, G.W.3
  • 26
    • 0034646669 scopus 로고    scopus 로고
    • Functional expression of O-linked GlcNAc transferase Domain structure and substrate specificity
    • Lubas WA, Hanover JA. Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J Biol Chem 2000; 275: 10983-8.
    • (2000) J Biol Chem , vol.275 , pp. 10983-10988
    • Lubas, W.A.1    Hanover, J.A.2
  • 27
    • 0034705030 scopus 로고    scopus 로고
    • The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny
    • Shafi R, Iyer SP, Ellies LG, et al. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc Natl Acad Sci USA 2000; 97: 5735-9.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 5735-5739
    • Shafi, R.1    Iyer, S.P.2    Ellies, L.G.3
  • 28
    • 0035971182 scopus 로고    scopus 로고
    • Dynamic Oglycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain
    • Gao Y, Wells L, Comer FI, Parker GJ, Hart GW. Dynamic Oglycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J Biol Chem 2001; 276: 9838-45.
    • (2001) J Biol Chem , vol.276 , pp. 9838-9845
    • Gao, Y.1    Wells, L.2    Comer, F.I.3    Parker, G.J.4    Hart, G.W.5
  • 29
    • 0028085881 scopus 로고
    • Purification and characterization of an OGlcNAc selective N-acetyl-beta-D-glucosaminidase from rat spleen cytosol
    • Dong DL, Hart GW. Purification and characterization of an OGlcNAc selective N-acetyl-beta-D-glucosaminidase from rat spleen cytosol. J Biol Chem 1994; 269: 19321-30.
    • (1994) J Biol Chem , vol.269 , pp. 19321-19330
    • Dong, D.L.1    Hart, G.W.2
  • 30
    • 0034703095 scopus 로고    scopus 로고
    • O-Glycosylation of nuclear and cytosolic proteins Dynamic interplay between O-GlcNAc and O-phosphate
    • Comer FI, Hart GW. O-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and O-phosphate. J Biol Chem. 2000; 275: 29179-82.
    • (2000) J Biol Chem , vol.275 , pp. 29179-29182
    • Comer, F.I.1    Hart, G.W.2
  • 31
    • 4644262462 scopus 로고    scopus 로고
    • OGlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunits
    • Wells L, Kreppel LK, Comer FI, Wadzinski BE, Hart GW. OGlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunits. J Biol Chem 2004; 279: 38466-70.
    • (2004) J Biol Chem , vol.279 , pp. 38466-38470
    • Wells, L.1    Kreppel, L.K.2    Comer, F.I.3    Wadzinski, B.E.4    Hart, G.W.5
  • 32
    • 50349093142 scopus 로고    scopus 로고
    • Cross-talk between GlcNAcylation and phosphorylation: roles in insulin resistance and glucose toxicity
    • Copeland RJ, Bullen JW, Hart GW. Cross-talk between GlcNAcylation and phosphorylation: roles in insulin resistance and glucose toxicity. Am J Physiol Endocrinol Metab 2008; 295: E17- 28.
    • (2008) Am J Physiol Endocrinol Metab , vol.295
    • Copeland, R.J.1    Bullen, J.W.2    Hart, G.W.3
  • 33
    • 0026795976 scopus 로고
    • Glycosylation of nuclear and cytoplasmic proteins Purification and characterization of a uridine diphospho-N-acetylglucosamine: polypeptide beta-Nacetylglucosaminyltransferase
    • Haltiwanger RS, Blomberg MA, Hart GW. Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine: polypeptide beta-Nacetylglucosaminyltransferase. J Biol Chem 1992; 267: 9005-13.
    • (1992) J Biol Chem , vol.267 , pp. 9005-9013
    • Haltiwanger, R.S.1    Blomberg, M.A.2    Hart, G.W.3
  • 34
    • 0032488979 scopus 로고    scopus 로고
    • Modulation of Olinked N-acetylglucosamine levels on nuclear and cytoplasmic proteins using the peptide O-GlcNAc-beta-N-acetylglucosaminidase inhibitor O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino-N-phenylcarbamate
    • Haltiwanger RS, Grove K, Philipsberg GA. Modulation of Olinked N-acetylglucosamine levels on nuclear and cytoplasmic proteins using the peptide O-GlcNAc-beta-N-acetylglucosaminidase inhibitor O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino-N-phenylcarbamate. J Biol Chem 1998; 273: 3611-7.
    • (1998) J Biol Chem , vol.273 , pp. 3611-3617
    • Haltiwanger, R.S.1    Grove, K.2    Philipsberg, G.A.3
  • 35
    • 21844464281 scopus 로고    scopus 로고
    • O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors
    • Macauley MS, Whitworth GE, Debowski AW, Chin D, Vocadlo DJ. O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors. J Biol Chem 2005; 280: 25313-22.
    • (2005) J Biol Chem , vol.280 , pp. 25313-25322
    • Macauley, M.S.1    Whitworth, G.E.2    Debowski, A.W.3    Chin, D.4    Vocadlo, D.J.5
  • 36
    • 33845944034 scopus 로고    scopus 로고
    • Shpiro NA, van Aalten DM. GlcNAcstatin: A picomolar, selective OGlcNAcase inhibitor that modulates intracellular O-glcNAcylation levels
    • Dorfmueller HC, Borodkin VS, Schimpl M, Shepherd SM, Shpiro NA, van Aalten DM. GlcNAcstatin: a picomolar, selective OGlcNAcase inhibitor that modulates intracellular O-glcNAcylation levels. J Am Chem Soc 2006; 128: 16484-5.
    • (2006) J Am Chem Soc , vol.128 , pp. 16484-16485
    • Dorfmueller, H.C.1    Borodkin, V.S.2    Schimpl, M.3    Shepherd, S.M.4
  • 37
    • 66549119673 scopus 로고    scopus 로고
    • GlcNAcstatins are nanomolar inhibitors of human O-GlcNAcase inducing cellular hyper-O-GlcNAcylation
    • Dorfmueller HC, Borodkin VS, Schimpl M, van Aalten DM. GlcNAcstatins are nanomolar inhibitors of human O-GlcNAcase inducing cellular hyper-O-GlcNAcylation. Biochem J 2009; 420: 221-7.
