메뉴 건너뛰기




Volumn 9, Issue 2, 2009, Pages 599-607

Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach

Author keywords

Bankruptcy prediction; Case based reasoning; Feature weighting; Genetic algorithms; Instance selection

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; BITS; GENETIC ALGORITHMS; RISK ANALYSIS; RISK MANAGEMENT;

EID: 58549117670     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2008.08.002     Document Type: Article
Times cited : (148)

References (59)
  • 1
    • 33846314346 scopus 로고    scopus 로고
    • Bankruptcy prediction in banks and firms via statistical and intelligent techniques-a review
    • Kumar P.R., and Ravi V. Bankruptcy prediction in banks and firms via statistical and intelligent techniques-a review. European Journal of Operational Research 180 1 (2007) 1-28
    • (2007) European Journal of Operational Research , vol.180 , Issue.1 , pp. 1-28
    • Kumar, P.R.1    Ravi, V.2
  • 3
    • 0030735991 scopus 로고    scopus 로고
    • A method of similarity metrics for structured representations
    • Wang Y., and Ishii N. A method of similarity metrics for structured representations. Expert Systems with Applications 12 1 (1997) 89-100
    • (1997) Expert Systems with Applications , vol.12 , Issue.1 , pp. 89-100
    • Wang, Y.1    Ishii, N.2
  • 4
    • 0003112429 scopus 로고    scopus 로고
    • Case-based reasoning supported by genetic algorithms for corporate bond rating
    • Shin K.S., and Han I. Case-based reasoning supported by genetic algorithms for corporate bond rating. Expert Systems with Applications 16 2 (1999) 85-95
    • (1999) Expert Systems with Applications , vol.16 , Issue.2 , pp. 85-95
    • Shin, K.S.1    Han, I.2
  • 5
    • 0035477890 scopus 로고    scopus 로고
    • Maintaining case-based reasoning systems using a genetic algorithms approach
    • Kim K., and Han I. Maintaining case-based reasoning systems using a genetic algorithms approach. Expert Systems with Applications 21 3 (2001) 139-145
    • (2001) Expert Systems with Applications , vol.21 , Issue.3 , pp. 139-145
    • Kim, K.1    Han, I.2
  • 6
    • 0036468125 scopus 로고    scopus 로고
    • A case-based customer classification approach for direct marketing
    • Chiu C. A case-based customer classification approach for direct marketing. Expert Systems with Applications 22 2 (2002) 163-168
    • (2002) Expert Systems with Applications , vol.22 , Issue.2 , pp. 163-168
    • Chiu, C.1
  • 7
    • 10044288346 scopus 로고    scopus 로고
    • Toward global optimization of case-based reasoning systems for financial forecasting
    • Kim K. Toward global optimization of case-based reasoning systems for financial forecasting. Applied Intelligence 21 3 (2004) 239-249
    • (2004) Applied Intelligence , vol.21 , Issue.3 , pp. 239-249
    • Kim, K.1
  • 8
    • 84980104458 scopus 로고
    • Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
    • Altman E.I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance 23 4 (1968) 589-609
    • (1968) The Journal of Finance , vol.23 , Issue.4 , pp. 589-609
    • Altman, E.I.1
  • 9
    • 0000275837 scopus 로고
    • A discriminant analysis of predictors of business failure
    • Deakin E. A discriminant analysis of predictors of business failure. Journal of Accounting Research 10 1 (1974) 167-179
    • (1974) Journal of Accounting Research , vol.10 , Issue.1 , pp. 167-179
    • Deakin, E.1
  • 10
    • 0000666375 scopus 로고
    • Financial ratios and the probabilistic prediction of bankruptcy
    • Ohlson J. Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research 18 1 (1980) 109-131
