메뉴 건너뛰기




Volumn 11, Issue 2, 2008, Pages 179-198

Hybrid genetic algorithm for dual selection

Author keywords

Classification; Feature selection; Genetic algorithm; Heuristics; K nearest neighbor method

Indexed keywords


EID: 44449093125     PISSN: 14337541     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10044-007-0089-3     Document Type: Article
Times cited : (20)

References (112)
  • 1
    • 0032575947 scopus 로고    scopus 로고
    • Combinatorial chemistry for the generation of molecular diversity and the discovery of bioactive lead
    • Fauchère LJ, Bouting JA, Henlin JM, Kucharczyk N, Ortuno JC (1998) Combinatorial chemistry for the generation of molecular diversity and the discovery of bioactive lead. Chem Intell Lab Syst 43:43-68
    • (1998) Chem Intell Lab Syst , vol.43 , pp. 43-68
    • Fauchère, L.J.1    Bouting, J.A.2    Henlin, J.M.3    Kucharczyk, N.4    Ortuno, J.C.5
  • 2
    • 77956038209 scopus 로고    scopus 로고
    • Reducing time to drug discovery. Recent advances in solid phase synthesis and high-throughpout screening suggest combinatorial chemistry is coming of age
    • 10
    • Borman S (1999) Reducing time to drug discovery. Recent advances in solid phase synthesis and high-throughpout screening suggest combinatorial chemistry is coming of age. CENEAR 77(10):33-48
    • (1999) CENEAR , vol.77 , pp. 33-48
    • Borman, S.1
  • 3
    • 33745561205 scopus 로고    scopus 로고
    • An Introduction to Variable and Descriptor Selection
    • Guyon I, Elisseeff A (2003) An Introduction to Variable and Descriptor Selection. J Mach Learn Res 3:1157-1182
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 4
    • 0013161560 scopus 로고    scopus 로고
    • Descriptor selection: Learning with exponentially many irrelevant descriptors as training examples
    • San Francisco
    • Ng AY (1998) Descriptor selection: learning with exponentially many irrelevant descriptors as training examples. In: 15th international conference on machine learning, San Francisco, pp 404-412
    • (1998) 15th International Conference on Machine Learning , pp. 404-412
    • Ng, A.Y.1
  • 6
    • 0028385080 scopus 로고
    • Minimal consistent set (MSC) identification for optimal nearest neighbor decision system design
    • Dasarathy BV (1994) Minimal consistent set (MSC) identification for optimal nearest neighbor decision system design. IEEE Trans Syst Man Cybern 24:511-517
    • (1994) IEEE Trans Syst Man Cybern , vol.24 , pp. 511-517
    • Dasarathy, B.V.1
  • 8
    • 0040788584 scopus 로고    scopus 로고
    • Nearest neighbour editing and condensing tools-synergy exploitation
    • Dasarathy BV, Sanchez JS, Townsend S (2003) Nearest neighbour editing and condensing tools-synergy exploitation. Pattern Anal Appl 3:19-30
    • (2003) Pattern Anal Appl , vol.3 , pp. 19-30
    • Dasarathy, B.V.1    Sanchez, J.S.2    Townsend, S.3
  • 9
    • 0033220766 scopus 로고    scopus 로고
    • Nearest neighbor classifier: Simultaneous editing and descriptor selection
    • 11-13
    • Kuncheva LI, Jain LC (1999) Nearest neighbor classifier: simultaneous editing and descriptor selection. Pattern Recognit Lett 20(11-13):1149-1156
    • (1999) Pattern Recognit Lett , vol.20 , pp. 1149-1156
    • Kuncheva, L.I.1    Jain, L.C.2
  • 10
  • 11
    • 0000392461 scopus 로고
    • A simulated annealing-like converge theory for the simple genetic algorithm
    • Davis TE, Principe JC (1991) A simulated annealing-like converge theory for the simple genetic algorithm, In: ICGA, pp 174-181
    • (1991) ICGA , pp. 174-181
    • Davis, T.E.1    Principe, J.C.2
  • 12
    • 8344285355 scopus 로고    scopus 로고