    • (2009) Biochem J , vol.420 , pp. 221-227
    • Dorfmueller, H.C.1    Borodkin, V.S.2    Schimpl, M.3    van Aalten, D.M.4
  • 38
    • 40149094692 scopus 로고    scopus 로고
    • A strategy to discover inhibitors of O-linked glycosylation
    • Gross BJ, Swoboda JG, Walker S. A strategy to discover inhibitors of O-linked glycosylation. J Am Chem Soc 2008; 130: 440-1.
    • (2008) J Am Chem Soc , vol.130 , pp. 440-441
    • Gross, B.J.1    Swoboda, J.G.2    Walker, S.3
  • 39
    • 33646900710 scopus 로고    scopus 로고
    • O-linked Nacetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry
    • Vosseller K, Trinidad JC, Chalkley RJ, et al. O-linked Nacetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol Cell Proteomics 2006; 5: 923-34.
    • (2006) Mol Cell Proteomics , vol.5 , pp. 923-934
    • Vosseller, K.1    Trinidad, J.C.2    Chalkley, R.J.3
  • 40
    • 4444337997 scopus 로고    scopus 로고
    • Exploring the O-GlcNAc proteome: direct identification of O-GlcNAcmodified proteins from the brain
    • Khidekel N, Ficarro SB, Peters EC, Hsieh-Wilson LC. Exploring the O-GlcNAc proteome: direct identification of O-GlcNAcmodified proteins from the brain. Proc Natl Acad Sci USA 2004; 101: 13132-7.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 13132-13137
    • Khidekel, N.1    Ficarro, S.B.2    Peters, E.C.3    Hsieh-Wilson, L.C.4
  • 41
    • 34249032767 scopus 로고    scopus 로고
    • Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics
    • Khidekel N, Ficarro SB, Clark PM, et al. Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat Chem Biol 2007; 3: 339-48.
    • (2007) Nat Chem Biol , vol.3 , pp. 339-348
    • Khidekel, N.1    Ficarro, S.B.2    Clark, P.M.3
  • 42
    • 0001607910 scopus 로고    scopus 로고
    • Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications
    • Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 2002; 1: 791-804.
    • (2002) Mol Cell Proteomics , vol.1 , pp. 791-804
    • Wells, L.1    Vosseller, K.2    Cole, R.N.3    Cronshaw, J.M.4    Matunis, M.J.5    Hart, G.W.6
  • 43
    • 55649110871 scopus 로고    scopus 로고
    • O-GlcNAc modification of transcription factors, glucose sensing and glucotoxicity
    • Issad T, Kuo M. O-GlcNAc modification of transcription factors, glucose sensing and glucotoxicity. Trends Endocrinol Metab 2008; 19: 380-9.
    • (2008) Trends Endocrinol Metab , vol.19 , pp. 380-389
    • Issad, T.1    Kuo, M.2
  • 44
    • 66149128841 scopus 로고    scopus 로고
    • Detecting the "O-GlcNAc-ome"; detection, purification, and analysis of O-GlcNAc modified proteins
    • Zachara NE. Detecting the "O-GlcNAc-ome"; detection, purification, and analysis of O-GlcNAc modified proteins. Methods Mol Biol 2009; 534: 251-79.
    • (2009) Methods Mol Biol , vol.534 , pp. 251-279
    • Zachara, N.E.1
  • 45
    • 0023655430 scopus 로고
    • O-linked Nacetylglucosamine is attached to proteins of the nuclear pore Evidence for cytoplasmic and nucleoplasmic glycoproteins
    • Hanover JA, Cohen CK, Willingham MC, Park MK. O-linked Nacetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins. J Biol Chem 1987; 262: 9887-94.
    • (1987) J Biol Chem , vol.262 , pp. 9887-9894
    • Hanover, J.A.1    Cohen, C.K.2    Willingham, M.C.3    Park, M.K.4
  • 46
    • 0023257987 scopus 로고
    • Monoclonal antibodies identify a group of nuclear pore complex glycoproteins
    • Snow CM, Senior A, Gerace L. Monoclonal antibodies identify a group of nuclear pore complex glycoproteins. J Cell Biol 1987; 104: 1143-56.
    • (1987) J Cell Biol , vol.104 , pp. 1143-1156
    • Snow, C.M.1    Senior, A.2    Gerace, L.3
  • 47
    • 0035800086 scopus 로고    scopus 로고
    • Reciprocity between O-GlcNAc and Ophosphate on the carboxyl terminal domain of RNA polymerase II
    • Comer FI, Hart GW. Reciprocity between O-GlcNAc and Ophosphate on the carboxyl terminal domain of RNA polymerase II. Biochemistry 2001; 40: 7845-52.
    • (2001) Biochemistry , vol.40 , pp. 7845-7852
    • Comer, F.I.1    Hart, G.W.2
  • 48
    • 0347064326 scopus 로고    scopus 로고
    • A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications
    • Khidekel N, Arndt S, Lamarre-Vincent N, et al. A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications. J Am Chem Soc 2003; 125: 16162-3.
    • (2003) J Am Chem Soc , vol.125 , pp. 16162-16163
    • Khidekel, N.1    Arndt, S.2    Lamarre-Vincent, N.3
  • 50
    • 0034677879 scopus 로고    scopus 로고
    • Cell surface engineering by a modified Staudinger reaction
    • Saxon E, Bertozzi CR. Cell surface engineering by a modified Staudinger reaction. Science 2000; 287: 2007-10.
    • (2000) Science , vol.287 , pp. 2007-2010
    • Saxon, E.1    Bertozzi, C.R.2
  • 51
    • 33751019949 scopus 로고    scopus 로고
    • Identification of O-GlcNAc sites on proteins
    • Whelan SA, Hart GW. Identification of O-GlcNAc sites on proteins. Methods Enzymol 2006; 415: 113-33.
    • (2006) Methods Enzymol , vol.415 , pp. 113-133
    • Whelan, S.A.1    Hart, G.W.2
  • 53
    • 0000944563 scopus 로고    scopus 로고
    • Electron capture dissociation of multiply charged protein cations A nonergodic process
    • Zubarev RA, Kelleher NL, McLafferty FW. Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 1998; 120: 3265-6.
    • (1998) J Am Chem Soc , vol.120 , pp. 3265-3266
    • Zubarev, R.A.1    Kelleher, N.L.2    McLafferty, F.W.3
  • 54
  • 55
    • 33845435463 scopus 로고    scopus 로고
    • The utility of ETD mass spectrometry in proteomic analysis
    • Mikesh LM, Ueberheide B, Chi A, et al. The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 2006; 1764: 1811-22.
