메뉴 건너뛰기




Volumn 27, Issue 2, 2001, Pages 143-164

Feature subset selection by Bayesian networks: A comparison with genetic and sequential algorithms

Author keywords

Bayesian network; Estimation of Bayesian network algorithm; Estimation of distribution algorithm; Feature subset selection; Predictive accuracy; Soft computing

Indexed keywords


EID: 0343773003     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0888-613X(01)00038-X     Document Type: Article
Times cited : (45)

References (60)
  • 1
    • 84927733112 scopus 로고
    • Approximations of causal networks by polytrees: An empirical study
    • in: B. Bouchon-Meunier, R.R. Yager, L.A. Zadeh (Eds.), Advances in Intelligent Computing, Springer, Berlin
    • S. Acid, L.M. de Campos, Approximations of causal networks by polytrees: an empirical study, in: B. Bouchon-Meunier, R.R. Yager, L.A. Zadeh (Eds.), Advances in Intelligent Computing, vol. 945, Lecture Notes in Computer Science, Springer, Berlin, 1995, pp. 149-158.
    • (1995) Lecture Notes in Computer Science , vol.945 , pp. 149-158
    • Acid, S.1    De Campos, L.M.2
  • 3
    • 0033570831 scopus 로고    scopus 로고
    • Combined 5×2 cv F test for comparing supervised classification learning algorithms
    • Alpaydin, E., Combined 5×2 cv F test for comparing supervised classification learning algorithms, Neural Comput. 11, 1885-1982.
    • Neural Comput. , vol.11 , pp. 1885-1982
    • Alpaydin, E.1
  • 7
    • 0033359312 scopus 로고    scopus 로고
    • Hybrid soft computing systems: Industrial and commercial applications
    • Bonissone P.P., Chen Y.-T., Goebel K., Khedkar P.S. Hybrid soft computing systems: Industrial and commercial applications. Proc. IEEE. 87(9):1999;1641-1667.
    • (1999) Proc. IEEE , vol.87 , Issue.9 , pp. 1641-1667
    • Bonissone, P.P.1    Chen, Y.-T.2    Goebel, K.3    Khedkar, P.S.4
  • 13
    • 0002384709 scopus 로고
    • Conditional independence in statistical theory
    • Dawid A.P. Conditional independence in statistical theory. J. R. Stat. Soc. B. 41:1979;1-31.
    • (1979) J. R. Stat. Soc. B , vol.41 , pp. 1-31
    • Dawid, A.P.1
  • 19
    • 0022559425 scopus 로고
    • Optimization of control parameters for genetic algorithms
    • Grefenstatte J.J. Optimization of control parameters for genetic algorithms. IEEE Trans. Syst., Man Cybern. 1:1986;122-128.
    • (1986) IEEE Trans. Syst., Man Cybern. , vol.1 , pp. 122-128
    • Grefenstatte, J.J.1
  • 20
    • 0342461848 scopus 로고    scopus 로고
    • The compact genetic algorithm
    • Illinois Genetic Algorithms Laboratory, University of Illinois, Urbana-Champaign
    • G.R. Harik, F.G. Lobo, D.E. Goldberg, The compact genetic algorithm, IlliGAL Report 97006, Illinois Genetic Algorithms Laboratory, University of Illinois, Urbana-Champaign, 1997.
    • (1997) IlliGAL Report 97006
    • Harik, G.R.1    Lobo, F.G.2    Goldberg, D.E.3
  • 21
    • 0003738581 scopus 로고    scopus 로고
    • Linkage learning via probabilistic modelling in the ECGA
    • Illinois Genetic Algorithms Laboratory, University of Illinois, Urbana-Champaign
    • G. Harik, Linkage learning via probabilistic modelling in the ECGA, IlliGAL Report 99010, Illinois Genetic Algorithms Laboratory, University of Illinois, Urbana-Champaign, 1999.
    • (1999) IlliGAL Report 99010
    • Harik, G.1
  • 22
    • 85012775611 scopus 로고
    • Propagating uncertainty in Bayesian networks by probabilistic logic sampling
    • Elsevier, Amsterdam
    • Henrion, M., Propagating uncertainty in Bayesian networks by probabilistic logic sampling, in: Uncertainty in Artificial Intelligence 2, Elsevier, Amsterdam, 1988, pp. 149-163
    • (1988) In: Uncertainty in Artificial Intelligence 2 , pp. 149-163
    • Henrion, M.1
  • 24
    • 0342902635 scopus 로고    scopus 로고
    • Representing the behaviour of supervised classification learning algorithms by Bayesian networks