    • A recursive random search algorithm for large scale network parameter configuration
    • San Diego
    • Ye T, Kaur HT, Kalyanaraman S (2003) A recursive random search algorithm for large scale network parameter configuration. In: SIGMETRICS 2003, San Diego
    • (2003) SIGMETRICS 2003
    • Ye, T.1    Kaur, H.T.2    Kalyanaraman, S.3
  • 13
    • 0000411214 scopus 로고
    • Tabu Search
    • 3
    • Glover F (1989) Tabu Search. ORSA J Comput 1(3):190-206
    • (1989) ORSA J Comput , vol.1 , pp. 190-206
    • Glover, F.1
  • 14
    • 24044449704 scopus 로고    scopus 로고
    • Learning evaluation functions to improve optimisation by local search
    • Boyan J, Moore A (2000) Learning evaluation functions to improve optimisation by local search. J Mach Learn Res 1:77-112
    • (2000) J Mach Learn Res , vol.1 , pp. 77-112
    • Boyan, J.1    Moore, A.2
  • 16
    • 0027701744 scopus 로고
    • What makes a problem hard for a genetic algorithm? some anomalous results and their explanation
    • Forrest S, Mitchell M (1993) What makes a problem hard for a genetic algorithm? some anomalous results and their explanation. Mach Learn 13:285-319
    • (1993) Mach Learn , vol.13 , pp. 285-319
    • Forrest, S.1    Mitchell, M.2
  • 23
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash M, Liu H (1997) Feature selection for classification. Intell Data Anal 1:131-156
    • (1997) Intell Data Anal , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 24
    • 1442307850 scopus 로고    scopus 로고
    • Evaluating feature selection methods for learning in data mining application
    • Piramuthu S (2004) Evaluating feature selection methods for learning in data mining application. Eur J Oper Res 156:483-494
    • (2004) Eur J Oper Res , vol.156 , pp. 483-494
    • Piramuthu, S.1
  • 25
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature selection
    • Kohavi R, John G (1997) Wrappers for feature selection. Artif Intell 97:273-324
    • (1997) Artif Intell , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 28
    • 0028496468 scopus 로고
    • Learning boolean concepts in the presence of many irrelevant feautres
    • 1-2
    • Almuallim H, Diettrerich TG (1994) Learning boolean concepts in the presence of many irrelevant feautres. Artif Intell 69(1-2):279-305
    • (1994) Artif Intell , vol.69 , pp. 279-305
    • Almuallim, H.1    Diettrerich, T.G.2
  • 29
    • 0242498509 scopus 로고    scopus 로고
    • Feature selection for the naive bayesian classifier using decision trees
    • Ratanamahatan A, Gunopulos D (2003) Feature selection for the naive bayesian classifier using decision trees. Appl Artif Intell 17:475-487
    • (2003) Appl Artif Intell , vol.17 , pp. 475-487
    • Ratanamahatan, A.1    Gunopulos, D.2
  • 33
    • 0012657799 scopus 로고
    • Prototype and feature selection by sampling and random mutation hill climbing algorithms
    • New Brunswick. Morgan Kaufman, New Jersey
    • Shalak DB (1994) Prototype and feature selection by sampling and random mutation hill climbing algorithms. In: Proceedings of the 11th international conference on machine learning, New Brunswick. Morgan Kaufman, New Jersey, pp 293-301
    • (1994) Proceedings of the 11th International Conference on Machine Learning , pp. 293-301
    • Shalak, D.B.1
  • 35
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • 2
    • Jain AK, Zongker D (1997) Feature selection: evaluation, application, and small sample performance. IEEE Trans Pattern Anal Mach Intell 19(2):153-158
    • (1997) IEEE Trans Pattern Anal Mach Intell , vol.19 , pp. 153-158
    • Jain, A.K.1    Zongker, D.2