    • (1980) Journal of Accounting Research , vol.18 , Issue.1 , pp. 109-131
    • Ohlson, J.1
  • 12
    • 84997479670 scopus 로고
    • Managerial applications of the neural networks: the case of bank failure predictions
    • Tam K.Y., and Kiang M.Y. Managerial applications of the neural networks: the case of bank failure predictions. Management Science 38 7 (1992) 926-947
    • (1992) Management Science , vol.38 , Issue.7 , pp. 926-947
    • Tam, K.Y.1    Kiang, M.Y.2
  • 13
    • 0003389364 scopus 로고
    • Self-organizing neural networks for the analysis and representation of data: some financial cases
    • Martin-del-Brio B., and Serrano-Cinca C. Self-organizing neural networks for the analysis and representation of data: some financial cases. Neural Computing and Applications 1 2 (1993) 193-206
    • (1993) Neural Computing and Applications , vol.1 , Issue.2 , pp. 193-206
    • Martin-del-Brio, B.1    Serrano-Cinca, C.2
  • 14
    • 0030190036 scopus 로고    scopus 로고
    • Self organizing neural networks for financial diagnosis
    • Serrano-Cinca C. Self organizing neural networks for financial diagnosis. Decision Support Systems 17 3 (1996) 227-238
    • (1996) Decision Support Systems , vol.17 , Issue.3 , pp. 227-238
    • Serrano-Cinca, C.1
  • 15
    • 0004398518 scopus 로고    scopus 로고
    • Feedforward neural networks in the classification of financial information
    • Serrano-Cinca C. Feedforward neural networks in the classification of financial information. The European Journal of Finance 3 3 (1997) 183-202
    • (1997) The European Journal of Finance , vol.3 , Issue.3 , pp. 183-202
    • Serrano-Cinca, C.1
  • 16
    • 43949151078 scopus 로고
    • Corporate distress diagnosis: comparisons using linear discriminant analysis and neural networks
    • Altman E.I., Macro G., and Varetto F. Corporate distress diagnosis: comparisons using linear discriminant analysis and neural networks. Journal of Banking and Finance 18 3 (1994) 505-529
    • (1994) Journal of Banking and Finance , vol.18 , Issue.3 , pp. 505-529
    • Altman, E.I.1    Macro, G.2    Varetto, F.3
  • 17
    • 0028444978 scopus 로고
    • Bankruptcy prediction using neural networks
    • Wilson R.L., and Sharda R. Bankruptcy prediction using neural networks. Decision Support Systems 11 5 (1994) 545-557
    • (1994) Decision Support Systems , vol.11 , Issue.5 , pp. 545-557
    • Wilson, R.L.1    Sharda, R.2
  • 18
    • 0029492199 scopus 로고
    • Effectiveness of neural network types for prediction of business failure
    • Boritz J.E., and Kennedy D.B. Effectiveness of neural network types for prediction of business failure. Expert Systems with Applications 9 4 (1995) 503-512
    • (1995) Expert Systems with Applications , vol.9 , Issue.4 , pp. 503-512
    • Boritz, J.E.1    Kennedy, D.B.2
  • 20
    • 0030414816 scopus 로고    scopus 로고
    • Integration of case-based forecasting, neural network and discriminant analysis for bankruptcy prediction
    • Jo H., and Han I. Integration of case-based forecasting, neural network and discriminant analysis for bankruptcy prediction. Expert Systems with Applications 11 4 (1996) 415-422
    • (1996) Expert Systems with Applications , vol.11 , Issue.4 , pp. 415-422
    • Jo, H.1    Han, I.2
  • 21
    • 0030241497 scopus 로고    scopus 로고
    • Hybrid neural network models for bankruptcy predictions
    • Lee K.C., Han I., and Kwon Y. Hybrid neural network models for bankruptcy predictions. Decision Support Systems 18 1 (1996) 63-72
    • (1996) Decision Support Systems , vol.18 , Issue.1 , pp. 63-72
    • Lee, K.C.1    Han, I.2    Kwon, Y.3