    • Inza I., Larrañaga P., Sierra B., Etxeberria R., Lozano J.A., Peña J.M. Representing the behaviour of supervised classification learning algorithms by Bayesian networks. Pattern Recogn. Lett. 20(11-13):1999;1201-1210.
    • (1999) Pattern Recogn. Lett. , vol.20 , Issue.1113 , pp. 1201-1210
    • Inza, I.1    Larrañaga, P.2    Sierra, B.3    Etxeberria, R.4    Lozano, J.A.5    Peña, J.M.6
  • 25
    • 17744402661 scopus 로고    scopus 로고
    • Feature subset selection by Bayesian networks based optimization
    • Inza I., Larrañaga P., Etxeberria R., Sierra B. Feature subset selection by Bayesian networks based optimization. Artif. Intell. 123(1-2):2000;157-184.
    • (2000) Artif. Intell. , vol.123 , Issue.12 , pp. 157-184
    • Inza, I.1    Larrañaga, P.2    Etxeberria, R.3    Sierra, B.4
  • 26
    • 0343766914 scopus 로고    scopus 로고
    • Feature subset selection by genetic algorithms and estimation of distribution algorithms
    • A case study in the survival of cirrhotic patients treated with TIPS, in press
    • I. Inza, M. Merino, P. Larrañaga, J. Quiroga, B. Sierra, M. Girala, Feature subset selection by genetic algorithms and estimation of distribution algorithms. A case study in the survival of cirrhotic patients treated with TIPS, Artif. Intell. Med., in press.
    • Artif. Intell. Med.
    • Inza, I.1    Merino, M.2    Larrañaga, P.3    Quiroga, J.4    Sierra, B.5    Girala, M.6
  • 27
    • 63249112814 scopus 로고
    • Dimensionality and sample size considerations in pattern recognition practice
    • North-Holland, Amsterdam, The Netherlands
    • A.K. Jain, R. Chandrasekaran, Dimensionality and sample size considerations in pattern recognition practice, in: Handbook of statistics - II, North-Holland, Amsterdam, The Netherlands, 1982, pp. 835-855.
    • (1982) In: Handbook of Statistics - II , pp. 835-855
    • Jain, A.K.1    Chandrasekaran, R.2
  • 28
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • Jain A., Zongker D. Feature selection: Evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. 19(2):1997;153-158.
    • (1997) IEEE Trans. Pattern Anal. , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 29
    • 0002774069 scopus 로고
    • Feature Set Search Algorithms
    • Sithoff and Noordhoff, Alphen aan den Rijn, The Netherlands
    • J. Kittler, Feature Set Search Algorithms, in: Pattern Recognition and Signal Processing, Sithoff and Noordhoff, Alphen aan den Rijn, The Netherlands, 1978, pp. 41-60.
    • (1978) In: Pattern Recognition and Signal Processing , pp. 41-60
    • Kittler, J.1
  • 30
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G. Wrappers for feature subset selection. Artif. Intell. 97(1-2):1997;273-324.
    • (1997) Artif. Intell. , vol.97 , Issue.12 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 32
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • Kudo M., Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recogn. 33:2000;25-41.
    • (2000) Pattern Recogn. , vol.33 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 34
    • 0030192667 scopus 로고    scopus 로고
    • Learning Bayesian network structures by searching for the best ordering with genetic algorithms
    • Larrañaga P., Kuijpers C.M.H., Murga R.H., Yurramendi Y. Learning Bayesian network structures by searching for the best ordering with genetic algorithms. IEEE Trans. Syst. Man Cybern. A. 26(4):1996;487-493.
    • (1996) IEEE Trans. Syst. Man Cybern. a , vol.26 , Issue.4 , pp. 487-493
    • Larrañaga, P.1    Kuijpers, C.M.H.2    Murga, R.H.3    Yurramendi, Y.4
  • 35
    • 0030245966 scopus 로고    scopus 로고
    • Structure Learning of Bayesian networks by genetic algorithms: A performance analysis of control parameters
    • Larrañaga P., Poza M., Yurramendi Y., Murga R.H., Kuijpers C.M.H. Structure Learning of Bayesian networks by genetic algorithms: A performance analysis of control parameters. IEEE Trans. Pattern Anal. 18(9):1996;912-926.
    • (1996) IEEE Trans. Pattern Anal. , vol.18 , Issue.9 , pp. 912-926