    • (2006) Biochim Biophys Acta , vol.1764 , pp. 1811-1822
    • Mikesh, L.M.1    Ueberheide, B.2    Chi, A.3
  • 56
    • 55849104839 scopus 로고    scopus 로고
    • Application of electron transfer dissociation (ETD) for the analysis of posttranslational modifications
    • Wiesner J, Premsler T, Sickmann A. Application of electron transfer dissociation (ETD) for the analysis of posttranslational modifications. Proteomics 2008; 8: 4466-83.
    • (2008) Proteomics , vol.8 , pp. 4466-4483
    • Wiesner, J.1    Premsler, T.2    Sickmann, A.3
  • 57
    • 67649563273 scopus 로고    scopus 로고
    • Quantification of post-translationally modified peptides of bovine alpha-crystallin using tandem mass tags and electron transfer dissociation
    • Viner RI, Zhang T, Second T, Zabrouskov V. Quantification of post-translationally modified peptides of bovine alpha-crystallin using tandem mass tags and electron transfer dissociation. J Proteomics 2009; 72: 874-85.
    • (2009) J Proteomics , vol.72 , pp. 874-885
    • Viner, R.I.1    Zhang, T.2    Second, T.3    Zabrouskov, V.4
  • 59
    • 0033845842 scopus 로고    scopus 로고
    • Regulation of transcription factor function by phosphorylation
    • Whitmarsh AJ, Davis RJ. Regulation of transcription factor function by phosphorylation. Cell Mol Life Sci 2000; 57: 1172-83.
    • (2000) Cell Mol Life Sci , vol.57 , pp. 1172-1183
    • Whitmarsh, A.J.1    Davis, R.J.2
  • 60
    • 0036901003 scopus 로고    scopus 로고
    • Multisite phosphorylation provides sophisticated regulation of transcription factors
    • Holmberg CI, Tran SE, Eriksson JE, Sistonen L. Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends Biochem Sci 2002; 27: 619-27.
    • (2002) Trends Biochem Sci , vol.27 , pp. 619-627
    • Holmberg, C.I.1    Tran, S.E.2    Eriksson, J.E.3    Sistonen, L.4
  • 61
    • 37749021009 scopus 로고    scopus 로고
    • A role for SUMO modification in transcriptional repression and activation
    • Lyst MJ, Stancheva I. A role for SUMO modification in transcriptional repression and activation. Biochem Soc Trans 2007; 35: 1389-92.
    • (2007) Biochem Soc Trans , vol.35 , pp. 1389-1392
    • Lyst, M.J.1    Stancheva, I.2
  • 62
    • 56049090769 scopus 로고    scopus 로고
    • Acetylation of nonhistone proteins modulates cellular signalling at multiple levels
    • Spange S, Wagner T, Heinzel T, Kramer OH. Acetylation of nonhistone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 2009; 41: 185-98.
    • (2009) Int J Biochem Cell Biol , vol.41 , pp. 185-198
    • Spange, S.1    Wagner, T.2    Heinzel, T.3    Kramer, O.H.4
  • 63
    • 67650725820 scopus 로고    scopus 로고
    • The Biology of Chromatin Remodeling Complexes
    • Clapier CR, Cairns BR. The Biology of Chromatin Remodeling Complexes. Annu Rev Biochem 2009; 78: 273-304
    • (2009) Annu Rev Biochem , vol.78 , pp. 273-304
    • Clapier, C.R.1    Cairns, B.R.2
  • 64
    • 0034507632 scopus 로고    scopus 로고
    • Transcription of eukaryotic protein-coding genes
    • Lee TI, Young RA. Transcription of eukaryotic protein-coding genes. Annu Rev Genet 2000; 34: 77-137.
    • (2000) Annu Rev Genet , vol.34 , pp. 77-137
    • Lee, T.I.1    Young, R.A.2
  • 65
    • 0035883954 scopus 로고    scopus 로고
    • Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails
    • Zhang Y, Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 2001; 15: 2343-60.
    • (2001) Genes Dev , vol.15 , pp. 2343-2360
    • Zhang, Y.1    Reinberg, D.2
  • 66
    • 0037067659 scopus 로고    scopus 로고
    • Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression
    • Yang X, Zhang F, Kudlow JE. Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell 2002; 110: 69- 80.
    • (2002) Cell , vol.110 , pp. 69-80
    • Yang, X.1    Zhang, F.2    Kudlow, J.E.3
  • 67
    • 67349189942 scopus 로고    scopus 로고
    • GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis
    • Fujiki R, Chikanishi T, Hashiba W, et al. GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis. Nature 2009; 459: 455-9.
    • (2009) Nature , vol.459 , pp. 455-459
    • Fujiki, R.1    Chikanishi, T.2    Hashiba, W.3
  • 68
    • 0024516198 scopus 로고
    • Glycosylation of chromosomal proteins: localization of O-linked N-acetylglucosamine in Drosophila chromatin
    • 21
    • Kelly WG, Hart GW. Glycosylation of chromosomal proteins: localization of O-linked N-acetylglucosamine in Drosophila chromatin. Cell 1989 21; 57: 243-51.
    • (1989) Cell , vol.57 , pp. 243-251
    • Kelly, W.G.1    Hart, G.W.2
  • 69
    • 22344454807 scopus 로고    scopus 로고
    • mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival
    • Dannenberg JH, David G, Zhong S, van der Torre J, Wong WH, Depinho RA. mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival. Genes Dev 2005; 19: 1581-95.
    • (2005) Genes Dev , vol.19 , pp. 1581-1595
    • Dannenberg, J.H.1    David, G.2    Zhong, S.3    van der Torre, J.4    Wong, W.H.5    Depinho, R.A.6
  • 70
    • 0030071548 scopus 로고    scopus 로고
    • Regulation of specific DNA binding by p53: evidence for a role for O-glycosylation and charged residues at the carboxy-terminus
    • Shaw P, Freeman J, Bovey R, Iggo R. Regulation of specific DNA binding by p53: evidence for a role for O-glycosylation and charged residues at the carboxy-terminus. Oncogene 1996; 12: 921- 30.