  • 22
    • 0031199479 scopus 로고    scopus 로고
    • Bankruptcy prediction using case-based reasoning, neural network and discriminant analysis
    • Jo H., Han I., and Lee H. Bankruptcy prediction using case-based reasoning, neural network and discriminant analysis. Expert Systems with Applications 13 2 (1997) 97-108
    • (1997) Expert Systems with Applications , vol.13 , Issue.2 , pp. 97-108
    • Jo, H.1    Han, I.2    Lee, H.3
  • 23
    • 0345404391 scopus 로고    scopus 로고
    • Predicting bankruptcies with the self-organizing map
    • Kiviluoto K. Predicting bankruptcies with the self-organizing map. Neurocomputing 21 1-3 (1998) 203-224
    • (1998) Neurocomputing , vol.21 , Issue.1-3 , pp. 203-224
    • Kiviluoto, K.1
  • 24
    • 0033074333 scopus 로고    scopus 로고
    • Probabilistic neural networks in bankruptcy prediction
    • Yang Z.R., Platt M.B., and Platt H.D. Probabilistic neural networks in bankruptcy prediction. Journal of Business Research 44 2 (1999) 67-74
    • (1999) Journal of Business Research , vol.44 , Issue.2 , pp. 67-74
    • Yang, Z.R.1    Platt, M.B.2    Platt, H.D.3
  • 25
    • 0032640524 scopus 로고    scopus 로고
    • Artificial neural networks in bankruptcy prediction: general framework and cross-validation analysis
    • Zhang G., Hu M.Y., Patuwo B.E., and Indro D.C. Artificial neural networks in bankruptcy prediction: general framework and cross-validation analysis. European Journal of Operational Research 116 1 (1999) 16-32
    • (1999) European Journal of Operational Research , vol.116 , Issue.1 , pp. 16-32
    • Zhang, G.1    Hu, M.Y.2    Patuwo, B.E.3    Indro, D.C.4
  • 26
    • 0036776357 scopus 로고    scopus 로고
    • A genetic algorithm application in bankruptcy prediction modeling
    • Shin K.S., and Lee Y.J. A genetic algorithm application in bankruptcy prediction modeling. Expert Systems with Applications 23 3 (2002) 321-328
    • (2002) Expert Systems with Applications , vol.23 , Issue.3 , pp. 321-328
    • Shin, K.S.1    Lee, Y.J.2
  • 27
    • 9244259665 scopus 로고    scopus 로고
    • An application of support vector machines in bankruptcy prediction model
    • Shin K.S., Lee T.S., and Kim H.J. An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications 28 1 (2005) 127-135
    • (2005) Expert Systems with Applications , vol.28 , Issue.1 , pp. 127-135
    • Shin, K.S.1    Lee, T.S.2    Kim, H.J.3
  • 28
    • 0037507342 scopus 로고    scopus 로고
    • Using case-based reasoning to evaluate supplier environmental management performance
    • Humphreys P., McIvor R., and Chan F. Using case-based reasoning to evaluate supplier environmental management performance. Expert Systems with Applications 25 2 (2003) 141-153
    • (2003) Expert Systems with Applications , vol.25 , Issue.2 , pp. 141-153
    • Humphreys, P.1    McIvor, R.2    Chan, F.3
  • 30
    • 0028401306 scopus 로고
    • Case-based reasoning; foundational issues, methodological variations, and system approaches
    • Aamodt A., and Plaza E. Case-based reasoning; foundational issues, methodological variations, and system approaches. AI Communications 7 1 (1994) 39-59
    • (1994) AI Communications , vol.7 , Issue.1 , pp. 39-59
    • Aamodt, A.1    Plaza, E.2
  • 33
    • 0024895461 scopus 로고
    • A note on genetic algorithms for large-scale feature selection
    • Siedlecki W., and Sklanski J. A note on genetic algorithms for large-scale feature selection. Pattern Recognition Letters 10 5 (1989) 335-347
    • (1989) Pattern Recognition Letters , vol.10 , Issue.5 , pp. 335-347
    • Siedlecki, W.1    Sklanski, J.2
  • 35
