메뉴 건너뛰기




Volumn 41, Issue 4, 2008, Pages 1338-1349

A genetic approach for efficient outlier detection in projected space

Author keywords

Deviation detection; Gene expression; Genetic algorithm; Grid count tree; Outlier; Projected dimension

Indexed keywords

DATA STRUCTURES; DECISION TREES; GENETIC ALGORITHMS; PROBLEM SOLVING; VALUE ENGINEERING;

EID: 36749021623     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2007.10.003     Document Type: Article
Times cited : (13)

References (31)
  • 2
    • 0002948319 scopus 로고    scopus 로고
    • Algorithms for mining distance-based outliers in large datasets
    • Knorr E.M., and Ng R.T. Algorithms for mining distance-based outliers in large datasets. Proceedings of VLDB Conference (1998) 392-403
    • (1998) Proceedings of VLDB Conference , pp. 392-403
    • Knorr, E.M.1    Ng, R.T.2
  • 6
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: a review
    • Parsons L., Haque E., and Liu H. Subspace clustering for high dimensional data: a review. SIGKDD Explor. 6 1 (2004) 90-105
    • (2004) SIGKDD Explor. , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 8
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: special issue on learning from imbalanced data sets
    • Chawla N.V., Japkowicz N., and Kolcz A. Editorial: special issue on learning from imbalanced data sets. SIGKDD Explor. 6 1 (2004) 1-6
    • (2004) SIGKDD Explor. , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kolcz, A.3
  • 11
    • 1242265370 scopus 로고    scopus 로고
    • Outlier analysis for gene expression data
    • Yan C., Chen G., and Shen Y. Outlier analysis for gene expression data. J. Comput. Sci. Technol. 19 1 (2004) 13-21
    • (2004) J. Comput. Sci. Technol. , vol.19 , Issue.1 , pp. 13-21
    • Yan, C.1    Chen, G.2    Shen, Y.3
  • 14
    • 13844276694 scopus 로고    scopus 로고
    • Cluster analysis for gene expression data: a survey
    • Jiang D., Tang C., and Zhang A. Cluster analysis for gene expression data: a survey. IEEE Trans. Knowl. Data Eng. 16 11 (2004) 1370-1386
    • (2004) IEEE Trans. Knowl. Data Eng. , vol.16 , Issue.11 , pp. 1370-1386
    • Jiang, D.1    Tang, C.2    Zhang, A.3
  • 16
    • 0012905555 scopus 로고    scopus 로고
    • Finding intensional knowledge of distance-based outliers
    • Knorr E.M., and Ng R.T. Finding intensional knowledge of distance-based outliers. Proceedings of VLDB Conference (1999) 211-222
    • (1999) Proceedings of VLDB Conference , pp. 211-222
    • Knorr, E.M.1    Ng, R.T.2
  • 19
    • 36749062635 scopus 로고    scopus 로고
    • K. A. De Jong, Analysis of the behavior of a class of genetic adaptive system, Ph.D. Thesis, Department of Computer and Communication Sciences, University of Michigan, 1981.
  • 21
    • 0033518873 scopus 로고    scopus 로고
    • Searching for evidence of altered gene expression: a comment on statistical analysis of microarray data
    • Wittes J., and Friedman H.P. Searching for evidence of altered gene expression: a comment on statistical analysis of microarray data. J. Nat. Cancer Inst. 91 5 (1999) 400-401
    • (1999) J. Nat. Cancer Inst. , vol.91 , Issue.5 , pp. 400-401
    • Wittes, J.1    Friedman, H.P.2
  • 23
    • 36749038499 scopus 로고    scopus 로고
    • A convergence theorem for genetic algorithm
    • Razzi A. A convergence theorem for genetic algorithm. Metron 55 (1997) 69-83
    • (1997) Metron , vol.55 , pp. 69-83
    • Razzi, A.1
  • 24
    • 0031097803 scopus 로고    scopus 로고
    • Optimized crossover for the independent set problem
    • Aggarwal C.C., Orlin J.B., and Tai R.P. Optimized crossover for the independent set problem. Oper. Res. 45 2 (1997) 226-234
    • (1997) Oper. Res. , vol.45 , Issue.2 , pp. 226-234
    • Aggarwal, C.C.1    Orlin, J.B.2    Tai, R.P.3
  • 25
    • 2542549173 scopus 로고    scopus 로고
    • Small populations over many generations can beat large populations over few generations in genetic programming
    • Stanford University
    • Gathercole C., and Ross P. Small populations over many generations can beat large populations over few generations in genetic programming. Proceedings of GP-97 (1997), Stanford University 111-118
    • (1997) Proceedings of GP-97 , pp. 111-118
    • Gathercole, C.1    Ross, P.2
  • 26
    • 0141613770 scopus 로고    scopus 로고
    • Efficient biased sampling for approximate clustering and outlier detection in large data sets
    • Kollios G., Gunopulos D., Koudas N., and Berchtold S. Efficient biased sampling for approximate clustering and outlier detection in large data sets. IEEE Trans. Knowl. Data Eng. 15 5 (2003) 1170-1187
    • (2003) IEEE Trans. Knowl. Data Eng. , vol.15 , Issue.5 , pp. 1170-1187
    • Kollios, G.1    Gunopulos, D.2    Koudas, N.3    Berchtold, S.4
  • 27
    • 84956852642 scopus 로고    scopus 로고
    • M. M. Breunig, H. Kriegel, R.T. Ng, J. Sander, OPTICS-OF: identifying local outliers, Principle Data Min. Knowl. Discovery (1999) 262-270.
  • 31
    • 0037410488 scopus 로고    scopus 로고
    • Discovering cluster-based local outliers
    • He Z., Xu X., and Deng S. Discovering cluster-based local outliers. Pattern Recognition Lett. 24 9-10 (2003) 1641-1650
    • (2003) Pattern Recognition Lett. , vol.24 , Issue.9-10 , pp. 1641-1650
    • He, Z.1    Xu, X.2    Deng, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.