  • 37
    • 0036643301 scopus 로고    scopus 로고
    • Optimal reference subset selection for nearest neighbor classification by tabu search
    • Zhang H, Sun G (2002) Optimal reference subset selection for nearest neighbor classification by tabu search. Pattern Recognit 35:1481-1490
    • (2002) Pattern Recognit , vol.35 , pp. 1481-1490
    • Zhang, H.1    Sun, G.2
  • 38
    • 0036104537 scopus 로고    scopus 로고
    • Advances in instance selection for instance-based learning algorithms
    • Brighton H, Mellish C (2002) Advances in instance selection for instance-based learning algorithms. Data Min Knowl Discov 6:153-172
    • (2002) Data Min Knowl Discov , vol.6 , pp. 153-172
    • Brighton, H.1    Mellish, C.2
  • 39
    • 0028385080 scopus 로고
    • Minimal consistent subset (MCS) identification for optimal nearest neighbor decision systems design
    • Dasarathy BV (1994) Minimal consistent subset (MCS) identification for optimal nearest neighbor decision systems design. IEEE Trans Syst Man Cybern 24:511-517
    • (1994) IEEE Trans Syst Man Cybern , vol.24 , pp. 511-517
    • Dasarathy, B.V.1
  • 40
    • 84931162639 scopus 로고
    • The condensed nearest neighbor rule
    • Hart PE (1968) The condensed nearest neighbor rule. IEEE Trans Inf Theory 16:515-516
    • (1968) IEEE Trans Inf Theory , vol.16 , pp. 515-516
    • Hart, P.E.1
  • 41
    • 0015346497 scopus 로고
    • The reduced nearest neighbor rule
    • 3
    • Gates GW (1972) The reduced nearest neighbor rule. IEEE Trans Inf Theory 18(3):431-433
    • (1972) IEEE Trans Inf Theory , vol.18 , pp. 431-433
    • Gates, G.W.1
  • 43
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha D, Kibler D, Albert MK (1991) Instance-based learning algorithms. Mach Learn 6:37-66
    • (1991) Mach Learn , vol.6 , pp. 37-66
    • Aha, D.1    Kibler, D.2    Albert, M.K.3
  • 44
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • 3
    • Wilson DR, Martinez TR (2000) Reduction techniques for instance-based learning algorithms. Mach Learn 38(3):257-286
    • (2000) Mach Learn , vol.38 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 45
    • 0031168619 scopus 로고    scopus 로고
    • Fitness functions in editing k-NN reference set by genetic algorithms
    • 6
    • Kuncheva LI (1997) Fitness functions in editing k-NN reference set by genetic algorithms. Pattern Recognit 30(6):1041-1049
    • (1997) Pattern Recognit , vol.30 , pp. 1041-1049
    • Kuncheva, L.I.1
  • 46
    • 0242637124 scopus 로고    scopus 로고
    • Combining genetic optimization with hybrid learning algorithm for radial basis function neural networks
    • Guo L, Huang DS, Zhao W (2003) Combining genetic optimization with hybrid learning algorithm for radial basis function neural networks. Electron Lett Online 39(22)
    • (2003) Electron Lett Online , vol.39 , Issue.22
    • Guo, L.1    Huang, D.S.2    Zhao, W.3
  • 47
    • 0035575921 scopus 로고    scopus 로고
    • Nearest prototype classifier designs: An experimental study
    • 12
    • Bezdek JC, Kuncheva LI (2000) Nearest prototype classifier designs: an experimental study. Int J Intell Syst 16(12):1445-1473
    • (2000) Int J Intell Syst , vol.16 , pp. 1445-1473
    • Bezdek, J.C.1    Kuncheva, L.I.2
  • 48
    • 23044521499 scopus 로고    scopus 로고
    • Some notes on twenty one (21) nearest prototype classifiers
    • Springer Berlin
    • Bezdek JC, Kuncheva LI (2000) Some notes on twenty one (21) nearest prototype classifiers. In: Ferri FJ et al (eds) SSPR&SPR. Springer, Berlin, pp 1-16
    • (2000) SSPR&SPR , pp. 1-16
    • Bezdek, J.C.1    Kuncheva, L.I.2    Ferri, F.J.3
