메뉴 건너뛰기




Volumn 36, Issue 3 PART 2, 2009, Pages 5900-5908

Evolutionary-based feature selection approaches with new criteria for data mining: A case study of credit approval data

Author keywords

Data Mining; Evolutionary algorithm; Feature selection; Multi objective optimization

Indexed keywords

DATA MINING; EVOLUTIONARY ALGORITHMS; FEATURE EXTRACTION; METADATA; MULTIOBJECTIVE OPTIMIZATION;

EID: 58349092287     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2008.07.026     Document Type: Article
Times cited : (100)

References (19)
  • 1
    • 58349104054 scopus 로고    scopus 로고
    • Asuncion, A., & Newman, D. J. (2007). UCI machine learning repository. [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California, Department of Information and Computer Science.
    • Asuncion, A., & Newman, D. J. (2007). UCI machine learning repository. [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California, Department of Information and Computer Science.
  • 3
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., and Vapnik V. Support-vector networks. Machine Learning 20 3 (1995) 273-297
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 6
    • 84947926042 scopus 로고    scopus 로고
    • A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
    • Schoenauer M., Deb K., Rudolph G., Yao X., Lutton E., Merelo J.J., and Schwefel H.-P. (Eds), Springer, Paris, France Lecture Notes in Computer Science No. 1917
    • Deb K., Agrawal S., Pratab A., and Meyarivan T. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer M., Deb K., Rudolph G., Yao X., Lutton E., Merelo J.J., and Schwefel H.-P. (Eds). Proceedings of the parallel problem solving from nature VI conference (2000), Springer, Paris, France 849-858 Lecture Notes in Computer Science No. 1917
    • (2000) Proceedings of the parallel problem solving from nature VI conference , pp. 849-858
    • Deb, K.1    Agrawal, S.2    Pratab, A.3    Meyarivan, T.4
  • 8
    • 58349095080 scopus 로고    scopus 로고
    • Drummond, C., & Holte, R. (2003). C4.5, Class imbalance, and cost sensitivity: Why under-sampling beats over-sampling. In Workshop on learning from imbalanced datasets II (within ICML).
    • Drummond, C., & Holte, R. (2003). C4.5, Class imbalance, and cost sensitivity: Why under-sampling beats over-sampling. In Workshop on learning from imbalanced datasets II (within ICML).
  • 9
    • 58349084597 scopus 로고    scopus 로고
    • Hsu, C. W., Chang, C. C., & Lin, C. J., 2003. A practical guide to support vector classification. Technical report. Taipei: Department of Computer Science and Information Engineering, National Taiwan University.
    • Hsu, C. W., Chang, C. C., & Lin, C. J., 2003. A practical guide to support vector classification. Technical report. Taipei: Department of Computer Science and Information Engineering, National Taiwan University.
  • 10
    • 0036158552 scopus 로고    scopus 로고
    • A simple decomposition method for support vector machines
    • Hsu C.-W., and Lin C.-J. A simple decomposition method for support vector machines. Machine Learning 46 (2002) 291-314
    • (2002) Machine Learning , vol.46 , pp. 291-314
    • Hsu, C.-W.1    Lin, C.-J.2
  • 11
    • 58349087561 scopus 로고    scopus 로고
    • Huang, C.-M., Lee, Y-J., Lin, D. K. J., & Huang, S.-Y. (2004). Model selection for support vector machines via uniform design. A special issue on Machine Learning and Robust Data Mining of Computational Statistics and Data Analysis.
    • Huang, C.-M., Lee, Y-J., Lin, D. K. J., & Huang, S.-Y. (2004). Model selection for support vector machines via uniform design. A special issue on Machine Learning and Robust Data Mining of Computational Statistics and Data Analysis.
  • 12
    • 0242662174 scopus 로고    scopus 로고
    • Dimensionality reduction in automatic knowledge acquisition: A simple greedy search approach
    • Huang S.H. Dimensionality reduction in automatic knowledge acquisition: A simple greedy search approach. IEEE Transactions on Knowledge and Data Engineering 15 6 (2003) 1364-1373
    • (2003) IEEE Transactions on Knowledge and Data Engineering , vol.15 , Issue.6 , pp. 1364-1373
    • Huang, S.H.1
  • 13
    • 0027002164 scopus 로고
    • The feature selection problem: Traditional methods and a new algorithm
    • Kira K., and Rendell L.A. The feature selection problem: Traditional methods and a new algorithm. AAAI (1992) 129-134
    • (1992) AAAI , pp. 129-134
    • Kira, K.1    Rendell, L.A.2
  • 14
    • 58349115142 scopus 로고    scopus 로고
    • Lin, H.-T., & Li, L., 2005. Analysis of SAGE results with combined learning techniques. In P. Berka, & B. Crémilleux (Eds.), Proceedings of the ECML/PKDD 2005 discovery challenge (pp. 102-113).
    • Lin, H.-T., & Li, L., 2005. Analysis of SAGE results with combined learning techniques. In P. Berka, & B. Crémilleux (Eds.), Proceedings of the ECML/PKDD 2005 discovery challenge (pp. 102-113).
  • 15
    • 84880794162 scopus 로고    scopus 로고
    • Ling, C., Huang, J., & Zhang, H., 2003. AUC: A statistically consistent and more discriminating measure than accuracy. In Proceedings of international joint conferences on artificial intelligence.
    • Ling, C., Huang, J., & Zhang, H., 2003. AUC: A statistically consistent and more discriminating measure than accuracy. In Proceedings of international joint conferences on artificial intelligence.
  • 17
    • 0001466281 scopus 로고    scopus 로고
    • A survey of credit and behavioral scoring: forecasting financial risk of lending to consumers
    • Thomas L.C. A survey of credit and behavioral scoring: forecasting financial risk of lending to consumers. International Journal of Forecasting 16 2 (2000) 149-172
    • (2000) International Journal of Forecasting , vol.16 , Issue.2 , pp. 149-172
    • Thomas, L.C.1
  • 18
    • 58349111635 scopus 로고    scopus 로고
    • Weiss, G., & Provost, F. (2001). The effect of class distribution on classifier learning. Technical report ML-TR 43. Department of Computer Science, Rutgers University.
    • Weiss, G., & Provost, F. (2001). The effect of class distribution on classifier learning. Technical report ML-TR 43. Department of Computer Science, Rutgers University.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.