    • 0012657799 scopus 로고
    • Prototype and feature selection by sampling and random mutation hill climbing algorithms
    • New Brunswick, NJ
    • Skalak D.B. Prototype and feature selection by sampling and random mutation hill climbing algorithms. Proceedings of the Eleventh International Conference on Machine Learning. New Brunswick, NJ (1994) 293-301
    • (1994) Proceedings of the Eleventh International Conference on Machine Learning , pp. 293-301
    • Skalak, D.B.1
  • 36
    • 0031069985 scopus 로고    scopus 로고
    • Context-sensitive feature selection for lazy learners
    • Domingos P. Context-sensitive feature selection for lazy learners. Artificial Intelligence Review 11 1-5 (1997) 227-253
    • (1997) Artificial Intelligence Review , vol.11 , Issue.1-5 , pp. 227-253
    • Domingos, P.1
  • 40
    • 0031073477 scopus 로고    scopus 로고
    • A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms
    • Wettschereck D., Aha D.W., and Mohri T. A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artificial Intelligence Review 11 1-5 (1997) 273-314
    • (1997) Artificial Intelligence Review , vol.11 , Issue.1-5 , pp. 273-314
    • Wettschereck, D.1    Aha, D.W.2    Mohri, T.3
  • 42
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • Wilson D.L. Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man, and Cybernetics 2 3 (1972) 408-421
    • (1972) IEEE Transactions on Systems, Man, and Cybernetics , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1
  • 43
    • 0031164017 scopus 로고    scopus 로고
    • Prototype selection for the nearest neighbour rule through proximity graphs
    • Sanchez J.S., Pla F., and Ferri F.J. Prototype selection for the nearest neighbour rule through proximity graphs. Pattern Recognition Letters 18 6 (1997) 507-513
    • (1997) Pattern Recognition Letters , vol.18 , Issue.6 , pp. 507-513
    • Sanchez, J.S.1    Pla, F.2    Ferri, F.J.3
  • 44
    • 0032131595 scopus 로고    scopus 로고
    • Selection of the optimal prototype subset for 1-NN classification
    • Lipowezky U. Selection of the optimal prototype subset for 1-NN classification. Pattern Recognition Letters 19 10 (1998) 907-918
    • (1998) Pattern Recognition Letters , vol.19 , Issue.10 , pp. 907-918
    • Lipowezky, U.1
  • 45
    • 0027539938 scopus 로고
    • Prototype optimization for nearest neighbor classifier using a two-layer perceptron
    • Yan H. Prototype optimization for nearest neighbor classifier using a two-layer perceptron. Pattern Recognition 26 2 (1993) 317-324
    • (1993) Pattern Recognition , vol.26 , Issue.2 , pp. 317-324
    • Yan, H.1
  • 46
    • 0036604873 scopus 로고    scopus 로고
    • Prototype optimization for nearest-neighbor classification
    • Huang Y.S., Chiang C.C., Shieh J.W., and Grimson E. Prototype optimization for nearest-neighbor classification. Pattern Recognition 35 6 (2002) 1237-1245
    • (2002) Pattern Recognition , vol.35 , Issue.6 , pp. 1237-1245
    • Huang, Y.S.1    Chiang, C.C.2    Shieh, J.W.3    Grimson, E.4
  • 47
    • 0141547848 scopus 로고
    • Using a genetic algorithm to learn prototypes for case retrieval and classification
    • Washington, DC
    • Skalak D.B. Using a genetic algorithm to learn prototypes for case retrieval and classification. Proceedings of the 1993 AAAI Workshop on Case-based Reasoning. Washington, DC (1993) 64-69
    • (1993) Proceedings of the 1993 AAAI Workshop on Case-based Reasoning , pp. 64-69
    • Skalak, D.B.1
  • 48
    • 0034825422 scopus 로고    scopus 로고
    • Comparison of genetic algorithm based prototype selection schemes