  • 49
    • 0346331906 scopus 로고    scopus 로고
    • A brief taxonomy and ranking of creative prototype reduction schemes
    • Kim SW, Oommen BJ (2003) A brief taxonomy and ranking of creative prototype reduction schemes. Pattern Anal Appl 6:232-244
    • (2003) Pattern Anal Appl , vol.6 , pp. 232-244
    • Kim, S.W.1    Oommen, B.J.2
  • 50
    • 0037633988 scopus 로고    scopus 로고
    • A unified approach to detecting spatial outliers
    • 2
    • Shekhar S, Lu CT, Zhang P (2003) A unified approach to detecting spatial outliers. Geoinformatica 7(2):139-166
    • (2003) Geoinformatica , vol.7 , pp. 139-166
    • Shekhar, S.1    Lu, C.T.2    Zhang, P.3
  • 51
    • 0034133513 scopus 로고    scopus 로고
    • Distance-based outliers: Algorithms and applications
    • 3-4
    • Knorr EM, Ng RT, Tucakov V (2000) Distance-based outliers: algorithms and applications. VLDB J 8(3-4):237-253
    • (2000) VLDB J , vol.8 , pp. 237-253
    • Knorr, E.M.1    Ng, R.T.2    Tucakov, V.3
  • 56
    • 2942516120 scopus 로고    scopus 로고
    • Enhancing Prototype reduction schemes with recursion: A method applicable for "large" data sets
    • Kim SW, Oommen BJ (2003) Enhancing Prototype reduction schemes with recursion: a method applicable for "Large" data sets. IEEE Trans Syst Man Cybern 34(3):Part B
    • (2003) IEEE Trans Syst Man Cybern , vol.34 , Issue.3 PART B
    • Kim, S.W.1    Oommen, B.J.2
  • 57
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • Wilson DL (1972) Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans Syst Man Cybern 2:408-421
    • (1972) IEEE Trans Syst Man Cybern , vol.2 , pp. 408-421
    • Wilson, D.L.1
  • 58
    • 44449136031 scopus 로고    scopus 로고
    • Considerations about sample-size sensitivity of a family of edited nearest-neighbor rules
    • Francesco JF, Jesus V, Vidal A (1999) Considerations about sample-size sensitivity of a family of edited nearest-neighbor rules. IEEE Trans Syst Man Cybern 29(4):Part B
    • IEEE Trans Syst Man Cybern , vol.1999 , Issue.4 PART B
    • Francesco, J.F.1    Jesus, V.2    Vidal, A.3
  • 61
    • 84877758755 scopus 로고    scopus 로고
    • Decontamination of training samples for supervised pattern recognition methods
    • Ferri FJ, Inesta Quereda JM, Amin A, Paudil P (eds) Springer, Berlin
    • Barandela R, Gasca E (2000) Decontamination of training samples for supervised pattern recognition methods. In: Ferri FJ, Inesta Quereda JM, Amin A, Paudil P (eds) Lecture Notes in Computer Science, vol 1876. Springer, Berlin, pp 621-630
    • (2000) Lecture Notes in Computer Science , vol.1876 , pp. 621-630
    • Barandela, R.1    Gasca, E.2
  • 67
    • 0002284602 scopus 로고
    • An investigation of niche and species formation in genetic function optimisation
    • Schaffer JD (ed) Morgan Kaufmann, San Mateo
    • Deb K, Goldberg DE (1989) An investigation of niche and species formation in genetic function optimisation. In: Schaffer JD (ed) Proceedings of the 3rd international conference on genetic algorithms. Morgan Kaufmann, San Mateo, pp 42-50
    • (1989) Proceedings of the 3rd International Conference on Genetic Algorithms , pp. 42-50
    • Deb, K.1    De, G.2
  • 68
    • 0000401181 scopus 로고
    • A sequential niche technique for multimodal function optimization
    • 2
    • Beasley D, Bull DR, Martin RR (1993) A sequential niche technique for multimodal function optimization. Evol Comput 1(2):101-125
    • (1993) Evol Comput , vol.1 , pp. 101-125
    • Beasley, D.1    Bull, D.R.2    Martin, R.R.3
  • 72
    • 0032155883 scopus 로고    scopus 로고
    • Fitness sharing and niching methods revisited.