    • Larrañaga, P.1    Poza, M.2    Yurramendi, Y.3    Murga, R.H.4    Kuijpers, C.M.H.5
  • 38
    • 0004047518 scopus 로고    scopus 로고
    • Oxford, England: Oxford University Press
    • Lauritzen S.L. Graphical Models. 1996;Oxford University Press, Oxford, England.
    • (1996) Graphical Models
    • Lauritzen, S.L.1
  • 42
    • 0031215849 scopus 로고    scopus 로고
    • The equation for response to selection and its use for prediction
    • Müehlenbein H. The equation for response to selection and its use for prediction. Evol. Comput. 5(3):1997;303-346.
    • (1997) Evol. Comput. , vol.5 , Issue.3 , pp. 303-346
    • Müehlenbein, H.1
  • 44
    • 0033258156 scopus 로고    scopus 로고
    • FDA - A scalable evolutionary algorithm for the optimization of additively decomposed functions
    • Müehlenbein H., Mahnig T. FDA - A scalable evolutionary algorithm for the optimization of additively decomposed functions. Evol. Comput. 7(4):1999;353-376.
    • (1999) Evol. Comput. , vol.7 , Issue.4 , pp. 353-376
    • Müehlenbein, H.1    Mahnig, T.2
  • 45
    • 0003408496 scopus 로고
    • Department of Information and Computer Science, University of California, Irvine, CA
    • P. Murphy, UCI Repository of Machine Learning Databases, Department of Information and Computer Science, University of California, Irvine, CA, 1995.
    • (1995) UCI Repository of Machine Learning Databases
    • Murphy, P.1
  • 46
    • 0017535866 scopus 로고
    • A branch and bound algorithm for feature subset selection
    • Narendra P., Fukunaga K. A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. C-26(9):1977;917-922.
    • (1977) IEEE Trans. Comput. , vol.C-26 , Issue.9 , pp. 917-922
    • Narendra, P.1    Fukunaga, K.2
  • 49
    • 0003580454 scopus 로고    scopus 로고
    • BOA: The Bayesian Optimization Algorithm
    • Illinois Genetic Algorithms Laboratory, University of Illinois, Urbana-Champaign
    • M. Pelikan, D.E. Goldberg, E. Cantú-Paz, BOA: The Bayesian Optimization Algorithm, IlliGAL Report 99003, Illinois Genetic Algorithms Laboratory, University of Illinois, Urbana-Champaign, 1999.
    • (1999) IlliGAL Report 99003
    • Pelikan, M.1    Goldberg, D.E.2    Cantú-Paz, E.3
  • 52
    • 0028547556 scopus 로고
    • Floating search methods in feature selection
    • Pudil P., Novovicova J., Kittler J. Floating search methods in feature selection. Pattern Recogn. Lett. 15(1):1994;1119-1125.
    • (1994) Pattern Recogn. Lett. , vol.15 , Issue.1 , pp. 1119-1125
    • Pudil, P.1    Novovicova, J.2    Kittler, J.3
  • 53
    • 0000698326 scopus 로고    scopus 로고
    • A parallel algorithm for building possibilistic causal networks
    • Sangüesa R., Cortés U., Gisolfi A. A parallel algorithm for building possibilistic causal networks. Int. J. Approx. Reason. 18(3-4):1998;251-270.
    • (1998) Int. J. Approx. Reason. , vol.18 , Issue.34 , pp. 251-270
    • Sangüesa, R.1    Cortés, U.2    Gisolfi, A.3
  • 55
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann. Stat. 7:1978;461-464.
    • (1978) Ann. Stat. , vol.7 , pp. 461-464
    • Schwarz, G.1
  • 59
    • 0033076357 scopus 로고    scopus 로고
    • Using Evolutionary programming and minimum description length principle for data mining of Bayesian networks
    • Wong M.L., Lam W., Leung K.S. Using Evolutionary programming and minimum description length principle for data mining of Bayesian networks. IEEE Trans. Pattern Anal. 21(2):1999;174-178.
    • (1999) IEEE Trans. Pattern Anal. , vol.21 , Issue.2 , pp. 174-178
    • Wong, M.L.1    Lam, W.2    Leung, K.S.3
  • 60
    • 22844456513 scopus 로고    scopus 로고
    • Parallel learning of belief networks in large and difficult domains
    • Xiang Y., Chu T. Parallel learning of belief networks in large and difficult domains. Data Min. Knowl. Disc. 3(3):1999;315-338.
    • (1999) Data Min. Knowl. Disc. , vol.3 , Issue.3 , pp. 315-338
    • Xiang, Y.1    Chu, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.