    • (1996) Oncogene , vol.12 , pp. 921-930
    • Shaw, P.1    Freeman, J.2    Bovey, R.3    Iggo, R.4
  • 71
    • 33749160125 scopus 로고    scopus 로고
    • Modification of p53 with Olinked N-acetylglucosamine regulates p53 activity and stability
    • Yang WH, Kim JE, Nam HW, et al. Modification of p53 with Olinked N-acetylglucosamine regulates p53 activity and stability. Nat Cell Biol 2006; 8: 1074-83.
    • (2006) Nat Cell Biol , vol.8 , pp. 1074-1083
    • Yang, W.H.1    Kim, J.E.2    Nam, H.W.3
  • 72
    • 0033215387 scopus 로고    scopus 로고
    • Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a
    • Murphy M, Ahn J, Walker KK, et al. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev 1999; 13: 2490-501.
    • (1999) Genes Dev , vol.13 , pp. 2490-2501
    • Murphy, M.1    Ahn, J.2    Walker, K.K.3
  • 73
    • 35649026775 scopus 로고    scopus 로고
    • High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A
    • Yao D, Taguchi T, Matsumura T, et al. High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J Biol Chem 2007; 282: 31038-45.
    • (2007) J Biol Chem , vol.282 , pp. 31038-31045
    • Yao, D.1    Taguchi, T.2    Matsumura, T.3
  • 74
    • 0025079058 scopus 로고
    • Tails of RNA polymerase II
    • Corden JL. Tails of RNA polymerase II. Trends Biochem Sci 1990; 15: 383-7.
    • (1990) Trends Biochem Sci , vol.15 , pp. 383-387
    • Corden, J.L.1
  • 75
    • 0027289130 scopus 로고
    • RNA polymerase II is a glycoprotein Modification of the COOH-terminal domain by OGlcNAc
    • Kelly WG, Dahmus ME, Hart GW. RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by OGlcNAc. J Biol Chem 1993; 268: 10416-24.
    • (1993) J Biol Chem , vol.268 , pp. 10416-10424
    • Kelly, W.G.1    Dahmus, M.E.2    Hart, G.W.3
  • 76
    • 0033837127 scopus 로고    scopus 로고
    • Regulation of transcription factors by protein degradation
    • Desterro JM, Rodriguez MS, Hay RT. Regulation of transcription factors by protein degradation. Cell Mol Life Sci 2000; 57: 1207- 19.
    • (2000) Cell Mol Life Sci , vol.57 , pp. 1207-1219
    • Desterro, J.M.1    Rodriguez, M.S.2    Hay, R.T.3
  • 77
    • 50149086108 scopus 로고    scopus 로고
    • Diversity of degradation signals in the ubiquitin-proteasome system
    • Ravid T, Hochstrasser M. Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 2008; 9: 679- 90.
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 679-690
    • Ravid, T.1    Hochstrasser, M.2
  • 78
    • 0036083396 scopus 로고    scopus 로고
    • The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction
    • Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82: 373-428.
    • (2002) Physiol Rev , vol.82 , pp. 373-428
    • Glickman, M.H.1    Ciechanover, A.2
  • 79
    • 0346965700 scopus 로고    scopus 로고
    • OGlcNAc modification is an endogenous inhibitor of the proteasome
    • Zhang F, Su K, Yang X, Bowe DB, Paterson AJ, Kudlow JE. OGlcNAc modification is an endogenous inhibitor of the proteasome. Cell 2003; 115: 715-25.
    • (2003) Cell , vol.115 , pp. 715-725
    • Zhang, F.1    Su, K.2    Yang, X.3    Bowe, D.B.4    Paterson, A.J.5    Kudlow, J.E.6
  • 80
    • 44749090905 scopus 로고    scopus 로고
    • Sp1: Emerging roles-Beyond constitutive activation of TATA-less housekeeping genes
    • Wierstra I. Sp1: Emerging roles-Beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun 2008; 372: 1-13.
    • (2008) Biochem Biophys Res Commun , vol.372 , pp. 1-13
    • Wierstra, I.1
  • 81
    • 0024280897 scopus 로고
    • O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation
    • Jackson SP, Tjian R. O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Cell 1988; 55: 125-33.
    • (1988) Cell , vol.55 , pp. 125-133
    • Jackson, S.P.1    Tjian, R.2
  • 82
    • 0030907389 scopus 로고    scopus 로고
    • Reduced O glycosylation of Sp1 is associated with increased proteasome susceptibility
    • Han I, Kudlow JE. Reduced O glycosylation of Sp1 is associated with increased proteasome susceptibility. Mol Cell Biol 1997; 17: 2550-8.
    • (1997) Mol Cell Biol , vol.17 , pp. 2550-2558
    • Han, I.1    Kudlow, J.E.2
  • 83
  • 84
    • 0035971067 scopus 로고    scopus 로고
    • Alternative O-glycosylation/O-phosphorylation of serine-16 in murine estrogen receptor beta: posttranslational regulation of turnover and transactivation activity
    • Cheng X, Hart GW. Alternative O-glycosylation/O-phosphorylation of serine-16 in murine estrogen receptor beta: posttranslational regulation of turnover and transactivation activity. J Biol Chem 2001; 276: 10570-5.
    • (2001) J Biol Chem , vol.276 , pp. 10570-10575
    • Cheng, X.1    Hart, G.W.2
  • 85
    • 0034306997 scopus 로고    scopus 로고
    • Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability
    • Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 2000; 14: 2501-14.
    • (2000) Genes Dev , vol.14 , pp. 2501-2514
    • Sears, R.1    Nuckolls, F.2    Haura, E.3    Taya, Y.4    Tamai, K.5    Nevins, J.R.6
  • 86
    • 0034718570 scopus 로고    scopus 로고
    • Alternative O-glycosylation/O-phosphorylation of the murine estrogen receptor beta
    • Cheng X, Cole RN, Zaia J, Hart GW. Alternative O-glycosylation/O-phosphorylation of the murine estrogen receptor beta. Biochemistry 2000; 39: 11609-20.
    • (2000) Biochemistry , vol.39 , pp. 11609-11620
    • Cheng, X.1    Cole, R.N.2    Zaia, J.3    Hart, G.W.4
  • 87
    • 0029019572 scopus 로고
    • Glycosylation of the c-Myc transactivation domain
    • Chou TY, Dang CV, Hart GW. Glycosylation of the c-Myc transactivation domain. Proc Natl Acad Sci USA 1995; 92: 4417- 21.
