-
1
-
-
58349104054
-
-
Asuncion, A., & Newman, D. J. (2007). UCI machine learning repository. [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California, Department of Information and Computer Science.
-
Asuncion, A., & Newman, D. J. (2007). UCI machine learning repository. [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California, Department of Information and Computer Science.
-
-
-
-
2
-
-
12244266082
-
-
ACM Press, New York, NY, USA
-
Cantu-Paz E., Newsam S., and Kamath C. Feature selection in scientific applications. KDD '04: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (2004), ACM Press, New York, NY, USA
-
(2004)
KDD '04: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining
-
-
Cantu-Paz, E.1
Newsam, S.2
Kamath, C.3
-
3
-
-
34249753618
-
Support-vector networks
-
Cortes C., and Vapnik V. Support-vector networks. Machine Learning 20 3 (1995) 273-297
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
5
-
-
0003866267
-
-
Wiley, New York, NY, USA
-
Kalyanmoy D., and Kalyanmoy D. Multi-objective optimization using evolutionary algorithms (2001), Wiley, New York, NY, USA
-
(2001)
Multi-objective optimization using evolutionary algorithms
-
-
Kalyanmoy, D.1
Kalyanmoy, D.2
-
6
-
-
84947926042
-
A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
-
Schoenauer M., Deb K., Rudolph G., Yao X., Lutton E., Merelo J.J., and Schwefel H.-P. (Eds), Springer, Paris, France Lecture Notes in Computer Science No. 1917
-
Deb K., Agrawal S., Pratab A., and Meyarivan T. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer M., Deb K., Rudolph G., Yao X., Lutton E., Merelo J.J., and Schwefel H.-P. (Eds). Proceedings of the parallel problem solving from nature VI conference (2000), Springer, Paris, France 849-858 Lecture Notes in Computer Science No. 1917
-
(2000)
Proceedings of the parallel problem solving from nature VI conference
, pp. 849-858
-
-
Deb, K.1
Agrawal, S.2
Pratab, A.3
Meyarivan, T.4
-
8
-
-
58349095080
-
-
Drummond, C., & Holte, R. (2003). C4.5, Class imbalance, and cost sensitivity: Why under-sampling beats over-sampling. In Workshop on learning from imbalanced datasets II (within ICML).
-
Drummond, C., & Holte, R. (2003). C4.5, Class imbalance, and cost sensitivity: Why under-sampling beats over-sampling. In Workshop on learning from imbalanced datasets II (within ICML).
-
-
-
-
9
-
-
58349084597
-
-
Hsu, C. W., Chang, C. C., & Lin, C. J., 2003. A practical guide to support vector classification. Technical report. Taipei: Department of Computer Science and Information Engineering, National Taiwan University.
-
Hsu, C. W., Chang, C. C., & Lin, C. J., 2003. A practical guide to support vector classification. Technical report. Taipei: Department of Computer Science and Information Engineering, National Taiwan University.
-
-
-
-
10
-
-
0036158552
-
A simple decomposition method for support vector machines
-
Hsu C.-W., and Lin C.-J. A simple decomposition method for support vector machines. Machine Learning 46 (2002) 291-314
-
(2002)
Machine Learning
, vol.46
, pp. 291-314
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
11
-
-
58349087561
-
-
Huang, C.-M., Lee, Y-J., Lin, D. K. J., & Huang, S.-Y. (2004). Model selection for support vector machines via uniform design. A special issue on Machine Learning and Robust Data Mining of Computational Statistics and Data Analysis.
-
Huang, C.-M., Lee, Y-J., Lin, D. K. J., & Huang, S.-Y. (2004). Model selection for support vector machines via uniform design. A special issue on Machine Learning and Robust Data Mining of Computational Statistics and Data Analysis.
-
-
-
-
12
-
-
0242662174
-
Dimensionality reduction in automatic knowledge acquisition: A simple greedy search approach
-
Huang S.H. Dimensionality reduction in automatic knowledge acquisition: A simple greedy search approach. IEEE Transactions on Knowledge and Data Engineering 15 6 (2003) 1364-1373
-
(2003)
IEEE Transactions on Knowledge and Data Engineering
, vol.15
, Issue.6
, pp. 1364-1373
-
-
Huang, S.H.1
-
13
-
-
0027002164
-
The feature selection problem: Traditional methods and a new algorithm
-
Kira K., and Rendell L.A. The feature selection problem: Traditional methods and a new algorithm. AAAI (1992) 129-134
-
(1992)
AAAI
, pp. 129-134
-
-
Kira, K.1
Rendell, L.A.2
-
14
-
-
58349115142
-
-
Lin, H.-T., & Li, L., 2005. Analysis of SAGE results with combined learning techniques. In P. Berka, & B. Crémilleux (Eds.), Proceedings of the ECML/PKDD 2005 discovery challenge (pp. 102-113).
-
Lin, H.-T., & Li, L., 2005. Analysis of SAGE results with combined learning techniques. In P. Berka, & B. Crémilleux (Eds.), Proceedings of the ECML/PKDD 2005 discovery challenge (pp. 102-113).
-
-
-
-
15
-
-
84880794162
-
-
Ling, C., Huang, J., & Zhang, H., 2003. AUC: A statistically consistent and more discriminating measure than accuracy. In Proceedings of international joint conferences on artificial intelligence.
-
Ling, C., Huang, J., & Zhang, H., 2003. AUC: A statistically consistent and more discriminating measure than accuracy. In Proceedings of international joint conferences on artificial intelligence.
-
-
-
-
17
-
-
0001466281
-
A survey of credit and behavioral scoring: forecasting financial risk of lending to consumers
-
Thomas L.C. A survey of credit and behavioral scoring: forecasting financial risk of lending to consumers. International Journal of Forecasting 16 2 (2000) 149-172
-
(2000)
International Journal of Forecasting
, vol.16
, Issue.2
, pp. 149-172
-
-
Thomas, L.C.1
-
18
-
-
58349111635
-
-
Weiss, G., & Provost, F. (2001). The effect of class distribution on classifier learning. Technical report ML-TR 43. Department of Computer Science, Rutgers University.
-
Weiss, G., & Provost, F. (2001). The effect of class distribution on classifier learning. Technical report ML-TR 43. Department of Computer Science, Rutgers University.
-
-
-
|