    • Babu T.R., and Murty M.N. Comparison of genetic algorithm based prototype selection schemes. Pattern Recognition 34 2 (2001) 523-525
    • (2001) Pattern Recognition , vol.34 , Issue.2 , pp. 523-525
    • Babu, T.R.1    Murty, M.N.2
  • 49
    • 0033220766 scopus 로고    scopus 로고
    • Nearest neighbor classifier: simultaneous editing and feature selection
    • Kuncheva L.I., and Jain L.C. Nearest neighbor classifier: simultaneous editing and feature selection. Pattern Recognition Letters 20 11-13 (1999) 1149-1156
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1149-1156
    • Kuncheva, L.I.1    Jain, L.C.2
  • 50
    • 34748818341 scopus 로고    scopus 로고
    • Selecting representative examples and attributes by a genetic algorithm
    • Rozsypal A., and Kubat M. Selecting representative examples and attributes by a genetic algorithm. Intelligent Data Analysis 7 4 (2003) 291-304
    • (2003) Intelligent Data Analysis , vol.7 , Issue.4 , pp. 291-304
    • Rozsypal, A.1    Kubat, M.2
  • 51
    • 37849184985 scopus 로고    scopus 로고
    • A case-based reasoning system with the two-dimensional reduction technique for customer classification
    • Ahn H., Kim K.-J., and Han I. A case-based reasoning system with the two-dimensional reduction technique for customer classification. Expert Systems with Applications 32 4 (2007) 1011-1019
    • (2007) Expert Systems with Applications , vol.32 , Issue.4 , pp. 1011-1019
    • Ahn, H.1    Kim, K.-J.2    Han, I.3
  • 52
    • 85132303221 scopus 로고    scopus 로고
    • Feature weighting and instance selection for collaborative filtering: an information-theoretic approach
    • Yu K., Xu X., Ester M., and Kriegel H.-P. Feature weighting and instance selection for collaborative filtering: an information-theoretic approach. Knowledge and Information Systems 5 2 (2003) 201-224
    • (2003) Knowledge and Information Systems , vol.5 , Issue.2 , pp. 201-224
    • Yu, K.1    Xu, X.2    Ester, M.3    Kriegel, H.-P.4
  • 53
    • 33749996478 scopus 로고    scopus 로고
    • Global optimization of feature weights and the number of neighbors that combine in a CBR system
    • Ahn H., Kim K.-J., and Han I. Global optimization of feature weights and the number of neighbors that combine in a CBR system. Expert Systems 23 5 (2006) 290-301
    • (2006) Expert Systems , vol.23 , Issue.5 , pp. 290-301
    • Ahn, H.1    Kim, K.-J.2    Han, I.3
  • 55
    • 0348222122 scopus 로고    scopus 로고
    • GA based CBR approach in Q&A system
    • Fu Y., and Shen R. GA based CBR approach in Q&A system. Expert Systems with Applications 26 2 (2004) 167-170
    • (2004) Expert Systems with Applications , vol.26 , Issue.2 , pp. 167-170
    • Fu, Y.1    Shen, R.2
  • 58
    • 49249129466 scopus 로고    scopus 로고
    • Using genetic algorithms to optimize nearest neighbors for data mining
    • Ahn H., and Kim K.-J. Using genetic algorithms to optimize nearest neighbors for data mining. Annals of Operations Research 163 1 (2008) 5-18
    • (2008) Annals of Operations Research , vol.163 , Issue.1 , pp. 5-18
    • Ahn, H.1    Kim, K.-J.2
  • 59
    • 33744955999 scopus 로고    scopus 로고
    • Methods for Determining the optimal number of cases to combine in an effective case based forecasting system
    • Lee H.Y., and Park K.N. Methods for Determining the optimal number of cases to combine in an effective case based forecasting system. Korean Journal of Management Research 27 5 (1999) 1239-1252
    • (1999) Korean Journal of Management Research , vol.27 , Issue.5 , pp. 1239-1252
    • Lee, H.Y.1    Park, K.N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.