    • 3
    • Sareni B, Krahenbuhl L (1998) Fitness sharing and niching methods revisited. IEEE Trans Evol Comput 2(3):97-106
    • (1998) IEEE Trans Evol Comput , vol.2 , pp. 97-106
    • Sareni, B.1    Krahenbuhl, L.2
  • 73
    • 44449148827 scopus 로고    scopus 로고
    • Deterministic crowding, recombination and self-similarity
    • Youang B (2002) Deterministic crowding, recombination and self-similarity. In: Proceedings of IEEE
    • (2002) Proceedings of IEEE
    • Youang, B.1
  • 74
    • 0036715627 scopus 로고    scopus 로고
    • A species conserving genetic algorithm for multimodal function optimization
    • 3
    • Li JP, Balazs ME, Parks GT, Clarkson PJ (2002) A species conserving genetic algorithm for multimodal function optimization. Evol Comput 10(3):207-234
    • (2002) Evol Comput , vol.10 , pp. 207-234
    • Li, J.P.1    Balazs, M.E.2    Parks, G.T.3    Clarkson, P.J.4
  • 77
    • 0003055345 scopus 로고
    • Finding multimodal solutions using restricted tournament selection
    • Eshelman LJ (ed) Morgan Kaufman, San Mateo
    • Harik G (1995) Finding multimodal solutions using restricted tournament selection. In: Eshelman LJ (ed) Proceedings of 6th international conference on genetic algorithms. Morgan Kaufman, San Mateo, pp 24-31
    • (1995) Proceedings of 6th International Conference on Genetic Algorithms , pp. 24-31
    • Harik, G.1
  • 80
    • 0033307709 scopus 로고    scopus 로고
    • New selection method to improve the population diversity in genetic algorithms systems, man and cybernetics
    • Matsui K (1999) New selection method to improve the population diversity in genetic algorithms systems, man and cybernetics. IEEE Int Conf 1:625-630
    • (1999) IEEE Int Conf , vol.1 , pp. 625-630
    • Matsui, K.1
  • 83
    • 0033666263 scopus 로고    scopus 로고
    • Optimizing the efficiency of parameterized local search within global search: A preliminary study
    • San Diego
    • Zitzler E, Teich J, Bhattacharyya (2000) Optimizing the efficiency of parameterized local search within global search: a preliminary study. In: Proceedings of the congress on evolutionary computation, San Diego, pp 365-372
    • (2000) Proceedings of the Congress on Evolutionary Computation , pp. 365-372
    • Zitzler, E.1    Teich, J.2    Bhattacharyya3
  • 84
  • 87
    • 0037190138 scopus 로고    scopus 로고
    • Molecular description selection combining genetic algorithms and fuzzy logic: Application to database mining procedures
    • Ros F, Pintore M, Chretien JR (2002) Molecular description selection combining genetic algorithms and fuzzy logic: application to database mining procedures. J Chem Int Lab Syst 63:15-22
    • (2002) J Chem Int Lab Syst , vol.63 , pp. 15-22
    • Ros, F.1    Pintore, M.2    Chretien, J.R.3
  • 88
    • 0345019845 scopus 로고    scopus 로고
    • Genetic algorithms applied to feature selection in PLS regression: How and when to use them
    • 2
    • Leardi R, Gonzalez AL (1998) Genetic algorithms applied to feature selection in PLS regression: how and when to use them. Chem Intell Lab Syst 41(2):195-207
    • (1998) Chem Intell Lab Syst , vol.41 , pp. 195-207
    • Leardi, R.1    Gonzalez, A.L.2
  • 90
    • 84901399858 scopus 로고    scopus 로고
    • A comparison of memetic algorithms, tabu search and ant colonies for the quadratic assignment problem
    • Washington DC
    • Merz P, Freisleben (1999) A comparison of memetic algorithms, tabu search and ant colonies for the quadratic assignment problem. In: Proceedings of the international congress of evolutionary computation, Washington DC
    • (1999) Proceedings of the International Congress of Evolutionary Computation
    • Merz, P.1    Freisleben2
  • 96
    • 44449142471 scopus 로고    scopus 로고
    • On the convergence and diversity-preservation properties of multi-objective evolutionary algorithms
    • 2
    • Laumanns M, Thiele L, Deb K, Zitzler E (2000) On the convergence and diversity-preservation properties of multi-objective evolutionary algorithms. Evol Comput 8(2):149-172
    • (2000) Evol Comput , vol.8 , pp. 149-172
    • Laumanns, M.1    Thiele, L.2    Deb, K.3    Zitzler, E.4
  • 100
    • 0004909434 scopus 로고
    • Multicriteria optimization by genetic algorithms: A case of scheduling in hot rolling process