    • (1995) Proc Natl Acad Sci USA , vol.92 , pp. 4417-4421
    • Chou, T.Y.1    Dang, C.V.2    Hart, G.W.3
  • 88
    • 0029049198 scopus 로고
    • Dang CV. c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas
    • Chou TY, Hart GW, Dang CV. c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. J Biol Chem 1995; 270: 18961-5.
    • (1995) J Biol Chem , vol.270 , pp. 18961-18965
    • Chou, T.Y.1    Hart, G.W.2
  • 89
    • 34249736410 scopus 로고    scopus 로고
    • Biology and treatment of Burkitt's lymphoma
    • Yustein JT, Dang CV. Biology and treatment of Burkitt's lymphoma. Curr Opin Hematol 2007; 14: 375-81.
    • (2007) Curr Opin Hematol , vol.14 , pp. 375-381
    • Yustein, J.T.1    Dang, C.V.2
  • 90
    • 33845919326 scopus 로고    scopus 로고
    • The ins and outs of MYC regulation by posttranslational mechanisms
    • Vervoorts J, Luscher-Firzlaff J, Luscher B. The ins and outs of MYC regulation by posttranslational mechanisms. J Biol Chem 2006; 281: 34725-9.
    • (2006) J Biol Chem , vol.281 , pp. 34725-34729
    • Vervoorts, J.1    Luscher-Firzlaff, J.2    Luscher, B.3
  • 91
    • 23144464363 scopus 로고    scopus 로고
    • Transcriptional regulation and transformation by Myc proteins
    • Adhikary S, Eilers M. Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 2005; 6: 635-45.
    • (2005) Nat Rev Mol Cell Biol , vol.6 , pp. 635-645
    • Adhikary, S.1    Eilers, M.2
  • 92
    • 0030738318 scopus 로고    scopus 로고
    • The novel estrogen receptor-beta subtype: potential role in the cell- and promoter-specific actions of estrogens and anti-estrogens
    • Kuiper GG, Gustafsson JA. The novel estrogen receptor-beta subtype: potential role in the cell- and promoter-specific actions of estrogens and anti-estrogens. FEBS Lett 1997; 410: 87-90.
    • (1997) FEBS Lett , vol.410 , pp. 87-90
    • Kuiper, G.G.1    Gustafsson, J.A.2
  • 94
    • 34948886577 scopus 로고    scopus 로고
    • Glycogen synthase kinase-3 protects estrogen receptor alpha from proteasomal degradation and is required for full transcriptional activity of the receptor
    • Grisouard J, Medunjanin S, Hermani A, Shukla A, Mayer D. Glycogen synthase kinase-3 protects estrogen receptor alpha from proteasomal degradation and is required for full transcriptional activity of the receptor. Mol Endocrinol 2007; 21: 2427-39.
    • (2007) Mol Endocrinol , vol.21 , pp. 2427-2439
    • Grisouard, J.1    Medunjanin, S.2    Hermani, A.3    Shukla, A.4    Mayer, D.5
  • 95
    • 0037351881 scopus 로고    scopus 로고
    • Cyclic, proteasomemediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling
    • Reid G, Hubner MR, Metivier R, et al. Cyclic, proteasomemediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol Cell 2003; 11: 695-707.
    • (2003) Mol Cell , vol.11 , pp. 695-707
    • Reid, G.1    Hubner, M.R.2    Metivier, R.3
  • 96
    • 38849141014 scopus 로고    scopus 로고
    • Phosphorylation of activation function-1 regulates proteasome-dependent nuclear mobility and E6-associated protein ubiquitin ligase recruitment to the estrogen receptor beta
    • Picard N, Charbonneau C, Sanchez M, et al. Phosphorylation of activation function-1 regulates proteasome-dependent nuclear mobility and E6-associated protein ubiquitin ligase recruitment to the estrogen receptor beta. Mol Endocrinol 2008; 22: 317-30.
    • (2008) Mol Endocrinol , vol.22 , pp. 317-330
    • Picard, N.1    Charbonneau, C.2    Sanchez, M.3
  • 98
    • 40449128605 scopus 로고    scopus 로고
    • Montminy M. Hepatic glucose sensing via the CREB coactivator CRTC2
    • Dentin R, Hedrick S, Xie J, Yates J, 3rd, Montminy M. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 2008; 319: 1402-5.
    • (2008) Science , vol.319 , pp. 1402-1405
    • Dentin, R.1    Hedrick, S.2    Xie, J.3    Yates J. 3rd4
  • 99
    • 0037174165 scopus 로고    scopus 로고
    • Glucose induced MAPK signalling influences NeuroD1-mediated activation and nuclear localization
    • Petersen HV, Jensen JN, Stein R, Serup P. Glucose induced MAPK signalling influences NeuroD1-mediated activation and nuclear localization. FEBS Lett 2002; 528: 241-5.
    • (2002) FEBS Lett , vol.528 , pp. 241-245
    • Petersen, H.V.1    Jensen, J.N.2    Stein, R.3    Serup, P.4
  • 100
    • 34447515852 scopus 로고    scopus 로고
    • Glucose mediates the translocation of NeuroD1 by O-linked glycosylation
    • Andrali SS, Qian Q, Ozcan S. Glucose mediates the translocation of NeuroD1 by O-linked glycosylation. J Biol Chem 2007; 282: 15589-96.
    • (2007) J Biol Chem , vol.282 , pp. 15589-15596
    • Andrali, S.S.1    Qian, Q.2    Ozcan, S.3
  • 101
    • 50049117442 scopus 로고    scopus 로고
    • O-GlcNAcglycosylation of beta-catenin regulates its nuclear localization and transcriptional activity
    • Sayat R, Leber B, Grubac V, Wiltshire L, Persad S. O-GlcNAcglycosylation of beta-catenin regulates its nuclear localization and transcriptional activity. Exp Cell Res 2008; 314: 2774-87.
    • (2008) Exp Cell Res , vol.314 , pp. 2774-2787
    • Sayat, R.1    Leber, B.2    Grubac, V.3    Wiltshire, L.4    Persad, S.5
  • 102
    • 27144506185 scopus 로고    scopus 로고
    • The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
    • Koo SH, Flechner L, Qi L, et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 2005; 437: 1109-11.
    • (2005) Nature , vol.437 , pp. 1109-1111
    • Koo, S.H.1    Flechner, L.2    Qi, L.3
  • 103
    • 34548831102 scopus 로고    scopus 로고
    • Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2
    • Dentin R, Liu Y, Koo SH, et al. Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 2007; 449: 366-9.
    • (2007) Nature , vol.449 , pp. 366-369
    • Dentin, R.1    Liu, Y.2    Koo, S.H.3
  • 104
    • 5344228270 scopus 로고    scopus 로고
    • The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector
    • Screaton RA, Conkright MD, Katoh Y, et al. The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 2004; 119: 61-74.
    • (2004) Cell , vol.119 , pp. 61-74
    • Screaton, R.A.1    Conkright, M.D.2    Katoh, Y.3
  • 105
    • 53149104775 scopus 로고    scopus 로고
    • Glucose regulation of insulin gene expression in pancreatic beta-cells
    • Andrali SS, Sampley ML, Vanderford NL, Ozcan S. Glucose regulation of insulin gene expression in pancreatic beta-cells. Biochem J 2008; 415: 1-10.
    • (2008) Biochem J , vol.415 , pp. 1-10
    • Andrali, S.S.1    Sampley, M.L.2    Vanderford, N.L.3    Ozcan, S.4
  • 106
    • 58749097656 scopus 로고    scopus 로고
    • The canonical Wnt/beta-catenin signalling pathway
    • Barker N. The canonical Wnt/beta-catenin signalling pathway. Methods Mol Biol 2008; 468: 5-15.
    • (2008) Methods Mol Biol , vol.468 , pp. 5-15
    • Barker, N.1
  • 107
    • 0035503219 scopus 로고    scopus 로고
    • Cytoplasmic O-glycosylation prevents cell surface transport of E-cadherin during apoptosis
    • Zhu W, Leber B, Andrews DW. Cytoplasmic O-glycosylation prevents cell surface transport of E-cadherin during apoptosis. EMBO J 2001; 20: 5999-6007.
    • (2001) EMBO J , vol.20 , pp. 5999-6007
    • Zhu, W.1    Leber, B.2    Andrews, D.W.3
  • 108
    • 0037709390 scopus 로고    scopus 로고
    • The transcription factor PDX-1 is post-translationally modified by O-linked N-acetylglucosamine and this modification is correlated with its DNA binding activity and insulin secretion in min6 beta-cells
    • Gao Y, Miyazaki J, Hart GW. The transcription factor PDX-1 is post-translationally modified by O-linked N-acetylglucosamine and this modification is correlated with its DNA binding activity and insulin secretion in min6 beta-cells. Arch Biochem Biophys 2003; 415: 155-63.
    • (2003) Arch Biochem Biophys , vol.415 , pp. 155-163
    • Gao, Y.1    Miyazaki, J.2    Hart, G.W.3
  • 109
    • 33846488647 scopus 로고    scopus 로고
    • Elevation of the posttranslational modification of proteins by O-linked N-acetylglucosamine leads to deterioration of the glucose-stimulated insulin secretion in the pancreas of diabetic Goto-Kakizaki rats
    • Akimoto Y, Hart GW, Wells L, et al. Elevation of the posttranslational modification of proteins by O-linked N-acetylglucosamine leads to deterioration of the glucose-stimulated insulin secretion in the pancreas of diabetic Goto-Kakizaki rats. Glycobiology 2007; 17: 127-40.
    • (2007) Glycobiology , vol.17 , pp. 127-140
    • Akimoto, Y.1    Hart, G.W.2    Wells, L.3
  • 110
    • 33744515637 scopus 로고    scopus 로고
    • FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression
    • Zhang W, Patil S, Chauhan B, et al. FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem 2006; 281: 10105-17.
    • (2006) J Biol Chem , vol.281 , pp. 10105-10117
    • Zhang, W.1    Patil, S.2    Chauhan, B.3
  • 111
    • 33644660537 scopus 로고    scopus 로고
    • PGC-1 coactivators: inducible regulators of energy metabolism in health and disease
    • Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 2006; 116: 615-22.
    • (2006) J Clin Invest , vol.116 , pp. 615-622
    • Finck, B.N.1    Kelly, D.P.2
  • 112
    • 0038187621 scopus 로고    scopus 로고
    • Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction
    • Puigserver P, Rhee J, Donovan J, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 2003; 423: 550-5.
    • (2003) Nature , vol.423 , pp. 550-555
    • Puigserver, P.1    Rhee, J.2    Donovan, J.3
  • 114
    • 41849093037 scopus 로고    scopus 로고
    • Birnbaum MJ. The role of FoxO in the regulation of metabolism
    • Gross DN, van den Heuvel AP, Birnbaum MJ. The role of FoxO in the regulation of metabolism. Oncogene 2008; 27: 2320-36.
    • (2008) Oncogene , vol.27 , pp. 2320-2336
    • Gross, D.N.1    van den Heuvel, A.P.2
  • 115
    • 47749149232 scopus 로고    scopus 로고
    • O-GlcNAc regulates FoxO activation in response to glucose
    • Housley MP, Rodgers JT, Udeshi ND, et al. O-GlcNAc regulates FoxO activation in response to glucose. J Biol Chem 2008; 283: 16283-92.
    • (2008) J Biol Chem , vol.283 , pp. 16283-16292
    • Housley, M.P.1    Rodgers, J.T.2    Udeshi, N.D.3
  • 116
    • 39749171700 scopus 로고    scopus 로고
    • Oglycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene
    • Kuo M, Zilberfarb V, Gangneux N, Christeff N, Issad T. Oglycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene. FEBS Lett 2008; 582: 829-34.
    • (2008) FEBS Lett , vol.582 , pp. 829-834
    • Kuo, M.1    Zilberfarb, V.2    Gangneux, N.3    Christeff, N.4    Issad, T.5
  • 117
    • 64149111641 scopus 로고    scopus 로고
    • A PGC-1{alpha}-OGlcNAc Transferase Complex Regulates FoxO Transcription Factor Activity in Response to Glucose
    • Housley MP, Udeshi ND, Rodgers JT, et al. A PGC-1{alpha}-OGlcNAc Transferase Complex Regulates FoxO Transcription Factor Activity in Response to Glucose. J Biol Chem 2009; 284: 5148-57.