    • Tamaki H, Mori M, Araki M, Ogai H (1995) Multicriteria optimization by genetic algorithms: a case of scheduling in hot rolling process. In: Proceedings of the 3rd APORS, pp 374-381
    • (1995) Proceedings of the 3rd APORS , pp. 374-381
    • Tamaki, H.1    Mori, M.2    Araki, M.3    Ogai, H.4
  • 102
    • 0033220766 scopus 로고    scopus 로고
    • Nearest neighbor classifier: Simultaneous editing and descriptor selection
    • 11-13
    • Kuncheva LI, Jain LC (1999) Nearest neighbor classifier: simultaneous editing and descriptor selection. Pattern Recognit Lett 20(11-13):1149-1156
    • (1999) Pattern Recognit Lett , vol.20 , pp. 1149-1156
    • Kuncheva, L.I.1    Jain, L.C.2
  • 103
    • 0036832996 scopus 로고    scopus 로고
    • Design of an optimal nearest neighbor classifier using an intelligent genetic algorithm
    • Ho S-H, Lui C-C, Liu S (2002) Design of an optimal nearest neighbor classifier using an intelligent genetic algorithm. Pattern Recognit Lett 23:1495-1503
    • (2002) Pattern Recognit Lett , vol.23 , pp. 1495-1503
    • Ho, S.-H.1    Lui, C.-C.2    Liu, S.3
  • 104
    • 0347763609 scopus 로고    scopus 로고
    • Using evolutionary algorithms as instance selection for data reduction in kdd: An experimental study
    • 6
    • Cano JR, Herrera F, Lozano (2003) Using evolutionary algorithms as instance selection for data reduction in kdd: an experimental study. IEEE Trans Evol Comput 7(6):193-208
    • (2003) IEEE Trans Evol Comput , vol.7 , pp. 193-208
    • Cano, J.R.1    Herrera, F.2    Lozano3
  • 106
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Science, University of California
    • Blake C, Keogh E, Merz CJ (1998) UCI repository of machine learning databases ( http://www.ics.uci.edi/~mlearn/MLRepository.html ), Department of Information and Computer Science, University of California
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.1    Keogh, E.2    Merz, C.J.3
  • 107
    • 0003736040 scopus 로고
    • Geiger DL, Brooke LT, Call DJ (Eds) Center for Lake Superior Environmental Studies, University of Wisconsin, Superior
    • Geiger DL, Brooke LT, Call DJ (Eds) (1990) Acute toxicities of organic chemicals to Fathead Minnows (Pimephales promelas), Center for Lake Superior Environmental Studies, University of Wisconsin, Superior
    • (1990) Acute Toxicities of Organic Chemicals to Fathead Minnows (Pimephales Promelas)
  • 109
    • 0034199912 scopus 로고    scopus 로고
    • Approximating the nondominated front using the Pareto archived evolution strategy
    • 2
    • Knowles JD, Corne DW (2000) Approximating the nondominated front using the Pareto archived evolution strategy. Evol Comput 8(2):149-172
    • (2000) Evol Comput , vol.8 , pp. 149-172
    • Knowles, J.D.1    Corne, D.W.2
  • 110
    • 0039219596 scopus 로고
    • Interactive assessment of preferences using holistic judgements: The PREFCALC system
    • Bana e Costa CA (ed) Springer, Heidelberg
    • Jacquet-Lagrèze E (1990) Interactive assessment of preferences using holistic judgements: the PREFCALC system. In: Bana e Costa CA (ed) Readings in multiple criteria decision aid, Springer, Heidelberg, pp 336-350
    • (1990) Readings in Multiple Criteria Decision Aid , pp. 336-350
    • Jacquet-Lagrèze, E.1
  • 111
    • 0842348565 scopus 로고
    • Data analysis: How to compare Kohonen neural networks to others techniques?
    • Barcelona, Lectures Notes on Computer Science. Springer, Heidelberg
    • Blayo F, Demartines P (1991) Data analysis: How to compare Kohonen neural networks to others techniques? International workshop in artificial neural networks (IWANN 1991), Barcelona, Lectures Notes on Computer Science. Springer, Heidelberg, pp 469-476
    • (1991) International Workshop in Artificial Neural Networks (IWANN 1991) , pp. 469-476
    • Blayo, F.1    Demartines, P.2
  • 112
    • 0031611110 scopus 로고    scopus 로고
    • Application of Kohonen neural networks in classification of biologically active compounds
    • Kireev D, Bernard D, Chretien JR, Ros F (1998) Application of Kohonen neural networks in classification of biologically active compounds. SAR QSAR Environ Res 8:93-107
    • (1998) SAR QSAR Environ Res , vol.8 , pp. 93-107
    • Kireev, D.1    Bernard, D.2    Chretien, J.R.3    Ros, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.