    • (2009) J Biol Chem , vol.284 , pp. 5148-5157
    • Housley, M.P.1    Udeshi, N.D.2    Rodgers, J.T.3
  • 118
    • 56249095514 scopus 로고    scopus 로고
    • NFkappaB activation is associated with its O-GlcNAcylation state under hyperglycemic conditions
    • Yang WH, Park SY, Nam HW, et al. NFkappaB activation is associated with its O-GlcNAcylation state under hyperglycemic conditions. Proc Natl Acad Sci USA 2008; 105: 17345-50.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 17345-17350
    • Yang, W.H.1    Park, S.Y.2    Nam, H.W.3
  • 119
    • 0942287200 scopus 로고    scopus 로고
    • The coactivator of transcription CREB-binding protein interacts preferentially with the glycosylated form of Stat5
    • Gewinner C, Hart G, Zachara N, Cole R, Beisenherz-Huss C, Groner B. The coactivator of transcription CREB-binding protein interacts preferentially with the glycosylated form of Stat5. J Biol Chem 2004; 279: 3563-72.
    • (2004) J Biol Chem , vol.279 , pp. 3563-3572
    • Gewinner, C.1    Hart, G.2    Zachara, N.3    Cole, R.4    Beisenherz-Huss, C.5    Groner, B.6
  • 120
    • 0035811072 scopus 로고    scopus 로고
    • Olinkage of N-acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability
    • Yang X, Su K, Roos MD, Chang Q, Paterson AJ, Kudlow JE. Olinkage of N-acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability. Proc Natl Acad Sci USA 2001; 98: 6611-6.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 6611-6616
    • Yang, X.1    Su, K.2    Roos, M.D.3    Chang, Q.4    Paterson, A.J.5    Kudlow, J.E.6
  • 121
    • 0030772457 scopus 로고    scopus 로고
    • O glycosylation of an Sp1derived peptide blocks known Sp1 protein interactions
    • Roos MD, Su K, Baker JR, Kudlow JE. O glycosylation of an Sp1derived peptide blocks known Sp1 protein interactions. Mol Cell Biol 1997; 17: 6472-80.
    • (1997) Mol Cell Biol , vol.17 , pp. 6472-6480
    • Roos, M.D.1    Su, K.2    Baker, J.R.3    Kudlow, J.E.4
  • 122
    • 0036731485 scopus 로고    scopus 로고
    • Stats: transcriptional control and biological impact
    • Levy DE, Darnell JE, Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 2002; 3: 651-62.
    • (2002) Nat Rev Mol Cell Biol , vol.3 , pp. 651-662
    • Levy, D.E.1    Darnell J.E., Jr.2
  • 123
    • 0032579292 scopus 로고    scopus 로고
    • Transcription factor-specific requirements for coactivators and their acetyltransferase functions
    • Korzus E, Torchia J, Rose DW, Xu L, Kurokawa R, McInerney EM, et al. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 1998; 279: 703-7.
    • (1998) Science , vol.279 , pp. 703-707
    • Korzus, E.1    Torchia, J.2    Rose, D.W.3    Xu, L.4    Kurokawa, R.5    McInerney, E.M.6
  • 124
    • 38849199203 scopus 로고    scopus 로고
    • Shared principles in NF-kappaB signaling
    • Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell 2008; 132: 344-62.
    • (2008) Cell , vol.132 , pp. 344-362
    • Hayden, M.S.1    Ghosh, S.2
  • 125
    • 0036231781 scopus 로고    scopus 로고
    • Flux through the hexosamine pathway is a determinant of nuclear factor kappaB- dependent promoter activation
    • James LR, Tang D, Ingram A, et al. Flux through the hexosamine pathway is a determinant of nuclear factor kappaB- dependent promoter activation. Diabetes 2002; 51: 1146-56.
    • (2002) Diabetes , vol.51 , pp. 1146-1156
    • James, L.R.1    Tang, D.2    Ingram, A.3
  • 126
    • 62549161375 scopus 로고    scopus 로고
    • Loss of p53 enhances catalytic activity of IKKbeta through O-linked beta-Nacetyl glucosamine modification
    • Kawauchi K, Araki K, Tobiume K, Tanaka N. Loss of p53 enhances catalytic activity of IKKbeta through O-linked beta-Nacetyl glucosamine modification. Proc Natl Acad Sci USA 2009; 106: 3431-6.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 3431-3436
    • Kawauchi, K.1    Araki, K.2    Tobiume, K.3    Tanaka, N.4
  • 127
    • 43049139541 scopus 로고    scopus 로고
    • p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation
    • Kawauchi K, Araki K, Tobiume K, Tanaka N. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 2008; 10: 611-8.
    • (2008) Nat Cell Biol , vol.10 , pp. 611-618
    • Kawauchi, K.1    Araki, K.2    Tobiume, K.3    Tanaka, N.4
  • 128
    • 33744948611 scopus 로고    scopus 로고
    • Regulation of IkappaB kinase (IKK) complex by IKKgamma-dependent phosphorylation of the T-loop and C terminus of IKKbeta
    • Schomer-Miller B, Higashimoto T, Lee YK, Zandi E. Regulation of IkappaB kinase (IKK) complex by IKKgamma-dependent phosphorylation of the T-loop and C terminus of IKKbeta. J Biol Chem 2006; 281: 15268-76.
    • (2006) J Biol Chem , vol.281 , pp. 15268-15276
    • Schomer-Miller, B.1    Higashimoto, T.2    Lee, Y.K.3    Zandi, E.4
  • 129
    • 0033527739 scopus 로고    scopus 로고
    • Regulation of a cytosolic and nuclear OGlcNAc transferase Role of the tetratricopeptide repeats
    • Kreppel LK, Hart GW. Regulation of a cytosolic and nuclear OGlcNAc transferase. Role of the tetratricopeptide repeats. J Biol Chem 1999; 274: 32015-22.
    • (1999) J Biol Chem , vol.274 , pp. 32015-32022
    • Kreppel, L.K.1    Hart, G.W.2
  • 130
    • 0037648473 scopus 로고    scopus 로고
    • Identification and cloning of a novel family of coiled-coil domain proteins that interact with OGlcNAc transferase
    • Iyer SP, Akimoto Y, Hart GW. Identification and cloning of a novel family of coiled-coil domain proteins that interact with OGlcNAc transferase. J Biol Chem 2003; 278: 5399-409.
    • (2003) J Biol Chem , vol.278 , pp. 5399-5409
    • Iyer, S.P.1    Akimoto, Y.2    Hart, G.W.3
  • 131
    • 57749088688 scopus 로고    scopus 로고
    • Olinked beta-N-acetylglucosaminyltransferase substrate specificity is regulated by myosin phosphatase targeting and other interacting proteins
    • Cheung WD, Sakabe K, Housley MP, Dias WB, Hart GW. Olinked beta-N-acetylglucosaminyltransferase substrate specificity is regulated by myosin phosphatase targeting and other interacting proteins. J Biol Chem 2008; 283: 33935-41.
    • (2008) J Biol Chem , vol.283 , pp. 33935-33941
    • Cheung, W.D.1    Sakabe, K.2    Housley, M.P.3    Dias, W.B.4    Hart, G.W.5
  • 132
    • 0042889568 scopus 로고    scopus 로고
    • The roles of protein-protein interactions and protein methylation in transcriptional activation by nuclear receptors and their coactivators
    • Stallcup MR, Kim JH, Teyssier C, Lee YH, Ma H, Chen D. The roles of protein-protein interactions and protein methylation in transcriptional activation by nuclear receptors and their coactivators. J Steroid Biochem Mol Biol 2003; 85: 139-45.
    • (2003) J Steroid Biochem Mol Biol , vol.85 , pp. 139-145
    • Stallcup, M.R.1    Kim, J.H.2    Teyssier, C.3    Lee, Y.H.4    Ma, H.5    Chen, D.6
  • 133
    • 0042090275 scopus 로고    scopus 로고
    • Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity
    • Iyer SP, Hart GW. Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity. J Biol Chem 2003; 278: 24608-16.
    • (2003) J Biol Chem , vol.278 , pp. 24608-24616
    • Iyer, S.P.1    Hart, G.W.2
  • 136
    • 0025905795 scopus 로고
    • Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome
    • Verkerk AJ, Pieretti M, Sutcliffe JS, et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 1991; 65: 905-14.
    • (1991) Cell , vol.65 , pp. 905-914
    • Verkerk, A.J.1    Pieretti, M.2    Sutcliffe, J.S.3
  • 138
    • 14044275840 scopus 로고    scopus 로고
    • Fragile X-related protein FXR1P regulates proinflammatory cytokine tumor necrosis factor expression at the post-transcriptional level
    • Garnon J, Lachance C, Di Marco S, et al. Fragile X-related protein FXR1P regulates proinflammatory cytokine tumor necrosis factor expression at the post-transcriptional level. J Biol Chem 2005; 280: 5750-63.
    • (2005) J Biol Chem , vol.280 , pp. 5750-5763
    • Garnon, J.1    Lachance, C.2    Di Marco, S.3
  • 139
    • 36048980611 scopus 로고    scopus 로고
    • Role of TIS7 family of transcriptional regulators in differentiation and regeneration
    • Vietor I, Huber LA. Role of TIS7 family of transcriptional regulators in differentiation and regeneration. Differentiation 2007; 75: 891-7.
    • (2007) Differentiation , vol.75 , pp. 891-897
    • Vietor, I.1    Huber, L.A.2
  • 140
    • 18544383626 scopus 로고    scopus 로고
    • TIS7 interacts with the mammalian SIN3 histone deacetylase complex in epithelial cells
    • Vietor I, Vadivelu SK, Wick N, et al. TIS7 interacts with the mammalian SIN3 histone deacetylase complex in epithelial cells. EMBO J 2002; 21: 4621-31.
    • (2002) EMBO J , vol.21 , pp. 4621-4631
    • Vietor, I.1    Vadivelu, S.K.2    Wick, N.3
  • 141
    • 28844484951 scopus 로고    scopus 로고
    • TIS7 regulation of the beta-catenin/Tcf-4 target gene osteopontin (OPN) is histone deacetylase-dependent
    • Vietor I, Kurzbauer R, Brosch G, Huber LA. TIS7 regulation of the beta-catenin/Tcf-4 target gene osteopontin (OPN) is histone deacetylase-dependent. J Biol Chem 2005; 280: 39795-801.
    • (2005) J Biol Chem , vol.280 , pp. 39795-39801
    • Vietor, I.1    Kurzbauer, R.2    Brosch, G.3    Huber, L.A.4
  • 142
    • 0842332851 scopus 로고    scopus 로고
    • Inhibitory effect of TIS7 on Sp1-C/EBPalpha transcription factor module activity
    • Wick N, Schleiffer A, Huber LA, Vietor I. Inhibitory effect of TIS7 on Sp1-C/EBPalpha transcription factor module activity. J Mol Biol 2004; 336: 589-95.
    • (2004) J Mol Biol , vol.336 , pp. 589-595
    • Wick, N.1    Schleiffer, A.2    Huber, L.A.3    Vietor, I.4
  • 143
    • 34447342317 scopus 로고    scopus 로고
    • SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK
    • Ryzhakov G, Randow F. SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK. EMBO J 2007; 26: 3180-90.
    • (2007) EMBO J , vol.26 , pp. 3180-3190
    • Ryzhakov, G.1    Randow, F.2
  • 144
    • 33750433585 scopus 로고    scopus 로고
    • Manipulation of the nuclear factor-kappaB pathway and the innate immune response by viruses
    • Hiscott J, Nguyen TL, Arguello M, Nakhaei P, Paz S. Manipulation of the nuclear factor-kappaB pathway and the innate immune response by viruses. Oncogene 2006; 25: 6844-67.
    • (2006) Oncogene , vol.25 , pp. 6844-6867
    • Hiscott, J.1    Nguyen, T.L.2    Arguello, M.3    Nakhaei, P.4    Paz, S.5
  • 145
    • 34247583996 scopus 로고    scopus 로고
    • Cycling of O-linked beta-Nacetylglucosamine on nucleocytoplasmic proteins
    • Hart GW, Housley MP, Slawson C. Cycling of O-linked beta-Nacetylglucosamine on nucleocytoplasmic proteins. Nature 2007; 446: 1017-22.
    • (2007) Nature , vol.446 , pp. 1017-1022
    • Hart, G.W.1    Housley, M.P.2    Slawson, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.